HIP and ROCm

Presenter: Sam Antao
LUMI Advanced Training
Oct. 23rd, 2025

AMDC1

together we advance_

1. AMD GPU programming concepts

AMDA

Oct 23rd, 2025 LUMI Comprehensive Training together we advance

Device Kernels: Grid Hierarchy

In HIP, kernels are executed on a "grid" of threads that run on a GPU

» 1D, 2D, and 3D grids are supported, but most work maps well to 1D
< The grid is what you map your problem to

Each dimension of the grid is partitioned into equal sized "blocks" of threads

Each block is made up of multiple "threads"
TERMINOLOGY

The grid and its associated blocks are just
organizational constructs, the threads are
the things that do the work

AMD NVIDIA
Grid Grid

Workgroup Thread Block

Thread Thread

If you’re familiar with CUDA already, Wavefront (64) Warp (32)
avefron arp

the grid+block structure is very similar in HIP

AMDA

Oct 23rd, 2025 LUMI Advanced Training together we advance

The Grid: blocks of threads in 1D

Threads in grid have access to:

- Their respective block (workgroup): blockldx.x
+ Their respective thread ID in a block: threadldx.x Each small square is a thread
- Their block’s dimension (# of threads in the block): blockDim.x
- The grid’'s dimension (# of blocks in the grid): gridDim.x

Each color is a block of threads
A

Block O Block 1 Block 2
Global thread ID int id = blockDim.x * blockIdx.x + threadIdx.x;
For example, thread 3 of block 2 = 4 *x 2 + 3
would have a global thread ID of 11 = 11

Oct 23rd, 2025 LUMI Advanced Training t‘o\gzlhgvﬂadvance

The Grid: blocks of threads in 2D

EEEEEEE EEEEEENEEEEEEENEEEEEEE
EEEEEEE ENEEEENEEEEEEENEEEEEEE
_ _ EEEEEEE ENEEEENEEEEEEENEEEEEEE
+ The conceptis the same in 1D and 2D N 1
In 2D each block and thread now has a two- ======= ======================
dimensional index EEEEEEN EEEEENEEEEEEENEEEEEEEE
EEEEEEE EEEEEENENEEEEENENEEEEE
EEEEEEE EEEEEENEEEEEEENEEEEEEE
EEEEEEE EEEEEEEEEEEEEENEEEEEEE
EEEEEER EEEEEEEEEEEEEENEEEEEEE
o REEsESERENENSEmEENESmEEEESER
Threads in grid have access to: EEEEEEE EEEEEEEEEEEEEEEEEEEEEE
© Their respective block IDs: blockldx.x, blockldx.y — BEEEmEmEESS SRR S EEEE
] . : _ EEEEEEE EEEEEENEEEEEEEEEEE
- Their respective thread IDs in a block: threadldx.x, EEEEEEE EEEEEEEEEEEEEEEEEE
threadldx.y EEEEEEEEEEEEEEEENEEEEEEEEEEEEEEE
EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE
. Etc EEEENEEEEEENEEEEEEENEEEEEEEEEEE
: EEEENEEEEEEENEEEEEEEEEEEEEEEEEEE

AMDA

Oct 23rd, 2025 LUMI Advanced Training together we advance

2. HIP API calls and GPU kernel code

AMDA

Oct 23rd, 2025 LUMI Comprehensive Training together we advance

[Public]

What is HIP?

AMD’s Heterogeneous-compute Interface for
Portability, or HIP, is a C++ runtime API and kernel
language that allows developers to create portable
applications that can run on AMD'’s accelerators as well
as CUDA devices

+ Open-source

« Syntactically similar to CUDA. Most CUDA APl calls
can be converted in place: cuda -> hip

+ Supports a strong subset of CUDA runtime
functionality

Oct 23rd, 2025 LUMI Advanced Training nggﬂ advance

https://rocm.docs.amd.com/projects/HIP/en/latest/.doxygen/docBin/html/index.html

HIP API

Device Management:

OF (), ()
Memory Management
OF () (), ()
Streams
OF () (), ()
Events
() OF OF)

Device Kernels
__global , device _

Device code
threadIdx, blockIdx, blockDim, , 200+ math functions covering entire CUDA math library.

