
Introduction to ROC-Profiler (rocprof)

Gina Sitaraman, Suyash Tandon, Justin Chang, Julio Maia, Noel

Chalmers, Paul T. Bauman, Nicholas Curtis, Nicholas Malaya,

Alessandro Fanfarillo, Jose Noudohouenou, Chip Freitag, Damon

McDougall, Noah Wolfe, Jakub Kurzak, Samuel Antao, George

Markomanolis, Bob Robey

LUMI Pre-Hackathon

April 13, 2023

2 |

[Public]

What is ROC-Profiler?

• ROC-profiler (also referred to as rocprof) is the command line front-end for AMD's GPU profiling libraries

• Repo: https://github.com/ROCm-Developer-Tools/rocprofiler

• rocprof contains the central components allowing application traces and counter collection

• Under constant development

• Distributed with ROCm

• The output of rocprof can be visualized in the Chrome browser with Perfetto (https://ui.perfetto.dev/)

https://github.com/ROCm-Developer-Tools/rocprofiler
https://ui.perfetto.dev/

3 |

[Public]

Background – AMD Profilers

A
tt

ai
n

ab
le

 F
LO

P
s/

s

1000

100

4 |

[Public]

Background – AMD Profilers

5 |

[Public]

Background – AMD Profilers

6 |

[Public]

rocprof: Getting Started + Useful Flags

• To get help:
${ROCM_PATH}/bin/rocprof -h

• Useful housekeeping flags:
• --timestamp <on|off> - turn on/off gpu kernel timestamps

• --basenames <on|off> - turn on/off truncating gpu kernel names (i.e., removing template parameters and argument types)

• -o <output csv file> - Direct counter information to a particular file name

• -d <data directory> - Send profiling data to a particular directory

• -t <temporary directory> - Change the directory where data files typically created in /tmp are placed. This allows you to
save these temporary files.

• Flags directing rocprofiler activity:
• -i input<.txt|.xml> - specify an input file (note the output files will now be named input.*)

• --hsa-trace - to trace GPU Kernels, host HSA events (more later) and HIP memory copies.

• --hip-trace - to trace HIP API calls

• --roctx-trace - to trace roctx markers

• --kfd-trace - to trace GPU driver calls

• Advanced usage
• -m <metric file> - Allows the user to define and collect custom metrics. See rocprofiler/test/tool/*.xml on GitHub for

examples.

https://github.com/ROCm-Developer-Tools/rocprofiler/tree/amd-master/test/tool

7 |

[Public]

rocprof: Kernel Information

• rocprof can collect kernel(s) execution stats

$ /opt/rocm/bin/rocprof --stats --basenames on <app with arguments>

• This will output two csv files:

• results.csv: information per each call of the kernel

• results.stats.csv: statistics grouped by each kernel

• Content of results.stats.csv to see the list of GPU kernels with their durations and percentage of total GPU time:

• In a spreadsheet viewer, it is easier to read:

8 |

[Public]

rocprof: Collecting Application Traces

• rocprof can collect a variety of trace event types, and generate timelines in JSON format for use with Perfetto,
currently:

• You can combine modes like --hip-trace --hsa-trace

• If profiling OpenMP offload code, --hsa-trace is required to show HSA activity

Trace Event rocprof Trace Mode

HIP API call --hip-trace

GPU Kernels --hip-trace

Host <-> Device Memory copies --hip-trace

CPU HSA Calls --hsa-trace

User code markers --roctx-trace

9 |

[Public]

rocprof + Perfetto: Collecting and Visualizing Application Traces
• rocprof can collect traces

$ /opt/rocm/bin/rocprof --hip-trace <app with arguments>

This will output a .json file that can be visualized using the chrome browser and Perfetto (https://ui.perfetto.dev/)

Copy activity (H2D and D2H)

HIP API Activity

GPU activity

https://ui.perfetto.dev/

10 |

[Public]

Perfetto: Visualizing Application Traces

• Zoom in to see individual events

• Navigate trace using WASD keys

11 |

[Public]

Perfetto: Kernel Information and Flow Events

• Zoom and select a kernel, you can see the link to the HIP call launching the kernel

• Try to open the information for the kernel (button at bottom right)

12 |

[Public]

Perfetto: Kernel Information and Flow Events

Kernel name and args

Stream where kernel

was launched in

Duration

13 |

[Public]

rocprof: Collecting Application Traces with rocTX Markers and Regions

• rocprof can collect user defined regions or markers using rocTX

• Annotate code with roctx regions:
#include <roctx.h>
...

roctxRangePush("reduce_for_c");
reduce_function ();
roctxRangePop();

...

