
GPU Timeline Profiling

Presenter: Sam Antao

LUMI Pre-hackathon training

May 7th, 2025

2 |

[Public]

Background – AMD Profilers

A
tt

ai
n

ab
le

 F
LO

P
s/

s

1000

100

Counter collection with
user input files

Raw collection of GPU counters and traces

Counter results printed
to a CSV

CPU copy HIP API HSA API GPU Kernels

Trace collection support for

Traces visualized with Perfetto

Hardware
Counters

Visualisation

Traces and
timelines

ROC-profiler (rocprof)

CPU

Comprehensive trace collection

GPU

CPU copy HIP API HSA API GPU Kernels

Traces visualized with Perfetto

Trace
collection

Visualisation

Supports

Omnitrace

OpenMP® KokkosMPI multi-GPUp-threads

Analysis

Automated collection of hardware counters

Visualisation

Speed of
Light

Memory
chart

Rooflines
Kernel

comparison

standalone GUI

Performance
Analysis

Visualisation

Supports

Omniperf

3 |

[Public]

Background – AMD Profilers

Objective Where should I focus my time ? How well am I using the GPU ? Why am I seeing this performance ?

Approach Timelines/Traces/Profiles/Causal-Profiles Roofline Hardware counters

AMD Tools rocprof

4 |

[Public]

Background – AMD Profilers

Objective Where should I focus my time ? How well am I using the GPU ? Why am I seeing this performance ?

Approach Timelines/Traces/Profiles/Causal-Profiles Roofline Hardware counters

AMD Tools Omnitrace Omniperf

Introduction to ROC-Profiler

Presenter: Sam Antao

LUMI Pre-hackathon training

October 8th , 2024

6 LUMI Pre-hackathon training October 8th| PUBLIC

[Public]

Driver

User level

6.0.3

6.1.36.0.35.7.3 6.2 6.3

Dec 2023

6.4

Mar 2024 Jun 2024 Aug 2024 Nov 2024 Apr 2025

Meant to support older
version of apps and

frameworks

Facilitate transition

GPU address sanitizer
(beta)

Data pre-processing
capabilities
 (MIVisionX)

Default version

Officially supported

Recommended for
debugging

Improved sparse matrix
operations

Latest Pytorch and other
AI frameworks require

this version

Introduced many
performance

improvements

Many stability and performance
improvements for performance libraries

Improved support for lower precisions

Best tunned for AI inference workloads

Integration of profiling tools
Autocast (mixed-precision)

Native OpenXLA support

We’ll likely be abusing the driver soon

GPU-Aware MPI

ROCPROF V3
ROCM ON LUMI

7 |

[Public]

What is ROC-Profiler (v1-v2-v3)?

• ROC-profiler (also referred to as rocprof) is the command line front-end for AMD's GPU profiling libraries

• Repo: https://github.com/ROCm-Developer-Tools/rocprofiler

• rocprof contains the central components allowing application traces and counter collection
• Under constant development

• Distributed with ROCm

• The output of rocprofv1 can be visualized in the Chrome browser with Perfetto (https://ui.perfetto.dev/)

• There are ROCProfiler V1 and V2 (roctracer and rocprofiler into single library, same API)

• ROC-profiler-SDK is a profiling and tracing library for HIP and ROCm application. The new API improved thread
safety and includes more efficient implementations and provides a tool library to support on writing your tool
implementations. It is still in beta release.

• rocprofv3 uses this tool library to profile and trace applications.

https://github.com/ROCm-Developer-Tools/rocprofiler
https://ui.perfetto.dev/

8 |

[Public]

rocprof (v1): Getting Started + Useful Flags

• To get help:
${ROCM_PATH}/bin/rocprof -h

• Useful housekeeping flags:
• --timestamp <on|off> - turn on/off gpu kernel timestamps

• --basenames <on|off> - turn on/off truncating gpu kernel names (i.e., removing template parameters and argument types)

• -o <output csv file> - Direct counter information to a particular file name

• -d <data directory> - Send profiling data to a particular directory

• -t <temporary directory> - Change the directory where data files typically created in /tmp are placed. This allows you to
save these temporary files.

• Flags directing rocprofiler activity:
• -i input<.txt|.xml> - specify an input file (note the output files will now be named input.*)

• --hsa-trace - to trace GPU Kernels, host HSA events (more later) and HIP memory copies.