Error handling
OF)

Oct 23rd, 2025 LUMI Advanced Training AMDZ1
10 together we advance_

https://rocm.docs.amd.com/projects/HIP/en/latest/.doxygen/docBin/html/index.html

Example: simple discrete GPU multiply

__global
{

multiply(*A, n)

id = blockDim.x * blockIdx.x + threadIdx.x;

1f (id < n) A[id] = 2.0 * A[id];
}
main (argc, *argv[]) {
N = ’

bytes = N * sizeof (double);
*h A = (*)malloc (bytes) ;

for (i=0; 1i<N; i++) {
yrand () / () ’

Oct 23rd, 2025

W

*d A;

hipMalloc (&d A, bytes);
hipMemcpy (d A, h A, bytes, hipMemcpyHostToDevice);

thr per blk = ;
blk in grid = ceil((N) / thr per blk);

multiply<<<blk in grid,thr per blk>>>(d A, N);
hipMemcpy (h A, d A, bytes, hipMemcpyDeviceToHost) ;

free(h A);
hipFree(d A);

printf () ;

return ;

LUMI Advanced Training AMDZ\

together we advance_

Example: simple discrete GPU multiply

Include header for HIP runtime

{

1t (1d

main (

N =

for (

__global

< n) Al

arg

bytes =
*h A =

i=0; 1

Oct 23rd, 2025

multiply (*A, n)

id = blockDim.x * blockIdx.x + threadIdx.x;

id] = 2.0 * A[id];

c, *argv([]) {

.
’

N * sizeof (double);
(*)malloc (bytes) ;

<N; i++) {
) rand () / () Z

W

*d A;

hipMalloc (&d A, bytes);
hipMemcpy (d A, h A, bytes, hipMemcpyHostToDevice);

thr per blk = ;
blk in grid = ceil((N) / thr per blk);

multiply<<<blk in grid,thr per blk>>>(d A, N);
hipMemcpy (h A, d A, bytes, hipMemcpyDeviceToHost) ;

free(h A);
hipFree(d A);

printf () ;

return ;

LUMI Advanced Training AMDZ\

together we advance_

Example: simple discrete GPU multiply

GPU kernel

{

__global

id = blockDim.x * blockIdx.x + threadIdx.x;
= 2.0 * A[id];

1f (1d < n) A[id]

multiply (*A, n)

main (argc,

N =

*argv[]) {

.
’

bytes = N * sizeof (double);

*h A = (

for(i=0; 1i<N;

Oct 23rd, 2025

*)malloc (bytes) ;

i++) {

) rand () / () ’

W

*d A;

hipMalloc (&d A, bytes);
hipMemcpy (d A, h A, bytes, hipMemcpyHostToDevice);

thr per blk = ;
blk in grid = ceil((N) / thr per blk);

multiply<<<blk in grid,thr per blk>>>(d A, N);
hipMemcpy (h A, d A, bytes, hipMemcpyDeviceToHost) ;

free(h A);
hipFree(d A);

printf () ;

return ;

LUMI Advanced Training AMDZ\

together we advance_

Example: simple discrete GPU multiply

__global wvoid multiply(double *A, int n)

{
int id = blockDim.x * blockIdx.x + threadIdx.x;
1if (id < n) A[id] = 2.0 * A[id];

}
Allocate and initialize host memory buffer

int main(int argc, char *argvl[]) {

int N = ;
size € bytes = N * sizeof (double);

double *h A = (double*)malloc (bytes);
for (int 1=0; 1i<N; 1i++) {

h A[i] = (double)rand()/ (double) ;
}

/\M

/\/\/\

double *d A;

hipMalloc (&d A, bytes);
hipMemcpy (d A, h A, bytes, hipMemcpyHostToDevice);

int thr per blk = ;
int blk in grid = ceil(float(N) / thr per blk);

multiply<<<blk in grid,thr per blk>>>(d A, N);
hipMemcpy (h A, d A, bytes, hipMemcpyDeviceToHost);

free(h_A);
hipFree(d A);

printf () ;

return ;

