uction to ROC-Profiler
rof)

Presenter: Sam Antao

LUMI Advanced Training
Oct. 23rd, 2025

AMDC1

together we advance_

Background — AMD Profilers

ROC-profiler (rocprof)

Hardware
Counters

Traces and
timelines

Omnitrace

Raw collection of GPU counters and traces

Trace
Counter collection with ~ Counter results printed collection
user input files toaCSV
, I
Trace collection support for
Supports

CPU copy HIP API HSA APl GPU Kernels

Traces visualized with Perfetto

A ideshickbosp nst 2073429

Comprehensive trace collection

CPU GPU
CPU copy HIP API HSA APl GPU Kernels
OpenMP® MPI Kokkos p-threads multi-GPU

Traces visualized with Perfetto

Doran
|
K
=

ii’ilw‘ il

]

i l|»mmm 2| (O Al

;|., A
|1 [| !
1 |

Omniperf

|
Automated collection of hardware counters
Performance
Analysis
Analysis Visualisation
|
Speed of Memo . Kernel
Supports pe Y Rooflines .
Light chart comparison
With Grafana or standalone GUI
Memory Chart (Normalization: "per Wave™)
Instr Buff Instr Dispatch ~ Exec LDS

Weve 0 Instrbuf

Wave Occupancy

29 perd

Wave Life
3405 cyck

Wisvz 11 Inst b '

» | Active CUs L2 Cache oMl
10/410 * PCle

Vector L1 Cache

) '
—)
. me s Fabric | e o
° w s Latency w_ s HEM
EE—] -
GCD e O TR
. I
o o T
es
o
Instr L1 Cache
s GMI
a3) .-

together we advance_

Background — AMD Profilers

l———] l

AMDZ1

together we advance_

[Public]

Background — AMD Profilers

l———] l

< i H
N/ @ N
-{ Omnitrace

e —

Omniperf

e —
p— —

AMDZ1

together we advance_

[Public]
Latest Pytorch and other
ROC m on LU M I Al frameworks require

hi .
Meant to support older s version <$OC Pﬁo F ¥3

version of apps and Introduced many M tability and perf
any stability and performance
frameworks performance , ¥ Y P 0
. improvements for performance libraries
improvements

Facilitate transition

Improved support for lower precisions

Default version
GPU address sanitizer

(beta)

Data pre-processing
AM D a capabilities
ROCMm (MIVisionX)

Best tunned for Al inference workloads
Officially supported
Integration of profiling tools

Recommended for Autocast (mixed-precision)

debugging
Native OpenXLA support
Improved sparse matrix
operations

GPU-Aware MPI

Dec 2023 Jun 2024 Aug 2024 Nov 2024

AMDZ1

together we advance_

What is ROC-Profiler (v1-v2-v3)?

ROC-profiler (also referred to as rocprof) is the command line front-end for AMD's GPU profiling libraries
Repo: https://github.com/ROCm-Developer-Tools/rocprofiler

rocprof contains the central components allowing application traces and counter collection
Under constant development

Distributed with ROCm

The output of rocprofvl can be visualized in the Chrome browser with Perfetto (https://ui.perfetto.dev/)

There are ROCProfiler V1 and V2 (roctracer and rocprofiler into single library, same API)

ROC-profiler-SDK is a profiling and tracing library for HIP and ROCm application. The new APl improved thread
safety and includes more efficient implementations and provides a tool library to support on writing your tool
implementations. It is still in beta release.

rocprofv3 uses this tool library to profile and trace applications.

AMDA

together we advance_

https://github.com/ROCm-Developer-Tools/rocprofiler
https://github.com/ROCm-Developer-Tools/rocprofiler
https://github.com/ROCm-Developer-Tools/rocprofiler
https://github.com/ROCm-Developer-Tools/rocprofiler
https://github.com/ROCm-Developer-Tools/rocprofiler
https://ui.perfetto.dev/

rocprof (v1): Getting Started + Useful Flags

To get help:
${ROCM_PATH}/bin/rocprof -h

Useful housekeeping flags:
--timestamp <on|off> - turn on/off gpu kernel timestamps
--basenames <on|off> - turn on/off truncating gpu kernel names (i.e., removing template parameters and argument types)
-0 <output csv file> - Direct counter information to a particular file name
-d <data directory> - Send profiling data to a particular directory
-t <temporary directory> - Change the directory where data files typically created in tmp are placed. This allows you to
save these temporary files.
Flags directing rocprofiler activity:
-i input<.txt]|.xml> - specify an input file (note the output files will now be named input.*)
--hsa-trace - to trace GPU Kernels, host HSA events (more later) and HIP memory copies.
--hip-trace - to trace HIP API calls
--roctx-trace - to trace roctx markers
--kfd-trace - to trace GPU driver calls

Advanced usage

-m <metric file> - Allows the user to define and collect custom metrics. See rocprofiler/test/tool/*.xml on GitHub for
examples.

