Introduction to ROC-Profiler (rocprof)

Gina Sitaraman, Suyash Tandon, Justin Chang, Julio Maia, Noel
Chalmers, Paul T. Bauman, Nicholas Curtis, Nicholas Malaya,
Alessandro Fanfarillo, Jose Noudohouenou, Chip Freitag, Damon
McDougall, Noah Wolfe, Jakub Kurzak, Samuel Antao, George
Markomanolis, Bob Robey, Essam Morsi

LUMI pre-hackathon training
Nov 22nd, 2023 AMDA\

together we advance_

What is ROC-Profiler?

ROC-profiler (also referred to as) is the command line front-end for AMD's GPU profiling libraries
Repo: https://github.com/ROCm-Developer-Tools/rocprofiler

rocprof contains the central components allowing application traces and counter collection
Under constant development

Distributed with ROCm

The output of rocprof can be visualized in the Chrome browser with Perfetto (https://ui.perfetto.dev/)

LUMI Pre-hackathon training AMDZ1

together we advance_

Nov 22nd, 2023

https://github.com/ROCm-Developer-Tools/rocprofiler
https://ui.perfetto.dev/

Background — AMD Profilers

ROC-profiler (rocprof)

Hardware
Counters

Traces and
timelines

Raw collection of GPU counters and traces

Counter collection with Counter results printed
user input files to a CSV

Trace co!lection support for

CPU copy HIP API HSA APl GPU Kernels

Traces visualized with Perfetto

Calls TotalDura AverageN:Percentagd
3.22E+10 3.25E+08 44.14872

2.42E+10 73394557 33.225
7.76E+09 89232696 10.64953

5.41E+09 6.01E+08 7.415198

1.32E+09 47006288 1.805515

1.05E+09 61534688 1.435014

1 8.11E+08 19791876 1.113161

1856 58082083 31294 0.079676

2 46380834 23190417 0.063625

JREN hipMemset 2 18847246 9423623 0.025854
4P} hipStreamDestroy 215183338 7591669 0.020828
[EY hipFree 38 8269713 217624 0.011344
{ZY hipEventRecord 330 2520035 7636 0.003457
B hipMalloc 30 1484804 49493 0.002037
_hipPopCallConfigura 1856 229159 123 0.000314
__hipPushCallConfigur. 1856 224177 120 0.000308

REY hipGetlastError 1494 100458 67 0.000138

Ell hipMemcpyAsync
El hipEventSynchronize

Pl hipMemsetAsync

Bl hipHostMalloc

3l hipDevicesynchronize
[l hipHostFree

Bl hipMemcpy

Bl hipLaunchKernel

i hipStreamCreate

RE] hipEventCreate 330 76675 232 0.000105
Ll hipEventDestroy 64671 195 8.87E-05
PAN hipGetDevicePropertie: 51808 1102 7.11E-05
23 hipGetDevice 6: 11611 181 1.59E-05
PER hipSetDevice 401 401 5.50E-07
PXE hipGetDeviceCount 220 220 3.02E-07

Nov 22nd, 2023

Omnitrace

Trace
collection

Supports

A Ieshrkokkosp.nst 2072429

Comprehensive trace co'lection

CPU GPU

CPU copy HIP API HSA APl GPU Kernels

OpenMP® MPI Kokkos p-threads multi-GPU

Traces visualized with Perfetto

LagrangeNodal

o 'L, e | R il Al
I\IW p— ‘Iﬂﬁ [Hm\,l”‘\
il W")“ | “‘ \\‘m \ H‘W

\

I H‘{ WIM ‘H‘\ 1

I 1 DA

TINT A L

Connected Sice ID

LUMI Pre-hackathon training

Instr Buff

Wave 0 Instr buff

Wave N-1 Instr butf

Wave Occupancy
29 per-GCD

Wave Life

3405 cycles

Omniperf

Performance
Analysis

Supports

Instr Dispatch ~ Exec

LA A 2 & 2 2 & 4

» | Active CUs
1101110

Automated collection of hardware counters

Analysis Visualization
Spged of Memory Rooflines Kern(.el
Light chart comparison

With Grafana or standalone GU!