• --hip-trace - to trace HIP API calls

• --roctx-trace - to trace roctx markers

• --kfd-trace - to trace GPU driver calls

• Advanced usage
• -m <metric file> - Allows the user to define and collect custom metrics. See rocprofiler/test/tool/*.xml on GitHub for

examples.

https://github.com/ROCm-Developer-Tools/rocprofiler/tree/amd-master/test/tool

9 |

[Public]

rocprof (v1): : Kernel Information

• rocprof can collect kernel(s) execution stats

$ /opt/rocm/bin/rocprof --stats --basenames on <app with arguments>

• This will output two csv files:

• results.csv: information per each call of the kernel

• results.stats.csv: statistics grouped by each kernel

• Content of results.stats.csv to see the list of GPU kernels with their durations and percentage of total GPU time:

• In a spreadsheet viewer, it is easier to read:

10 |

[Public]

rocprof (v1): + Perfetto: Collecting and Visualizing App Traces
• rocprof can collect traces

$ /opt/rocm/bin/rocprof --hip-trace <app with arguments>

This will output a .json file that can be visualized using the Chrome browser and Perfetto (https://ui.perfetto.dev/)

Copy activity (H2D and D2H)

HIP API Activity

GPU activity

https://ui.perfetto.dev/

11 |

[Public]

rocprofv3: Getting Started + Useful Flags

• To get help:

${ROCM_PATH}/bin/rocprofv3 -h

• Useful housekeeping flags:

• --hip-trace For Collecting HIP Traces (runtime + compiler)

• --hip-runtime-trace For Collecting HIP Runtime API Traces

• --hip-compiler-trace For Collecting HIP Compiler generated code Traces

• --marker-trace For Collecting Marker (ROCTx) Traces

• --memory-copy-trace For Collecting Memory Copy Traces

• --stats For Collecting statistics of enabled tracing types

• --hsa-trace For Collecting HSA Traces (core + amd + image + finalizer)

• --hsa-core-trace For Collecting HSA API Traces (core API)

• --hsa-amd-trace For Collecting HSA API Traces (AMD-extension API)

• --hsa-image-trace For Collecting HSA API Traces (Image-extenson API)

• --hsa-finalizer-trace For Collecting HSA API Traces (Finalizer-extension API)

12 |

[Public]

rocprofv3: Getting Started + Useful Flags (II)

• Useful housekeeping flags:
• -s, --sys-trace For Collecting HIP, HSA, Marker (ROCTx), Memory copy, Scratch memory, and Kernel

 dispatch traces
• -M, --mangled-kernels Do not demangle the kernel names
• -T, --truncate-kernels Truncate the demangled kernel names
• -L, --list-metrics List metrics for counter collection
• -i INPUT, --input INPUT Input file for counter collection
• -o OUTPUT_FILE, --output-file OUTPUT_FILE
 For the output file name
• -d OUTPUT_DIRECTORY, --output-directory OUTPUT_DIRECTORY
 For adding output path where the output files will be saved
• --output-format {csv,json,pftrace} [{csv,json,pftrace} ...]
 For adding output format (supported formats: csv, json, pftrace)
• --log-level {fatal,error,warning,info,trace}
 Set the log level
• --kernel-names KERNEL_NAMES [KERNEL_NAMES ...]
 Filter kernel names
• --preload [PRELOAD ...]

 Libraries to prepend to LD_PRELOAD (usually for sanitizers)

• rocprofv3 requires double-hyphen (--) before the application to be executed, e.g.

 $ rocprofv3 [<rocprofv3-option> ...] -- <application> [<application-arg> ...]
 $ rocprofv3 --hip-trace -- ./myapp -n 1

• Instructions: https://rocm.docs.amd.com/projects/rocprofiler-sdk/en/docs-6.2.1/how-to/using-rocprofv3.html

13 |

[Public]

rocprofv3: Kernel Information

• rocprof can collect kernel(s) execution stats

$ /opt/rocm/bin/rocprofv3 --stats --kernel-trace –T -- <app with arguments>

• This will output four csv files (XXXXX are numbers):

• XXXXX_agent_info.csv: information for the used hardware APU/GPU and CPU

• XXXXX_kernel_traces.csv: information per each call of the kernel

• XXXXX_kernel_stats.csv: statistics grouped by each kernel

• XXXXX_domain_stats.csv: statistics grouped by domain, such as KERNEL_DISPATCH, HIP_COMPILER_API