Oct 23rd, 2025 LUMI Advanced Training AMDZ1

together we advance_

Example: simple discrete GPU multiply Allocate GPU buffer and copy values

__global wvoid multiply(double *A, int n)

{
int 1id = blockDim.x * blockIdx.x + threadIdx.x;

1if (id < n) Af[id] = 2.0 * A[id];
}
int main(int argc, char *argvl[]) {
int N = ;

size € bytes = N * sizeof (double);

double *h A = (double*)malloc (bytes);
for (int 1=0; 1i<N; 1i++) {
h A[i] = (double)rand()/ (double) ;

}

W

from CPU buffer to GPU buffer

/\/\/\

double *d A;

hipMalloc (&d A, bytes); Not needed for unified
memory

hipMemcpy (d A, h A, bytes, hipMemcpyHostToDevice);

int thr per blk = ;
int blk in grid = ceil(float(N) / thr per blk);

multiply<<<blk in grid,thr per blk>>>(d A, N);
hipMemcpy (h A, d A, bytes, hipMemcpyDeviceToHost);

free(h A);
hipFree(d A);

printf () ;

return ;

Oct 23rd, 2025 LUMI Advanced Training AMDZ1

together we advance_

Example: simple discrete GPU multiply

__global wvoid multiply(double *A, int n)

{
int 1id = blockDim.x * blockIdx.x + threadIdx.x;

1if (id < n) Af[id] = 2.0 * A[id];
}
int main(int argc, char *argvl[]) {
int N = ;

size € bytes = N * sizeof (double);
double *h A = (double*)malloc (bytes);
for (int i=0; 1i<N; i++) {

h A[i] = (double)rand()/ (double) ;
}

/\M

/\/\/\

double *d A;

hipMalloc (&d A, bytes);

hipMemcpy (d A, h A, bytes, hipMemcpyHostToDevice);

int thr per blk = ;
int blk in grid = ceil(float(N) / thr per blk);

multiply<<<blk in grid,thr per blk>>>(d A, N);

hipMemcpy (h A, d A, bytes, hipMemcpyDeviceToHost);

free (h A); Launch GPU
hipFree (d A); kernel
printf () ;

return 0;

Oct 23rd, 2025 LUMI Advanced Training AMDZ1

together we advance_

Example: simple discrete GPU multiply

__global wvoid multiply(double *A, int n)

{
int 1id = blockDim.x * blockIdx.x + threadIdx.x;

/\/\/\

double *d A;

hipMalloc (&d A, bytes);
hipMemcpy (d A, h A, bytes, hipMemcpyHostToDevice);

int thr per blk = ;

if (id < n) A[id] = 2.0 * A[id];: int blk in grid = ceil(float(N) / thr per blk);
}
multiply<<<blk in grid,thr per blk>>>(d A, N);
int main(int argc, char *argvl[]) {
hipMemcpy (h A, d A, bytes, hipMemcpyDeviceToHost);
ntoN L S dount hipFree(d A); Not needed for unified
size € bytes = N sizeof (double); — memory
double *h A = (double*)malloc (bytes); free(h_A);
printf () ;
for (int 1=0; 1i<N; 1i++) {
h A[i] = (double)rand()/ (double) ; return 0; Copy data from GPU buffer
} } to CPU buffer and free memory
Oct 23rd, 2025 LUMI Advanced Training AMDZ1

together we advance_

21

Software to | |
hardware mapping

L1 Cache LDS

Scalar Unit SIMCO SIMD1 [smp2 | SIMD3
LT GRS VGRS | R VERR | VEPR

Blocks and threads allow a natural mapping of kernels to hardware:
« Upon kernel launch, a grid of thread blocks is launched to compute the kernel on the compute units (CUs)