AMDA

together we advance_

https://github.com/ROCm-Developer-Tools/rocprofiler/tree/amd-master/test/tool

rocprof (v1): : Kernel Information

rocprof can collect kernel(s) execution stats

$ /opt/rocm/bin/rocprof --stats --basenames on <app with arguments>

This will output two csv files:

results.csv: information per each call of the kernel
results.stats.csv: statistics grouped by each kernel

Content of results.stats.csv to see the list of GPU kernels with their durations and percentage of total GPU time:

"Name","Calls","TotalDurationNs", "AverageNs", "Percentage"
"JacobiIterationKernel", 1000,556699359,556699,43.291753895270446
"NormKernell",1001,430797387,430367,33.500980655394606
"LocalLaplacianKernel",h 1000,280014065,280014,21.775307970480817

"HaloLaplacianKernel",b 1000,14635177,14635,1.1381052818810995

"NormKernel2",1001,3770718,3766,0.2932300765671734

" amd rocclr fillBufferAligned.kd",1,8000,8000,0.0006221204058583505

In a spreadsheet viewer, it is easier to read:

Name
Jacobilterationkernel

NormKernel2
amd rocclr TillBufferAligned

1000
1001
10606
1000
1681

1

556659359
430797387
280014065
14635177
3770718

8000

D

556695
430367
280014
14635
3766
2000

Percentage
43.2917538952704
33.5009806553946
21.7753079704808

1.1381052818811
B.293230076567173
0.000622120405858

AMDA

together we advance_

rocprof (v1): + Perfetto: Collecting and Visualizing App Traces

rocprof can collect traces

This will output a .json file that can be visualized using the Chrome browser and Perfetto (https://ui.perfetto.dev/)

[Perfetto

Navigation

[Open trace file

|_|:| Open with legacy Ul

@) Record new trace

Current Trace

results.json (152 MB)

Show timeline

| €=

Download

-~
o)
L

Query (SQL)

Metrics

- IO

Info and stats

Convert trace

A CPUHIP API 2

Thread 140096

p 1 A A

—
A~ (PUZ28

Thread 0 IIII“I.I..llllllllll'."ll

A COPY1

Thread 0 AR AR AR A

v GPUOB

AMDA

together we advance_

https://ui.perfetto.dev/

rocprofv3: Getting Started + Useful Flags

To get help:

${ROCM PATH}/bin/rocprofv3 -h

Useful housekeeping flags:

--hip-trace For
--hip-runtime-trace For
--hip-compiler-trace For
--marker-trace For
--memory-copy-trace For
--stats For
--hsa-trace For
--hsa-core-trace For
--hsa-amd-trace For
--hsa-image-trace For

--hsa-finalizer-trace For

Collecting
Collecting
Collecting
Collecting
Collecting
Collecting
Collecting
Collecting
Collecting
Collecting
Collecting

HIP Traces (runtime + compiler)

HIP Runtime API Traces

HIP Compiler generated code Traces
Marker (ROCTx) Traces

Memory Copy Traces

statistics of enabled tracing types

HSA Traces (core + amd + image + finalizer)
HSA API Traces (core API)

HSA API Traces (AMD-extension API)

HSA API Traces (Image-extenson API)

HSA API Traces (Finalizer-extension API)

AMDA

together we advance_

rocprofv3: Getting Started + Useful Flags (ll)

Useful housekeeping flags:

-s, --sys-trace For Collecting HIP, HSA, Marker (ROCTx), Memory copy, Scratch memory, and Kernel
dispatch traces

-M, --mangled-kernels Do not demangle the kernel names
-T, --truncate-kernels Truncate the demangled kernel names
-L, --list-metrics List metrics for counter collection
-i INPUT, --input INPUT Input file for counter collection
-0 OUTPUT_FILE, --output-file OUTPUT_FILE
For the output file name
-d OUTPUT_DIRECTORY, --output-directory OUTPUT_DIRECTORY
For adding output path where the output files will be saved
--output-format {csv,json,pftrace} [{csv,json,pftrace} ...]
For adding output format (supported formats: csv, json, pftrace)
--log-level {fatal,error,warning,info,trace}
Set the log level
--kernel-names KERNEL_NAMES [KERNEL_NAMES ...]
Filter kernel names
--preload [PRELOAD ...]

