
www.lumi-supercomputer.eu #lumisupercomputer #lumieurohpc

Containers on LUMI

• Reasons to use containers on LUMI
o Productivity - reproduce sophisticated user environment, ie. in Python
o Storage manageability - lower pressure on filesystem (for software frameworks

that access hundreds of thousands of small files) - for I/O performance and
management of your disk quota

o Flexible service - avoid complicated manual build process or installation impossible
to maintain

• What do containers not necessary provide on LUMI
o Portability –not every container will run on LUMI (expect problems with multi-

node, memory distributed runs or GPU containers)
o Performance – specific interconnect of LUMI may not be supported by generic

containers or supported only with low performance

www.lumi-supercomputer.eu #lumisupercomputer #lumieurohpc

Managing containers

• Supported runtimes
o Docker is NOT directly available from user environment
o Singularity is natively available (as a system command) on a login and compute nodes

• Pulling containers
o DockerHub and other registries (here Julia container as example)
singularity pull docker://julia

o Singularity uses flat (single) sif file for storing container and pull command makes the conversion
o Beware of unsuccessful pulls – cache in .singularitydir or $XDG_RUNTIME_DIR can easily exhaust

your storage quota for larger images

• Building containers
o There is no building service provided on LUMI
o You should either pull or copy containers from outside
o Singularity can build from existing (base) container
o We plan to provide a set of base LUMI images

www.lumi-supercomputer.eu #lumisupercomputer #lumieurohpc

Interacting with containers

• Accessing container with shell command
singularity shell container.sif

• Executing command in the container with exec
singularity exec container.sif uname -a

• "Running" a container
singularity run container.sif
o Inspecting run definition script

singularity inspect --runscript container.sif

• Accessing host filesystem with bind mounts
o Singularity will mount $HOME,/tmp,/proc,/sys,/dev into container by

default
oUse --bind src1:dest1,src2:dest2 or SINGULARITY_BINDPATH env

to mount other host directories (like /projappl or /appl on LUMI)

www.lumi-supercomputer.eu #lumisupercomputer #lumieurohpc

Running containers on LUMI

• Use SLURM to run containers on compute nodes

• Use srun to execute MPI containers

srun singularity exec \
--bind ${BIND_ARGS} \
${CONTAINER_PATH} my_mpi_binary ${APP_PARAMS}

• Be aware your container must be compatible with CrayMPI (MPICH
ABI compatible)

• OpenMPI based containers need workarounds and are not well
supported on LUMI at the moment

www.lumi-supercomputer.eu #lumisupercomputer #lumieurohpc

Environment enhancements

• LUMI specific tools for container interaction provided as modules

• Require LUMI module (Software Stack module)
o HPC-container-Wrapper (available in the Software Stack)

o Provides wrappers to encapsulate your custom environment in the container

o Supports conda and pip environments
o Helps with quota on the number of files in your project and I/O performance
o Python provided by the cray-pythonmodule

o lumi-vnc (available in the Software Stack)
o Provides basic VNC virtual desktop for interacting with graphical interfaces via web browser

o singularity-bindings (available via easyconfig)
o Use EasyBuild-usermodule and eb --seach singularity-bindings to find

the easyconfig
o Provides basic mount points for using host MPI in the container

www.lumi-supercomputer.eu #lumisupercomputer #lumieurohpc

Container limitations

• Container uses host's operating system kernel

• Interconnect may not be supported with generic container

• MPI requires ABI compatibility with MPICH

• Building containers is not currently supported on LUMI