Memory Chart (Normalization: “per Wave™)

10s
L2 Cache
Reg: 0 XGMI/
PCle
Re &4 r
e s Fabric o
e 0 w o Latency w s HBM
- -
e O
2 3
GMI

AMDZ1

together we advance_

[Public]

Background — AMD Profilers

l——] |

Nov 22nd, 2023 LUMI Pre-hackathon training AMD
4 together we advance_

[Public]

Background — AMD Profilers

=1
e —

N @ N

-{ Omnitrace

——
| I———

Omniperf

— —

Nov 22nd, 2023 LUMI Pre-hackathon training AMD
5 together we advance_

rocprof: Getting Started + Useful Flags

To get help:

Useful housekeeping flags:
--timestamp <on|off> - turn on/off gpu kernel timestamps
--basenames <on|off> - turn on/off truncating gpu kernel names (i.e., removing template parameters and argument types)
-0 <output csv file> - Direct counter information to a particular file name
-d <data directory> - Send profiling data to a particular directory

-t <temporary directory> - Change the directory where data files typically created in /tmp are placed. This allows you to
save these temporary files.

Flags directing rocprofiler activity:
-i input<.txt]|.xml> - specify an input file (note the output files will now be named input.*)
--hsa-trace - to trace GPU Kernels, host HSA events (more later) and HIP memory copies.
--hip-trace - to trace HIP API calls
--roctx-trace - to trace roctx markers
--kfd-trace - to trace GPU driver calls

Advanced usage

-m <metric file> - Allows the user to define and collect custom metrics. See rocprofiler/test/tool/*.xml on GitHub for
examples.

LUMI Pre-hackathon training AMDZ1

together we advance_

Nov 22nd, 2023

https://github.com/ROCm-Developer-Tools/rocprofiler/tree/amd-master/test/tool

rocprof: Kernel Information

rocprof can collect kernel(s) execution stats

This will output two csv files:
results.csv: information per each call of the kernel
results.stats.csv: statistics grouped by each kernel

Content of results.stats.csv to see the list of GPU kernels with their durations and percentage of total GPU time:

"Name","Calls","TotalDurationNs", "AverageNs", "Percentage"
"JacobiIterationKernel",b 1000,556699359,556699,43.291753895270446
"NormKernell",1001,430797387,430367,33.500980655394606
"LocalLaplacianKernel",b 1000,280014065,280014,21.775307970480817

"HaloLaplacianKernel",b1000,14635177,14635,1.1381052818810995
"NormKernel2",1001,3770718,3766,0.2932300765671734
" amd rocclr fillBufferAligned.kd",1,8000,8000,0.0006221204058583505

In a spreadsheet viewer, it is easier to read:

A B C D

Name Percentage
JacobilterationKernel 1000 556699359 556699 43.2917538952704
1001 430797387 430367 33.5009806553946
1000 280014065 280014 21.7753079704808
1000 14635177 14635 1.1381052818811
NormKernel2 1001 3770718 3766 0.293230076567173
and rocclr fillBufferAligned 1 8000 8000 0.000622120405858

1
>
3
4
5
6
7

Nov 22nd, 2023 LUMI Pre-hackathon training

AMDZ1

together we advance_

rocprof: Collecting Application Traces

rocprof can collect a variety of trace event types, and generate timelines in JSON format for use with Perfetto,
currently:

Trace Event rocprof Trace Mode
HIP API call --hip-trace

GPU Kernels --hip-trace

Host <-> Device Memory copies --hip-trace
CPU HSA Calls --hsa-trace

User code markers --roctx-trace

You can combine modes like --hip-trace --hsa-trace
If profiling OpenMP® offload code, --hsa-trace is required to show HSA activity

Nov 22nd, 2023 LUMI Pre-hackathon training AMD
together we advance_

rocprof + Perfetto: Collecting and Visualizing Application Traces

rocprof can collect traces

This will output a .json file that can be visualized using the Chrome browser and Perfetto (https://ui.perfetto.dev/)