Libraries to prepend to LD_PRELOAD (usually for sanitizers)

rocprofv3 requires double-hyphen (--) before the application to be executed, e.g.

$ rocprofv3 [<rocprofv3-option> ...] -- <application> [<application-arg> ...]
$ rocprofv3 --hip-trace -- ./myapp -n 1

Instructions: https://rocm.docs.amd.com/projects/rocprofiler-sdk/en/docs-6.2.1/how-to/using-rocprofv3.html

AMDA

together we advance_

rocprofv3: Kernel Information

rocprof can collect kernel(s) execution stats
$ /opt/rocm/bin/rocprofv3 --stats --kernel-trace -T -- <app with arguments>

This will output four csv files (XXXXX are numbers):
XXXXX_agent_info.csv: information for the used hardware APU/GPU and CPU

XXXXX_kernel traces.csv: information per each call of the kernel
XXXXX_kernel stats.csv: statistics grouped by each kernel

XXXXX_domain_stats.csv: statistics grouped by domain, such as KERNEL DISPATCH, HIP COMPILER_API

Content of results.stats.csv to see the list of GPU kernels with their durations and percentage of total GPU time:

"Name", "Calls", "TotalDurationNs", "AverageNs", "Percentage"”,"MinNs",h "MaxNs", "StdDev"
"NormKernell", K 1001,365858158,365492.665335,53.49,360561 , 449240, 3460.551681
"JacobiIterationKernel",1000,171479968,171479.968000,25.07,162040,205241,10113.3842491
"LocallLaplacianKernel®,1000,135771713,135771.713000,19.85,130400,145121,3349.580100
"HalolLaplacianKernel",6 10600,7777189,7777.1896000,1.14,7000,12120, 349.399610
"NormKernel2" K 1001,3107927,3104.822178,0.4544,2200,138681, 6466.048652
"__amd_rocclr_fillBufferAligned",1,2720,2720.000000,3.977e-04,62720,2720,0.00000000e+00

In a spreadsheet viewer, it is easier to read:

1 Name
2 NormKernell

3 |JacobilterationKernel

Calls

1001

1000

1000

1000

1001
1

AMDA

together we advance_

rocprofv3: Collecting Application Traces

rocprof can collect a variety of trace event types, and generate timelines in JSON format for use with
Perfetto, currently, however better use the pftrace output format (--output-format pftrace):

Trace Event rocprof Trace Mode

HIP API call --hip-trace

GPU Kernels --kernel-trace

Host <-> Device Memory copies --hip-trace or --memory-copy-trace
CPU HSA Calls --hsa-trace

User code markers --marker-trace

Collect HIP, HSA, Kernels, Memory --sys-trace
Copy, Marker API

Scratch memory operations --scratch-memory-trace

You can combine modes like --stats --hip-trace --hsa-trace --output-format pftrace

AMDA

together we advance_

rocprof + Perfetto: Collecting and Visualizing Application Traces

rocprof can collect traces
$ /opt/rocm/bin/rocprofv3d —--hip-trace --output-format pftrace -- <app with arguments>
This will output a pftrace file that can be visualized using the chrome browser and Perfetto (https://ui.perfetto.dev/)

(P Perfetto

Navigation

[Open trace file

|_|:| Open with legacy Ul

@) Record new trace

Current Trace

results.json (152 MB)
== Show timeline
i Download

¢8> Query (SQL)
(¢y Metrics

o Info and stats

Convert trace

A _/Jacobi_hip 511790

==

M T T e (LTI
AA A AA A A AAA A

A

AMDA

together we advance_

https://ui.perfetto.dev/

Perfetto: Visualizing Application Traces

Zoom in to see individual events
S
Navigate trace using WASD keys

A Misc Global Tracks

A~ _Jacobi_hip 511790

AMDA

15 together we advance_

Perfetto: Kernel Information and Flow Events

Zoom and select a kernel, you can see the link to the HIP call launching the kernel
Try to open the information for the kernel (button at bottom right)

A Misc Global Tracks

Clock Snapshots it

A _/Jacobi_hip 511790

Jacobi_hip 51

COPY BYTES to [0] CPU
COPY BYTES to [4] GPU

COMPUTE [4] QUEUE [0] GPU

COMPUTE [4] QUEUE [1] GPU

Current Selection

hipMemcpy

hsa..