• Content of results.stats.csv to see the list of GPU kernels with their durations and percentage of total GPU time:

• In a spreadsheet viewer, it is easier to read:

14 |

[Public]

rocprofv3: Collecting Application Traces

• rocprof can collect a variety of trace event types, and generate timelines in JSON format for use with

Perfetto, currently, however better use the pftrace output format (--output-format pftrace):

• You can combine modes like --stats --hip-trace --hsa-trace --output-format pftrace

Trace Event rocprof Trace Mode

HIP API call --hip-trace

GPU Kernels --kernel-trace

Host <-> Device Memory copies --hip-trace or --memory-copy-trace

CPU HSA Calls --hsa-trace

User code markers --marker-trace

Collect HIP, HSA, Kernels, Memory

Copy, Marker API

--sys-trace

Scratch memory operations --scratch-memory-trace

15 |

[Public]

rocprof + Perfetto: Collecting and Visualizing Application Traces
• rocprof can collect traces

$ /opt/rocm/bin/rocprof --hip-trace --output-format pftrace -- <app with arguments>

This will output a pftrace file that can be visualized using the chrome browser and Perfetto (https://ui.perfetto.dev/)

Copy activity (H2D and D2H)

HIP API Activity

GPU activity

https://ui.perfetto.dev/

16 |

[Public]

Perfetto: Visualizing Application Traces

• Zoom in to see individual events

• Navigate trace using WASD keys

17 |

[Public]

Perfetto: Kernel Information and Flow Events

• Zoom and select a kernel, you can see the link to the HIP call launching the kernel

• Try to open the information for the kernel (button at bottom right)

18 |

[Public]

Perfetto: Kernel Information

Kernel name and args

Workgroup size and

grid size

Duration

19 |

[Public]

Rocprofv3: OpenMP Offloading

• The option --kernel-trace provides information of the OpenMP kernels, good to use --hsa-trace if you want

information from HSA layer

• For example:

srun -n 1 rocprofv3 --stats --kernel-trace --output-format pftrace -- <app with arguments>

Content of XXXXX_kernel_stats.csv:

"Name","Calls","TotalDurationNs","AverageNs","Percentage","MinNs","MaxNs","StdDev"

"__omp_offloading_32_7f7a__Z6evolveR5FieldS0_dd_l24",500,45818062,91636.124000,100.00,49840,19483408,868965.767084

Content of XXXXX_kernel_trace.csv

"Kind","Agent_Id","Queue_Id","Kernel_Id","Kernel_Name","Correlation_Id","Start_Timestamp","End_Timestamp","Private_Segment_Size","Group_Segment_Size","

Workgroup_Size_X","Workgroup_Size_Y","Workgroup_Size_Z","Grid_Size_X","Grid_Size_Y","Grid_Size_Z"

"KERNEL_DISPATCH",4,1,1,"__omp_offloading_32_7f7a__Z6evolveR5FieldS0_dd_l24",1,4547852833814530,4547852853297938,0,0,256,1,1,233472,1,1

"KERNEL_DISPATCH",4,1,1,"__omp_offloading_32_7f7a__Z6evolveR5FieldS0_dd_l24",2,4547852853393869,4547852853446789,0,0,256,1,1,233472,1,1

"KERNEL_DISPATCH",4,1,1,"__omp_offloading_32_7f7a__Z6evolveR5FieldS0_dd_l24",3,4547852853461519,4547852853514599,0,0,256,1,1,233472,1,1

…

20 |

[Public]

Perfetto and OpenMP visualization

• Using: --sys-trace --output-format pftrace

• We can use: --kernel-trace --output-format

pftrace

21 |

[Public]

rocprofv3: Collecting Application Traces with rocTX Markers and Regions

• rocprofv3 can collect user defined regions or markers using rocTX

• Annotate code with roctx regions:
#include <rocprofiler-sdk-roctx/roctx.h>
...

roctxRangePush("reduce_for_c");
reduce_function ();
roctxRangePop();

...