• Annotate code with roctx markers:
...

roctxMark("start of some code");

// some_code

roctxMark("end of some code");

...

• Add roctx and roctracer libraries to link line:
-L${ROCM_PATH}/lib -lroctx64 -lroctracer64

• Profile with --roctx-range option:

$ /opt/rocm/bin/rocprof --hip-trace --roctx-trace <app with arguments>

Roctx Range

Roctx Marker

14 |

[Public]

rocprof: Collecting Hardware Counters

• rocprof can collect a number of hardware counters and derived counters

• $ /opt/rocm/bin/rocprof --list-basic

• $ /opt/rocm/bin/rocprof --list-derived

• Specify counters in a counter file. For example:

• $ /opt/rocm/bin/rocprof -i rocprof_counters.txt <app with args>

• $ cat rocprof_counters.txt

pmc : Wavefronts VALUInsts VFetchInsts VWriteInsts VALUUtilization VALUBusy WriteSize

pmc : SALUInsts SFetchInsts LDSInsts FlatLDSInsts GDSInsts SALUBusy FetchSize

pmc : L2CacheHit MemUnitBusy MemUnitStalled WriteUnitStalled ALUStalledByLDS LDSBankConflict

• A limited number of counters can be collected during a specific pass of code

• Each line in the counter file will be collected in one pass

• You will receive an error suggesting alternative counter ordering if you have too many / conflicting counters on one line

• A csv file will be created containing all the requested counters for each invocation of every kernel

15 |

[Public]

rocprof: Commonly Used GPU Counters

Full list at: https://github.com/ROCm-Developer-Tools/rocprofiler/blob/amd-master/test/tool/metrics.xml

https://github.com/ROCm-Developer-Tools/rocprofiler/blob/amd-master/test/tool/metrics.xml

16 |

[Public]

Performance Counters Tips and Tricks

• GPU Hardware counters are global

• Kernel dispatches are serialized to ensure that only one dispatch is ever in flight

• It is recommended that no other applications are using the GPU when collecting performance counters

• Use --basenames on which will report only kernel names, leaving off kernel arguments

• How do you time a kernel’s duration?

• $ /opt/rocm/bin/rocprof --timestamp on -i rocprof_counters.txt <app with args>

• This produces four times: DispatchNs, BeginNs, EndNs, and CompleteNs

• Closest thing to a kernel duration: EndNs - BeginNs

• If you run with “--stats” the resultant results.stats.csv file will include a kernel duration column

• Note: the duration is aggregated over repeated calls to the same kernel

20 |

[Public]

rocprof: Multiple MPI Ranks

• rocprof can collect counters and traces for multiple MPI ranks

• Say you want to profile an application usually called like this:

mpiexec –np <n> ./Jacobi_hip –g <x> <y>

• Invoke the profiler by executing:

mpiexec -np <n> rocprof <rocprof_options> ./Jacobi_hip -g <x> <y>

or

srun –-ntasks=n rocprof <rocprof_options> ./Jacobi_hip -g <x> <y>

• By directing output files from each rank to different directories, we can collect traces for each rank

separately

• Use a helper script for this, and run your program as shown below:

mpiexec -np <n> helper_rocprof.sh ./Jacobi_hip -g <x> <y>

• Multi-node profiling currently isn’t supported

21 |

[Public]

Profiling Multiple MPI Ranks

AMD Confidential – Provided under NDA to CINES

$cat rocprof_wrapper.sh

#!/bin/bash
set -euo pipefail
depends on ROCM_PATH being set outside; input arguments are the output directory & the name
outdir="$1"
name="$2"
if [[-n ${OMPI_COMM_WORLD_RANK+z}]]; then

mpich
export MPI_RANK=${OMPI_COMM_WORLD_RANK}

elif [[-n ${MV2_COMM_WORLD_RANK+z}]]; then
ompi
export MPI_RANK=${MV2_COMM_WORLD_RANK}

elif [[-n ${SLURM_PROCID+z}]]; then
export MPI_RANK=${SLURM_PROCID}

else
echo "Unknown MPI layer detected! Must use OpenMPI, MVAPICH, or SLURM"
exit 1

fi
rocprof="${ROCM_PATH}/bin/rocprof"

pid="$$"
outdir="${outdir}/rank_${pid}_${MPI_RANK}"
outfile="${name}_${pid}_${MPI_RANK}.csv"
${rocprof} -d ${outdir} --hsa-trace -o ${outdir}/${outfile} "${@:3}"