Threads within a thread block (workgroup):

« Execute on the same CU in chunks of 64 threads called wavefronts (or waves).
« Share Local Data Share (LDS) memory and L1 cache

« Can synchronize

About wavefronts:

« Wavefronts execute on SIMD units (located inside the CU)
- If a wavefront stalls (e.g., data dependency) CUs can quickly context switch to another wavefront

A good practice is to make the block size a multiple of 64 and have several wavefronts (e.g., 256 threads)

AMDA

Oct 23rd, 2025 LUMI Advanced Training together we advance

22

Oct 23rd, 2025

3. ROCm and ROCm libraries

LUMI Comprehensive Training

AMDA

together we advance_

ROCm

ROCm is an open-source platform for GPU computing (including drivers,
development tools, APIs, and libraries) on AMD GPUs.

« ROCM drivers allow the OS to communicate with the GPU hardware.

« ROCm libraries provide optimized routines for scientific computing and machine learning tasks, such
as BLAS, FFT, etc.

« ROCm is powered by AMD’s HIP programming environment and runtime.

ROCm is supported on AMD INSTINCT & certain RAD=0N GPUs.

For the full list, please visit https://rocm.docs.amd.com/en/latest/release/gpu_os_support.html#linux-supported-gpus

r NG~
‘ - ~a=
L/ 4 #
L INSTINCT ,\/ /) o & '
o o e

€. & €, <
A LA
Oct 23rd, 2025 | LUMI Advanced Training Qgﬁhgﬂadm

23

https://rocm.docs.amd.com/en/latest/release/gpu_os_support.html#linux-supported-gpus
https://rocm.docs.amd.com/en/latest/release/gpu_os_support.html#linux-supported-gpus
https://rocm.docs.amd.com/en/latest/release/gpu_os_support.html#linux-supported-gpus
https://rocm.docs.amd.com/en/latest/release/gpu_os_support.html#linux-supported-gpus
https://rocm.docs.amd.com/en/latest/release/gpu_os_support.html#linux-supported-gpus

24

Querying system

rocminfo: Queries and displays information on the system’s hardware
More info at: https://github.com/ROCm/rocminfo

Querying ROCm version:
If you install ROCm in the standard location (/opt/rocm) version info is at: /opt/rocm/.info/version-dev

rocm-smi: Queries and sets AMD GPU frequencies, power usage, and fan speeds
sudo privileges are needed to set frequencies and power limits
sudo privileges are not needed to query information

Get more info by running rocm-smi -h or looking at:
https://github.com/ROCm/rocm_smi_lib/tree/master/python_smi_tools
$ /opt/rocm/bin/rocm-smi

ROCm System Management Interface

GPU Temp AvgPwr SCLK MCLK Fan Perf PwrCap VRAM% GPU%
1 38.0c 18.0wW 1440Mhz 945Mhz 0.0% manual 220.0W 0% 0%

End of ROCm SMI Log

Oct 23rd, 2025 LUMI Advanced Training

AMDA

together we advance_

https://github.com/ROCm/rocminfo
https://github.com/ROCm/rocm_smi_lib/tree/master/python_smi_tools

26

ROCm on LUMI

Latest Pytorch and
other Al frameworks
require this version

Meant to support older

version of apps and

GPU address sanitizer

AMD A1
ROCm

Facilitate transition

Data pre-processing

Introduced many
performance
improvements

frameworks

Default version

(beta) Officially supported

Recommended for

capabilities)
(MIVisionX) debugging
mproved sparse matri
GPU- re MP operations

Mar 2024 Jun 2024

Many stability and performance
improvements for performance libraries

Improved support for lower precisions
Best tunned for Al inference workloads

Integration of profiling tools
Autocast (mixed-precision)

Native OpenXLA support

Sep 2024 Nov 2024 Apr 2025

Driver

\ J

¥
Not supported by the driver

Oct 23rd, 2025

| LUMII\dvanced Training

AMDA

together we advance_

27

ROCm 6.2 release specific modifications

With the release of ROCm 6.2 (https://github.com/ROCm/ROCm/releases) Omnitrace and Omniperf are included
in the ROCm stack, but they still need to be installed.