(T Perfetto

Navigation

[Open trace file
D Open with legacy Ul

@) Record new trace

Current Trace

results.json (152 MB)
== Show timeline
¥ Download
<¢» Query (SQL)

Metrics

@
o Info and stats

Convert trace

Nov 22nd, 2023

A
A =

A CPUHIPAPI 2

i ———

11—~
A GPU28

Thead NN O

Thread 1

A COPY1

I AR

LUMI Pre-hackathon training AMDZ

together we advance_

https://ui.perfetto.dev/

Perfetto: Visualizing Application Traces

Zoom in to see individual events
S
Navigate trace using WASD keys

A GPU28

Thead
Thread 1 NormK Jacobilt... |NormK ‘ Loc.. |

A COPY1

CopyHostToDevice

Nov 22nd, 2023 LUMI Pre-hackathon training AMD
together we advance_

Perfetto: Kernel Information and Flow Events

Zoom and select a kernel, you can see the link to the HIP call launching the kernel
Try to open the information for the kernel (button at bottom right)

v
A

A CPUHIP API 2

hipM...| hipLaun...| hipLau hipMemcpy -MFEMIP
Thread 140096 ‘ ‘ ’ ‘ ‘

A GPU28

Thread 0 <barrier packet> <barrier packet> <barrier packet> .

Thread 1 Loc... Jacobilt... NormK ‘ Loc... | L

A COPY1

TR

AMDZ1

together we advance_

Current Selection Flow Events

Nov 22nd, 2023 LUMI Pre-hackathon training

Perfetto: Kernel Information and Flow Events

Current Selection | Flow Events

Slice Details

Name JacobilterationKernel(int, double, double, double const*, Precedmg flows
double const*, double*, double*) Slice A hipLaunchKernel

Category null Delay bus
Start time 272ms 523us 999ns Thread NULL (CPU HIP API 2)
Duration 541us «— | Arguments
Thread duration 0s (0.00%) args
Thread 1 BeginNs ~ 8024159641088210
Process GPU2 8 Data ~ NULL
Slice ID 57 DurationNs ~ 941599
EndNs ~ 8024159641629809
Name ~ JacobilterationKernel(int, double, double, double const*,
double const*, double*, double*)
pid ~ 140096
tid ~ 140096
dev-id ~
queue-id ~
stream-id ~

Current Selection = Flow Events

Flow events
Direction Duration Connected Slice Connected Slice Thread Out Thread In Process Out Process In Flow Category Flow Name
Name
ncoming bus : hipLaunchKernel NULL NULL CPUHIP API2 GPU28 DataFlow dep
LUMI Pre-hackathon training AMDA

together we advance_

Nov 22nd, 2023

rocprof: Collecting Application Traces with rocTX Markers and Regions

rocprof can collect user defined regions or markers using rocTX

Annotate code with roctx regions:
#include <roctx.h>

reduce_function ();

Annotate code with roctx markers:

// some_code

A COPY1

Add roctx and roctracer libraries to link line:

v GPUOG6

Profile with - -roctx-range option: _
LUMI Pre-hackathon training _ AMDA

Nov 22nd, 2023
together we advance_

rocprof: Collecting Hardware Counters

rocprof can collect a number of hardware counters and derived counters

$ /opt/rocm/bin/rocprof
$ /opt/rocm/bin/rocprof

Specify counters in a counter file. For example:

$ /opt/rocm/bin/rocprof

$ cat rocprof_counters.txt
Wavefronts VALUInsts VFetchInsts VWriteInsts VALUUtilization VALUBusy WriteSize

<app with args>

pmc :
pmc : SALUInsts SFetchInsts LDSInsts FlatLDSInsts GDSInsts SALUBusy FetchSize
pmc : L2CacheHit MemUnitBusy MemUnitStalled WriteUnitStalled ALUStalledByLDS LDSBankConflict

A limited number of counters can be collected during a specific pass of code

Each line in the counter file will be collected in one pass
You will receive an error suggesting alternative counter ordering if you have too many / conflicting counters on one line

A csv file will be created containing all the requested counters for each invocation of every kernel

Nov 22nd, 2023 LUMI Pre-hackathon training

AMDZ1

together we advance_

Larger Traces with Perfetto

There is a memory limit in the Chrome browser. There is a way to read in the trace for the browser before
starting it up.