hsa_signal_wait_sca.-

AMDA

together we advance_

Perfetto: Kernel Information

. ~ .
+ Current Selection

Slice LocalLaplacianKernel(int, int, int, double, double, double const*, double*) [clone kd]

nel(int, int, int, double, double, double const*, —

hs

Name

Category
Start time
Absolute Time
Duration S v debug

Arguments

Process I 90 begin_ns -

sqQLip

gri

1 v
Contextual Options ~

Delay Thread

4556433481727591
4556433481866111

138520

11

A

4364

4

511790

13

0

0

2% @ —
16777216

legacy_event.passthrough_utid ~ 1

AMDA

together we advance_

20

rocprofv3: Collecting Application Traces with rocTX Markers and Regions

rocprofv3 can collect user defined regions or markers using rocTX

Annotate code with roctx regions:
#include <rocprofiler-sdk-roctx/roctx.h>

roctxRangePush("reduce for c");
reduce_function ();
roctxRangePop () ;

A /GhostExchange 1031110

BoundaryUpdate
hipDeviceS... fi*| hipDevice...

Annotate code with roctx markers:

[| hipDevicesyn..

roctxMark("start of some code");
// some_code
roctxMark("end of some code");

Add roctx and roctracer libraries to link line: _

-L${ROCM_PATH}/1lib -1lrocprofiler-sdk-roctx -lroctracer64

Profile with --roctx-range option:
$ /opt/rocm/bin/rocprofv3 --hip-trace --marker-trace -- <app with arguments>

Important: There is some difference regarding roctx between rocprof and rocprofv3

AMDA

together we advance_

Rocprofv3: Merge traces

When you have one pftrace per MPI| processes you can merge them as follows:

For example cat XXXXX_results.pftrace > all_ghostexchange.pftrace
Then visualize the file called all_ghostexchange.pftrace

A _/GhostExchange 1175256

A _/GhostExchange 1175258

A _[GhostExchange 1175257

A _/GhostExchange 1175259

AMDA

21 together we advance_

[Public]

rocprofv3d: Commonly Used GPU Counters

AMDZ1

» Fulllistat: https://github.com/ROCm/rocprofiler/blob/amd-master/test/tool/metrics.xml together we advance_

23

rocprofv3: Collecting Hardware Counters

rocprofv3 can collect a number of hardware counters and derived counters
$ /opt/rocm/bin/rocprofv3 -L

Specify counters in a counter file. For example:
$ /opt/rocm/bin/rocprofv3 -i rocprof counters.txt -- <app with args>
$ cat rocprof_counters.txt

pmc: VALUUtilization VALUBusy FetchSize WriteSize MemUnitStalled
pmc: GPU_UTIL CU_OCCUPANCY MeanOccupancyPerCU MeanOccupancyPerActiveCU

A limited number of counters can be collected during a specific pass of code
Each line in the counter file will be collected in one pass
You will receive an error suggesting alternative counter ordering if you have too many / conflicting counters on one line

One directory per pmc line will be created, for example pmc_1 and pmc_2 for the two lines in the file with the counters.

One agent_info and one counter_collection csv file per MPI process will be created containing all the requested
counters for each invocation of every kernel

AMDA

together we advance_

24

rocprof: Profiling Overhead

As with every profiling tool, there is an overhead

The percentage of the overhead depends on the profiling options used
For example, tracing is faster than hardware counter collection

When collecting many counters, the collection may require multiple passes

With rocTX markers/regions, tracing can take longer and the output may be large
Sometimes too large to visualize

The more data collected, the more the overhead of profiling
Depends on the application and options used

rocprofv3 has less overhead than rocprof (v1) on various examples with extensive ROCm calls

AMDA

together we advance_

25

Summary

rocprofv3 is the open source, command line AMD GPU profiling tool distributed with ROCm 6.2 and later

rocprofv3 provides tracing of GPU kernels, through various options, HIP APIl, HSA API, Copy activity and
others

rocprofv3 can be used to collect GPU hardware counters with additional overhead
Perfetto seems to visualize pftrace files without significant issues

Other output files are in text/CSV format

AMDA

together we advance_

26

Hands-on exercises

https://hackmd.io/@sfantao/lumi-training-tal-2025#Rocprof

We welcome you to explore our HPC Training Examples repo:
https://github.com/amd/HPCTrainingExamples

A table of contents for the READMEs if available at the top-level README in the repo
Relevant exercises for this presentation located in Rocprof directory.