Filenames annotated with rank as well

Application and its arguments

Output directory per rank

22 |

[Public]

rocprof: Profiling Overhead

• As with every profiling tool, there is an overhead

• The percentage of the overhead depends on the profiling options used

• For example, tracing is faster than hardware counter collection

• When collecting many counters, the collection may require multiple passes

• With rocTX markers/regions, tracing can take longer and the output may be large

• Sometimes too large to visualize

• The more data collected, the more the overhead of profiling

• Depends on the application and options used

23 |

[Public]

Summary

• rocprof is the open source, command line AMD GPU profiling tool distributed with ROCm

• Many other tools are built over rocprof

• rocprof provides tracing of GPU kernels, HIP API, HSA API and Copy activity

• rocprof can be used to collect GPU hardware counters with additional overhead

• JSON Traces can be viewed in Perfetto UI

• Other output files are in text/CSV format

24 |

[Public]

Disclaimer
The information presented in this document is for informational purposes only and may contain technical inaccuracies, omissions,

and typographical errors. The information contained herein is subject to change and may be rendered inaccurate for many reasons, including

but not limited to product and roadmap changes, component and motherboard version changes, new model and/or product releases,

product differences between differing manufacturers, software changes, BIOS flashes, firmware upgrades, or the like. Any computer system has

risks of security vulnerabilities that cannot be completely prevented or mitigated. AMD assumes no obligation to update or otherwise correct

or revise this information. However, AMD reserves the right to revise this information and to make changes from time to time to the content hereof

without obligation of AMD to notify any person of such revisions or changes.

THIS INFORMATION IS PROVIDED ‘AS IS.” AMD MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE CONTENTS

HEREOF AND ASSUMES NO RESPONSIBILITY FOR ANY INACCURACIES, ERRORS, OR OMISSIONS THAT MAY APPEAR IN THIS

INFORMATION. AMD SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS

FOR ANY PARTICULAR PURPOSE. IN NO EVENT WILL AMD BE LIABLE TO ANY PERSON FOR ANY RELIANCE, DIRECT, INDIRECT,

SPECIAL, OR OTHER CONSEQUENTIAL DAMAGES ARISING FROM THE USE OF ANY INFORMATION CONTAINED HEREIN, EVEN IF AMD

IS EXPRESSLY ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Third-party content is licensed to you directly by the third party that owns the content and is not licensed to you by AMD. ALL LINKED THIRD-

PARTY CONTENT IS PROVIDED “AS IS” WITHOUT A WARRANTY OF ANY KIND. USE OF SUCH THIRD-PARTY CONTENT IS DONE AT

YOUR SOLE DISCRETION AND UNDER NO CIRCUMSTANCES WILL AMD BE LIABLE TO YOU FOR ANY THIRD-PARTY CONTENT. YOU

ASSUME ALL RISK AND ARE SOLELY RESPONSIBLE FOR ANY DAMAGES THAT MAY ARISE FROM YOUR USE OF THIRD-PARTY

CONTENT.

© 2023 Advanced Micro Devices, Inc. All rights reserved. AMD, the AMD Arrow logo, ROCm, and combinations thereof are trademarks of Advanced

Micro Devices, Inc. in the United States and/or other jurisdictions. Other names are for informational purposes only and may be trademarks of their

respective owners.

	Slide 1: Introduction to ROC-Profiler (rocprof)
	Slide 2: What is ROC-Profiler?
	Slide 3: Background – AMD Profilers
	Slide 4: Background – AMD Profilers
	Slide 5: Background – AMD Profilers
	Slide 6: rocprof: Getting Started + Useful Flags
	Slide 7: rocprof: Kernel Information
	Slide 8: rocprof: Collecting Application Traces
	Slide 9: rocprof + Perfetto: Collecting and Visualizing Application Traces
	Slide 10: Perfetto: Visualizing Application Traces
	Slide 11: Perfetto: Kernel Information and Flow Events
	Slide 12: Perfetto: Kernel Information and Flow Events
	Slide 13: rocprof: Collecting Application Traces with rocTX Markers and Regions
	Slide 14: rocprof: Collecting Hardware Counters
	Slide 15: rocprof: Commonly Used GPU Counters
	Slide 16: Performance Counters Tips and Tricks
	Slide 20: rocprof: Multiple MPI Ranks
	Slide 21: Profiling Multiple MPI Ranks
	Slide 22: rocprof: Profiling Overhead
	Slide 23: Summary
	Slide 24: Disclaimer
	Slide 25