Linux®
curl -LO https://get.perfetto.dev/trace_processor
chmod +x ./trace_processor
./trace_processor -httpd <path to trace file>
Open up Chrome browser and go to https://ui.perfetto.dev
When prompted, click on "Yes, use loaded trace"

Windows®
Open up https://get.perfetto.dev/trace processor in a browser to download the python™ script

py trace_processor --httpd <trace file>
You may need to download and install python on your windows system

Open up Chrome browser and go to https://ui.perfetto.dev
When prompted, click on "Yes, use loaded trace"

Nov 22nd, 2023 LUMI Pre-hackathon training AMD
together we advance_

https://ui.perfetto.dev/
https://get.perfetto.dev/trace_processor
https://ui.perfetto.dev

[Public]

rocprof: Commonly Used GPU Counters

Full list at: https://github.com/ROCm-Developer-Tools/rocprofiler/blob/amd-master/test/tool/metrics.xml

Nov 22nd, 2023 LUMI Pre-hackathon training AMD
16 together we advance_

https://github.com/ROCm-Developer-Tools/rocprofiler/blob/amd-master/test/tool/metrics.xml

Performance Counters Tips and Tricks

GPU Hardware counters are global
Kernel dispatches are serialized to ensure that only one dispatch is ever in flight
It is recommended that no other applications are using the GPU when collecting performance counters

Use --basenames on which will report only kernel names, leaving off kernel arguments

How do you time a kernel’s duration?
$ /opt/rocm/bin/rocprof <app with args>
This produces four times: DispatchNs, BeginNs, EndNs, and CompleteNs
Closest thing to a kernel duration: EndNs - BeginNs

If you run with “--stats” the resultant results.stats.csv file will include a kernel duration column
Note: the duration is aggregated over repeated calls to the same kernel

Nov 22nd, 2023 LUMI Pre-hackathon training

AMDZ1

together we advance_

21

rocprof: Multiple MPI Ranks

rocprof can collect counters and traces for multiple MPI ranks

Say you want to profile an application usually called like this:
mpiexec -np <n> ./Jacobi hip -g <x> <y>

Invoke the profiler by executing:
mpiexec -np <n> rocprof <rocprof_options> ./Jacobi hip -g <x> <y>
or
srun --ntasks=n rocprof <rocprof options> ./Jacobi hip -g <x> <y>

By directing output files from each rank to different directories, we can collect traces for each rank

separately
Use a helper script for this, and run your program as shown below:
mpiexec -np <n> ./Jacobi_hip -g <x> <y>

Multi-node profiling currently isn’t supported

Nov 22nd, 2023 LUMI Pre-hackathon training

AMDZ1

together we advance_

Profiling Multiple MPI Ranks

$cat rocprof_wrapper.sh

#!/bin/bash
set -euo pipefail
depends on ROCM _PATH being set outside; input arguments are the output directory & the name
outdir="¢1"
name="$2"
if [[-n ${OMPI_COMM_WORLD_RANK+z}]]; then
mpich
export MPI_RANK=${OMPI_COMM_WORLD RANK}
elif [[-n ${MV2_COMM_WORLD_RANK+z}]]; then
ompi
export MPI_RANK=${MV2_COMM_WORLD_RANK}
elif [[-n ${SLURM_PROCID+z}]]; then
export MPI_RANK=${SLURM_PROCID}

else

echo "Unknown MPI layer detected! Must use OpenMPI, MVAPICH, or SLURM"

exit 1
fi
rocprof="${ROCM_PATH}/bin/rocprof"