• Annotate code with roctx markers:
...

roctxMark("start of some code");

// some_code

roctxMark("end of some code");

...
• Add roctx and roctracer libraries to link line:

-L${ROCM_PATH}/lib –lrocprofiler-sdk-roctx -lroctracer64

• Profile with --roctx-range option:
$ /opt/rocm/bin/rocprofv3 --hip-trace --marker-trace -- <app with arguments>

• Important: There is some difference regarding roctx between rocprof and rocprofv3

Roctx Range

22 |

[Public]

Rocprofv3: Merge traces

• When you have one pftrace per MPI processes you can merge them as follows:

• For example cat XXXXX_results.pftrace > all_ghostexchange.pftrace

• Then visualize the file called all_ghostexchange.pftrace

23 |

[Public]

rocprofv3: Commonly Used GPU Counters

Full list at: https://github.com/ROCm-Developer-Tools/rocprofiler/blob/amd-master/test/tool/metrics.xml

The percentage of ALUs active in a wave. Low VALUUtilization is
likely due to high divergence or a poorly sized grid

VALUUtilization

The percentage of GPUTime vector ALU instructions are
processed. Can be thought of as something like compute
utilization

VALUBusy

The total kilobytes fetched from global memoryFetchSize

The total kilobytes written to global memoryWriteSize

The percentage of GPUTime the memory unit is stalledMemUnitStalled

The ratio of active waves on a CU to the maximum number of
active waves supported by the CU

CU_OCCUPANCY

MeanOccupancyPer
CU

Mean occupancy per active compute unit
MeanOccupancyPe
rActiveCU

Mean occupancy per compute unit

https://github.com/ROCm-Developer-Tools/rocprofiler/blob/amd-master/test/tool/metrics.xml

24 |

[Public]

rocprofv3: Collecting Hardware Counters

• rocprofv3 can collect a number of hardware counters and derived counters

• $ /opt/rocm/bin/rocprofv3 -L

• Specify counters in a counter file. For example:

• $ /opt/rocm/bin/rocprofv3 -i rocprof_counters.txt -- <app with args>

• $ cat rocprof_counters.txt

pmc: VALUUtilization VALUBusy FetchSize WriteSize MemUnitStalled

pmc: GPU_UTIL CU_OCCUPANCY MeanOccupancyPerCU MeanOccupancyPerActiveCU

• A limited number of counters can be collected during a specific pass of code

• Each line in the counter file will be collected in one pass

• You will receive an error suggesting alternative counter ordering if you have too many / conflicting counters on one line

• One directory per pmc line will be created, for example pmc_1 and pmc_2 for the two lines in the file with the counters.

• One agent_info and one counter_collection csv file per MPI process will be created containing all the requested

counters for each invocation of every kernel

25 |

[Public]

rocprof: Profiling Overhead

• As with every profiling tool, there is an overhead

• The percentage of the overhead depends on the profiling options used

• For example, tracing is faster than hardware counter collection

• When collecting many counters, the collection may require multiple passes

• With rocTX markers/regions, tracing can take longer and the output may be large

• Sometimes too large to visualize

• The more data collected, the more the overhead of profiling

• Depends on the application and options used

• rocprofv3 has less overhead than rocprof (v1) on various examples with extensive ROCm calls

26 |

[Public]

Summary

• rocprof is the open source, command line AMD GPU profiling tool distributed with rocprofv3 available from

ROCm 6.2 and later

• rocprof provides tracing of GPU kernels, through various options, HIP API, HSA API, Copy activity and

others

• rocprof can be used to collect GPU hardware counters with additional overhead

• Perfetto seems to visualize pftrace files without significant issues

• Other output files are in text/CSV format

System Profiling with

Omnitrace

Presenter: Sam Antao

LUMI Pre-hackathon training

May 7th, 2025

28 |

[Public]

AMD Profilers with Timeline Profiling Support

Counter collection with user
input files

Raw collection of GPU counters and traces

Counter results printed to a CSV

CPU to GPU copy HIP API HSA API GPU Kernels

Trace collection support for

Hardware
Counters

Traces and
timelines

ROC-profiler (rocprof)

Traces visualized with PerfettoVisualization

1000

Hardware counters
(rocprof)

Binary rewrite
Pre-instruments executable

Trace
collection

Adds to
rocprof

Omnitrace

OpenMP® KokkosMPI p-threads

Sampling

PAPI Profile

Runtime instrumentation
with standard executable

DynInst Perf AMDµProf

rocm-smi

29 |

[Public]

Omnitrace: Application Profiling, Tracing, and Analysis

Language Support

CPU Metrics

ROCm Tool
(formerly AMD Research Tool)