Link to instructions on how to run the tests: Rocprof/README.md and subdirectories

AMDA

together we advance_

https://hackmd.io/@sfantao/lumi-training-tal-2025#Rocprof
https://hackmd.io/@sfantao/lumi-training-tal-2025#Rocprof
https://hackmd.io/@sfantao/lumi-training-tal-2025#Rocprof
https://hackmd.io/@sfantao/lumi-training-tal-2025#Rocprof
https://hackmd.io/@sfantao/lumi-training-tal-2025#Rocprof
https://hackmd.io/@sfantao/lumi-training-tal-2025#Rocprof
https://hackmd.io/@sfantao/lumi-training-tal-2025#Rocprof
https://github.com/amd/HPCTrainingExamples
https://github.com/amd/HPCTrainingExamples/blob/main/README.md
https://github.com/amd/HPCTrainingExamples/blob/main/HIP/README.md

27

The information presented in this document is for informational purposes only and may contain technical inaccuracies, omissions,

and typographical errors. The information contained herein is subject to change and may be rendered inaccurate for many reasons, including

but not limited to product and roadmap changes, component and motherboard version changes, new model and/or product releases,

product differences between differing manufacturers, software changes, BIOS flashes, firmware upgrades, or the like. Any computer system has
risks of security vulnerabilities that cannot be completely prevented or mitigated. AMD assumes no obligation to update or otherwise correct

or revise this information. However, AMD reserves the right to revise this information and to make changes from time to time to the content hereof
without obligation of AMD to notify any person of such revisions or changes.

THIS INFORMATION IS PROVIDED ‘AS IS.” AMD MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE CONTENTS
HEREOF AND ASSUMES NO RESPONSIBILITY FOR ANY INACCURACIES, ERRORS, OR OMISSIONS THAT MAY APPEAR IN THIS
INFORMATION. AMD SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS
FOR ANY PARTICULAR PURPOSE. IN NO EVENT WILL AMD BE LIABLE TO ANY PERSON FOR ANY RELIANCE, DIRECT, INDIRECT,
SPECIAL, OR OTHER CONSEQUENTIAL DAMAGES ARISING FROM THE USE OF ANY INFORMATION CONTAINED HEREIN, EVEN IF AMD
IS EXPRESSLY ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Third-party content is licensed to you directly by the third party that owns the content and is not licensed to you by AMD. ALL LINKED THIRD-
PARTY CONTENT IS PROVIDED “AS IS” WITHOUT AWARRANTY OF ANY KIND. USE OF SUCH THIRD-PARTY CONTENT IS DONE AT
YOUR SOLE DISCRETION AND UNDER NO CIRCUMSTANCES WILL AMD BE LIABLE TO YOU FOR ANY THIRD-PARTY CONTENT. YOU
ASSUME ALL RISK AND ARE SOLELY RESPONSIBLE FOR ANY DAMAGES THAT MAY ARISE FROM YOUR USE OF THIRD-PARTY
CONTENT.

© 2025 Advanced Micro Devices, Inc. All rights reserved. AMD, the AMD Arrow logo, ROCm, and combinations thereof are trademarks of Advanced
Micro Devices, Inc. in the United States and/or other jurisdictions. Other names are for informational purposes only and may be trademarks of their
respective owners.

AMDA

together we advance_

	Slide 1: Introduction to ROC-Profiler (rocprof)
	Slide 2: Background – AMD Profilers
	Slide 3: Background – AMD Profilers
	Slide 4: Background – AMD Profilers
	Slide 5: ROCm on LUMI
	Slide 6: What is ROC-Profiler (v1-v2-v3)?
	Slide 7: rocprof (v1): Getting Started + Useful Flags
	Slide 8: rocprof (v1): : Kernel Information
	Slide 9: rocprof (v1): + Perfetto: Collecting and Visualizing App Traces
	Slide 10: rocprofv3: Getting Started + Useful Flags
	Slide 11: rocprofv3: Getting Started + Useful Flags (II)
	Slide 12: rocprofv3: Kernel Information
	Slide 13: rocprofv3: Collecting Application Traces
	Slide 14: rocprof + Perfetto: Collecting and Visualizing Application Traces
	Slide 15: Perfetto: Visualizing Application Traces
	Slide 16: Perfetto: Kernel Information and Flow Events
	Slide 17: Perfetto: Kernel Information
	Slide 20: rocprofv3: Collecting Application Traces with rocTX Markers and Regions
	Slide 21: Rocprofv3: Merge traces
	Slide 22: rocprofv3: Commonly Used GPU Counters
	Slide 23: rocprofv3: Collecting Hardware Counters
	Slide 24: rocprof: Profiling Overhead
	Slide 25: Summary
	Slide 26: Hands-on exercises
	Slide 27: Disclaimer
	Slide 28