Output directory per rank:

pid="$$" e
outdir="¢{outdir}/rank_${pid}_${MPI_RANK}"

outfile="${name} ${pid}_ ${MPI_RANK}.csv"
${rocprof} -d ${outdir} --hsa-trace -o ${outdir}/${outfile} "${@:3}" — Applicationandits arguments:

LUMI Pre-hackathon training AMDZ1

Nov 22nd, 2023
together we advance_

rocprof: Profiling Overhead

As with every profiling tool, there is an overhead

The percentage of the overhead depends on the profiling options used
For example, tracing is faster than hardware counter collection

When collecting many counters, the collection may require multiple passes

With rocTX markers/regions, tracing can take longer and the output may be large
Sometimes too large to visualize

The more data collected, the more the overhead of profiling
Depends on the application and options used

Nov 22nd, 2023 LUMI Pre-hackathon training

23

AMDZ1

together we advance_

24

Summary

rocprof is the open source, command line AMD GPU profiling tool distributed with ROCm
Many other tools are built over rocprof

rocprof provides tracing of GPU kernels, HIP API, HSA APl and Copy activity

rocprof can be used to collect GPU hardware counters with additional overhead

JSON Traces can be viewed in Perfetto Ul

Other output files are in text/CSV format

Nov 22nd, 2023 LUMI Pre-hackathon training

AMDZ1

together we advance_

Disclaimer

The information presented in this document is for informational purposes only and may contain technical inaccuracies, omissions, and typographical errors. The
information contained herein is subject to change and may be rendered inaccurate for many reasons, including but not limited to product and roadmap changes,
component and motherboard version changes, new model and/or product releases, product differences between differing manufacturers, software changes,
BIOS flashes, firmware upgrades, or the like. Any computer system has risks of security vulnerabilities that cannot be completely prevented or mitigated. AMD
assumes no obligation to update or otherwise correct or revise this information. However, AMD reserves the right to revise this information and to make changes
from time to time to the content hereof without obligation of AMD to notify any person of such revisions or changes.

THIS INFORMATION IS PROVIDED ‘AS IS.” AMD MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE CONTENTS HEREOF
AND ASSUMES NO RESPONSIBILITY FOR ANY INACCURACIES, ERRORS, OR OMISSIONS THAT MAY APPEAR IN THIS INFORMATION. AMD
SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR ANY PARTICULAR
PURPOSE. IN NO EVENT WILL AMD BE LIABLE TO ANY PERSON FOR ANY RELIANCE, DIRECT, INDIRECT, SPECIAL, OR OTHER CONSEQUENTIAL

DAMAGES ARISING FROM THE USE OF ANY INFORMATION CONTAINED HEREIN, EVEN IF AMD IS EXPRESSLY ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.

Third-party content is licensed to you directly by the third party that owns the content and is not licensed to you by AMD. ALL LINKED THIRD-PARTY
CONTENT IS PROVIDED “AS I1S” WITHOUT A WARRANTY OF ANY KIND. USE OF SUCH THIRD-PARTY CONTENT IS DONE AT YOUR

SOLE DISCRETION AND UNDER NO CIRCUMSTANCES WILL AMD BE LIABLE TO YOU FOR ANY THIRD-PARTY CONTENT. YOU ASSUME ALL RISK
AND ARE SOLELY RESPONSIBLE FOR ANY DAMAGES THAT MAY ARISE FROM YOUR USE OF THIRD-PARTY CONTENT.

© 2023 Advanced Micro Devices, Inc. All rights reserved. AMD, the AMD Arrow logo, ROCm, and combinations thereof are trademarks of Advanced Micro
Devices, Inc. in the United States and/or other jurisdictions. Other names are for informational purposes only and may be trademarks of their respective owners.

Linux is the registered trademark of Linus Torvalds in the U.S. and other countries.

The OpenMP name and the OpenMP logo are registered trademarks of the OpenMP Architecture Review Board
Python

Windows is a registered trademark of Microsoft Corporation in the US and/or other countries.

Nov 22nd, 2023 LUMI Pre-hackathon training AMD

together we advance_