Data Collection Modes

Data Analysis

Parallelism Support

GPU Metrics

MPI PthreadsOpenMP® HSAHIP Kokkos

C/C++ Fortran Python OpenCL TM

Repository: https://rocm.docs.amd.com/projects/omnitrace/en/latest/

High-level summary Comprehensive trace Critical trace analysis

Part of official ROCm starting from 6.2

Dynamic instrumentation Statistical/process sampling Causal Profiling

HW counters HIP APIHSA API HSA traceHIP trace Memory & thermal

HW counters Memory accessTiming metrics I/ONetwork more…

Refer to current documentation for recent updates

New features constantly

being added

Oct 4th, 2024 AMD @ EPCC

https://rocm.docs.amd.com/projects/omnitrace/en/latest/

31 |

[Public]

Omnitrace Configuration File

$ omnitrace-avail --categories [options]

Get more information about run-time settings, data collection capabilities, and available
hardware counters. For more information or help use -h/--help flags:

Collect information for omnitrace-related settings using shorthand -c for --categories:

For brief description, use the options:

$ omnitrace-avail -h

$ omnitrace-avail -c omnitrace

$ omnitrace-avail -bd

Create a config file

Create a config file in $HOME:

To add description of all variables and settings, use:

Modify the config file $HOME/.omnitrace.cfg as desired to

enable and change settings:

<snip>
OMNITRACE_TRACE = true
OMNITRACE_PROFILE = true
OMNITRACE_USE_SAMPLING = false
OMNITRACE_USE_ROCTRACER = true
OMNITRACE_USE_ROCM_SMI = true
OMNITRACE_USE_MPIP = true
OMNITRACE_USE_PID = true
OMNITRACE_USE_ROCPROFILER = true
OMNITRACE_USE_ROCTX = true
<snip>

Declare which config file to use by setting the environment:

$ omnitrace-avail -G $HOME/.omnitrace.cfg

$ omnitrace-avail -G $HOME/.omnitrace.cfg --all

$ export OMNITRACE_CONFIG_FILE=/path-
to/.omnitrace.cfg

Contents of the config file

32 |

[Public]

Generating a new executable/library with instrumentation built-in:

Binary Rewrite

Binary Rewrite
$ omnitrace-instrument [omnitrace-options] –o <new-name-
of-exec> -- <CMD> <ARGS>

This new binary will have instrumented functions

$ omnitrace-instrument -o Jacobi_hip.inst -- ./Jacobi_hip

Path to new instrumented binary

Subroutine Instrumentation
Default instrumentation is main function and functions of 1024

instructions and more (for CPU)

To instrument routines with 500 or more cycles, add option "-i 500"

(more overhead)

33 |

[Public]

Generating a new executable/library with instrumentation built-in:

Run the instrumented binary:

Run Instrumented Binary

Binary Rewrite
$ omnitrace-instrument [omnitrace-options] –o <new-name-
of-exec> -- <CMD> <ARGS>

$ omnitrace-instrument -o Jacobi_hip.inst -- ./Jacobi_hip

Subroutine Instrumentation
Default instrumentation is main function and functions of 1024

instructions and more (for CPU)

To instrument routines with 500 or more cycles, add option "-i 500"

(more overhead)

Binary rewrite is recommended for runs with multiple ranks as

Omnitrace produces separate output files for each rank

Generates traces for application run

$ mpirun -np 1 omnitrace-run -- ./Jacobi_hip.inst -g 1 1

34 |

[Public]

Kernel Durations

$ cat omnitrace-Jacobi_hip.inst-output/2024-01-01_13.57/wall_clock-0.txt

If you do not see a wall_clock.txt dumped by Omnitrace, try modify the config file
$HOME/.omnitrace.cfg and enable OMNITRACE_PROFILE (or prepend to your mpirun command):

…

OMNITRACE_PROFILE = true
…

Call Stack

Durations

35 |

[Public]

Kernel Durations – Flat Profile

OMNITRACE_PROFILE = true
OMNITRACE_FLAT_PROFILE = true

Edit in your omnitrace.cfg (or prepend to your mpirun command):

Use flat profile to see aggregate duration of kernels and

functions

38 |

[Public]

Flow Events

Select metrics of interest to view

close together

GPU characteristics

Use Perfetto
Zoom in to investigate regions of interest

Visualizing Trace (3/3)

40 |

[Public]

