
Current state of running AI workloads on LUMI

LUMI User Support Team (LUST)

Danish e-infrastructure Consortium (DeiC)

Christian Schou Oxvig & René Løwe Jacobsen

June 1st, 2023



What are 
"AI workloads 
on LUMI"?

What is an
"AI environment 
on LUMI"?

This talk:

Discussion of technical details 
related to the use of the 
LUMI-G GPUs for training
deep learning models



Node architecture

The LUMI-G node high level architecture



Using a single GPU node

• LUMI-G consists of 2560 nodes each with 4 AMD Instinct MI250X GPUs

• ROCm is the AMD equivalent of Nvidia's CUDA
• ROCm is less mature than and not (yet) as feature rich as CUDA
• ROCm support in popular deep learning frameworks is still immature/experimental/non-existing
• For some applications the ROCm performance is inferior compared to CUDA

• Options for getting PyTorch/Tensorflow/JAX/etc. with ROCm support on LUMI
• Compiling yourself is known to be notoriusly difficult and sensitive to the ROCm version – questionable if this is ever going to be supported on LUMI
• Installing as a pip package is discouraged since it may put too much stress on the Lustre file system
• Using a Singularity/Apptainer container is likely going to be the recommended way on LUMI

• The official AMD InfinityHub containers are outdated
• The official AMD ROCm dockerhub containers are more up-to-date, but not very well documented
• Building your own container on LUMI is (in general) not possible due to security concerns over enabling fakeroot / user namespaces

• Manual configuration and tuning is in general needed to make it run (and perform)
• Setting environment variables
• Correct bindings of CPU and GPU

• https://docs.lumi-supercomputer.eu/runjobs/scheduled-jobs/distribution-binding/#gpu-binding

• Sorting out hostlists

• Proof-of-concepts/examples of running PyTorch/Tensorflow on LUMI
• https://docs.lumi-supercomputer.eu/software/packages/pytorch/
• https://lumi-supercomputer.github.io/LUMI-EasyBuild-docs/p/PyTorch/
• https://github.com/Lumi-supercomputer/ml-examples

https://www.amd.com/en/technologies/infinity-hub
https://hub.docker.com/u/rocm
https://docs.lumi-supercomputer.eu/runjobs/scheduled-jobs/distribution-binding/
https://docs.lumi-supercomputer.eu/software/packages/pytorch/
https://lumi-supercomputer.github.io/LUMI-EasyBuild-docs/p/PyTorch/
https://github.com/Lumi-supercomputer/ml-examples


Scaling to multiple GPU nodes

• Intra-node communication via RCCL (AMD equivalent of Nvidia's NCCL)
• Supported via aws-ofi-rccl plugin provided by AMD

• Inter-node communication via Cray Slingshot 11 interconnect
• Only supports Cray MPICH via libfabric/OFI (and Ethernet)

• No (accelerated) OpenMPI/UCX (yet)
• TCP/IP fallback (but that doesn't scale well)

• The way to go (most likely):
• Use framework distribution mechanisms with RCCL(/NCCL) as 

backend, e.g. PyTorch DistributedDataParallel
• Use the RCCL <--> libfabric integration provided by the aws-ofi-rccl plugin

• When using 3rd party distribution mechanisms (Horovod/DeepSpeed/Ray/...), 
you may need to use AMD ROCm forks and/or compile yourself against MPICH



What about the beginner and intermediate users?

• You may use cotainr on LUMI to easily create a Singularity/Apptainer
container which is based on an official ROCm docker image and 
contains your conda/pip environment
• We are looking into ways to include the aws-ofi-rccl plugin

• User installable via EasyBuild
• Ship a LUMI/ROCm container (base) image that includes it (currently only done in the 

local CSC stack)

• We are looking into ways to provide default sane environment variables, 
slurm options, etc.

https://cotainr.readthedocs.io/
https://lumi-supercomputer.github.io/LUMI-EasyBuild-docs/a/aws-ofi-rccl/