Configure Omnitrace to Collect GPU Hardware Counters

Full list of GPU metrics at https://github.com/ROCm/rocprofiler/blob/amd-staging/test/tool/metrics.xml

Modify config file

Modify the config file $HOME/.omnitrace.cfg to add desired metrics and for concerned GPU#ID:

To profile desired metrics for all participating GPUs:

Note: currently experiencing issues with ROCm 6.2.1, fix coming soon

…
OMNITRACE_ROCM_EVENTS = FetchSize:device=0, VALUUtilization:device=0, MemUnitBusy:device=0
…

…
OMNITRACE_ROCM_EVENTS = FetchSize, VALUUtilization, MemUnitBusy
…

https://github.com/ROCm/rocprofiler/blob/amd-staging/test/tool/metrics.xml

41 |

[Public]

Execution with Hardware Counters

After modifying .cfg file to set up OMNITRACE_ROCM_EVENTS with GPU metrics run:
$ mpirun -np 1 omnitrace-run -- ./Jacobi_hip.inst -g 1 1

GPU hardware

counters

42 |

[Public]

Visualization with Hardware Counters

GPU hardware counters

CPU activity

GPU activity

ROCTX Regions

43 |

[Public]

OMNITRACE_USE_SAMPLING = true; OMNITRACE_SAMPLING_FREQ = 100 (100 samples per second)

Alternatively run with omnitrace-sample

Scroll down all the way in Perfetto to see the sampling output

Each sample shows the

call stack at that time

Sampling CPU Call-Stack (1/2)

44 |

[Public]

Sampling CPU Call-Stack (2/2)

Zoom in call-stack sampling

Sampling data is annotated with (S)

45 |

[Public]

Additional Features

• Dynamic runtime instrumentation

• User API to control instrumentation

• OMNITRACE_USE_KOKKOSP=true supports Kokkos profiling

• omnitrace-python supports Python profiling (only with AMD Research ROCm)

• omnitrace-causal for invoking causal profiling (experimental)

Fixes coming soon:

• Hardware counters

• Full OpenMP® support

• Visualizing traces from multiple MPI ranks

46 |

[Public]

Summary

• Omnitrace - powerful tool to understand CPU + GPU activity on AMD GPUs

• Ideal for an initial look at how an application runs

• Easy to visualize traces in Perfetto

• Leverages several other tools and combines their data into a comprehensive output files

• Some tools used are AMDµProf, rocprofiler, rocm-smi, roctracer, perf, etc.

• Helps users analyze overlaps between CPU/GPU compute and communication

Other profiling options

Presenter: Sam Antao

LUMI Pre-hackathon training

October 8th , 2024

62 |

[Public]

Hands-on Exercises

https://hackmd.io/@sfantao/lumi-prehack-may-2025

We encourage you to look at our HPC Training Examples repo for other examples:

 https://github.com/amd/HPCTrainingExamples

A table of contents for the READMEs if available at the top-level README in the repo

Rocprofv3 exercises instructions: Rocprofv3/README.md

Link to instructions on how to run Omnitrace tests: Omnitrace/omnitrace_jacobi/MI200/README.md

https://hackmd.io/@sfantao/lumi-prehack-may-2025
https://github.com/amd/HPCTrainingExamples
https://github.com/amd/HPCTrainingExamples/blob/main/README.md
https://github.com/amd/HPCTrainingExamples/tree/main/Rocprofv3
https://github.com/amd/HPCTrainingExamples/tree/main/Omnitrace/omnitrace_jacobi/MI300A

Questions?

ssh <you user>@lumi.csc.fi

https://hackmd.io/@sfantao/lumi-prehack-may-2025

https://hackmd.io/@sfantao/lumi-prehack-may-2025

64 |

[Public]

DISCLAIMERS AND ATTRIBUTIONS
The information contained herein is for informational purposes only and is subject to change without notice. While every precaution has been taken
in the preparation of this document, it may contain technical inaccuracies, omissions and typographical errors, and AMD is under no obligation to
update or otherwise correct this information. Advanced Micro Devices, Inc. makes no representations or warranties with respect to the accuracy or
completeness of the contents of this document, and assumes no liability of any kind, including the implied warranties of noninfringement,
merchantability or fitness for particular purposes, with respect to the operation or use of AMD hardware, software or other products described
herein. No license, including implied or arising by estoppel, to any intellectual property rights is granted by this document. Terms and limitations
applicable to the purchase or use of AMD’s products are as set forth in a signed agreement between the parties or in AMD's Standard Terms and
Conditions of Sale. GD-18

THIS INFORMATION IS PROVIDED ‘AS IS.” AMD MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE
CONTENTS HEREOF AND ASSUMES NO RESPONSIBILITY FOR ANY INACCURACIES, ERRORS, OR OMISSIONS THAT MAY
APPEAR IN THIS INFORMATION. AMD SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY, OR FITNESS FOR ANY PARTICULAR PURPOSE. IN NO EVENT WILL AMD BE LIABLE TO ANY PERSON FOR
ANY RELIANCE, DIRECT, INDIRECT, SPECIAL, OR OTHER CONSEQUENTIAL DAMAGES ARISING FROM THE USE OF ANY
INFORMATION CONTAINED HEREIN, EVEN IF AMD IS EXPRESSLY ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

© 2025 Advanced Micro Devices, Inc. All rights reserved.

AMD, the AMD Arrow logo, Radeon , Instinct , EPYC, Infinity Fabric, ROCm , and combinations thereof are trademarks of Advanced
Micro Devices, Inc. Other product names used in this publication are for identification purposes only and may be trademarks of their
respective companies.
The OpenMP name and the OpenMP logo are registered trademarks of the OpenMP Architecture Review Board
Windows is a registered trademark of Microsoft Corporation in the US and/or other countries.
Git and the Git logo are either registered trademarks or trademarks of Software Freedom Conservancy, Inc., corporate home of the Git
Project, in the United States and/or other countries
Intel is a trademark of Intel Corporation or its subsidiaries

	Slide 1: GPU Timeline Profiling
	Slide 2: Background – AMD Profilers
	Slide 3: Background – AMD Profilers
	Slide 4: Background – AMD Profilers
	Slide 5: Introduction to ROC-Profiler
	Slide 6: ROCm on LUMI
	Slide 7: What is ROC-Profiler (v1-v2-v3)?
	Slide 8: rocprof (v1): Getting Started + Useful Flags
	Slide 9: rocprof (v1): : Kernel Information
	Slide 10: rocprof (v1): + Perfetto: Collecting and Visualizing App Traces
	Slide 11: rocprofv3: Getting Started + Useful Flags
	Slide 12: rocprofv3: Getting Started + Useful Flags (II)
	Slide 13: rocprofv3: Kernel Information
	Slide 14: rocprofv3: Collecting Application Traces
	Slide 15: rocprof + Perfetto: Collecting and Visualizing Application Traces
	Slide 16: Perfetto: Visualizing Application Traces
	Slide 17: Perfetto: Kernel Information and Flow Events
	Slide 18: Perfetto: Kernel Information
	Slide 19: Rocprofv3: OpenMP Offloading
	Slide 20: Perfetto and OpenMP visualization
	Slide 21: rocprofv3: Collecting Application Traces with rocTX Markers and Regions
	Slide 22: Rocprofv3: Merge traces
	Slide 23: rocprofv3: Commonly Used GPU Counters
	Slide 24: rocprofv3: Collecting Hardware Counters
	Slide 25: rocprof: Profiling Overhead
	Slide 26: Summary
	Slide 27: System Profiling with Omnitrace
	Slide 28: AMD Profilers with Timeline Profiling Support
	Slide 29: Omnitrace: Application Profiling, Tracing, and Analysis
	Slide 31: Omnitrace Configuration File
	Slide 32: Binary Rewrite
	Slide 33: Run Instrumented Binary
	Slide 34: Kernel Durations
	Slide 35: Kernel Durations – Flat Profile
	Slide 38: Visualizing Trace (3/3)
	Slide 40: Configure Omnitrace to Collect GPU Hardware Counters
	Slide 41: Execution with Hardware Counters
	Slide 42: Visualization with Hardware Counters
	Slide 43: Sampling CPU Call-Stack (1/2)
	Slide 44: Sampling CPU Call-Stack (2/2)
	Slide 45: Additional Features
	Slide 46: Summary
	Slide 47: Other profiling options
	Slide 62: Hands-on Exercises
	Slide 63: Questions? ssh <you user>@lumi.csc.fi https://hackmd.io/@sfantao/lumi-prehack-may-2025
	Slide 64: DISCLAIMERS AND ATTRIBUTIONS
	Slide 65