One LUMI, we are including both version of Omnitrace and Omniperf:

< The built-in versions included in the ROCm 6.2.2 software stack (installed with sudo apt-get as above)
< These can be used loading the modules: module use /appl/local/containers/test-modules
module load rocm/6.2.2 omnitrace/1.12.0-rocm6.2.x omniperf/2.1.0

< The latest versions from AMD Research that would be used for ROCm releases < 6.2 (install from source)
< These can be used by loading their dedicated modules: module use /appl/local/containers/test-modules

module load rocm/6.0.3 omnitrace/1.12.0-rocm6.9.Xx
module load omniperf/2.1.0

Oct 23rd, 2025 LUMI Advanced Training nglhgvﬁladvance

https://github.com/ROCm/ROCm/releases

[Public]

ROCm GPU libraries

ROCm provides several GPU math libraries

« Typically, two versions:
* roc* -> AMD GPU library, usually written in HIP
+ hip* -> Thin interface between roc* and Nvidia cu* library

When developing an application meant to target both CUDA
and AMD devices, use the hip* libraries (portability)

When developing an application meant to target only AMD
devices, may prefer the roc* library API (performance).

« Some roc* libraries perform better by using addition APIs not
available in the cu* equivalents

AMDA

28 together we advance_

Oct 23rd, 2025 LUMI Advanced Training

[Public]

AMD math library equivalents: “decoder ring”

Basic Linear Algebra
Subroutines

Fast Fourier Transforms

Random Number
Generation

C++ Parallel Algorithms

Optimized Parallel
Primitives

Oct 23rd, 2025 LUMI Advanced Training AMDZ

29 together we advance_

[Public]

AMD math library equivalents: “decoder ring”

ROCSPARSE Sparse BLAS, SpMV, etc.

Linear Solvers

Solvers and preconditioners
for sparse linear systems

See the link below for the full list:

Oct 23rd, 2025 LUMI Advanced Training AMD
30 together we advance_

https://github.com/ROCm/HIP/blob/amd-staging/docs/how-to/hip_porting_guide.md
https://github.com/ROCm/HIP/blob/amd-staging/docs/how-to/hip_porting_guide.md
https://github.com/ROCm/HIP/blob/amd-staging/docs/how-to/hip_porting_guide.md
https://github.com/ROCm/HIP/blob/amd-staging/docs/how-to/hip_porting_guide.md
https://github.com/ROCm/HIP/blob/amd-staging/docs/how-to/hip_porting_guide.md
https://github.com/ROCm/HIP/blob/amd-staging/docs/how-to/hip_porting_guide.md

4. Error checking, device management, and
asynchronous computing

AMDA

Oct 23rd, 2025 LUMI Comprehensive Training together we advance

Blocking vs Nonblocking API functions

Launching a kernel is non-blocking for the host
After sending instructions/data, the host continues to do more work while the device executes the kernel

However, is blocking for the host
The data pointed to in the arguments can be safely accessed/modified after the function returns

To make asynchronous copies, we need to allocate non-pageable (pinned) host memory using
and copy using

(h_a, Nbytes, hipHostMallocDefault);
(d_a, h_a, Nbytes, hipMemcpyHostToDevice, stream);

It is not safe to access/modify the arguments of without some sort of synchronization.

Side Note: H2D/D2H bandwidth increases significantly when host memory is pinned
It is good practice to use pinned host memory where data is frequently transferred to/from the device

Oct 23rd, 2025 LUMI Advanced Training AMD
36 together we advance_

Streams

A stream in HIP is a queue of tasks (e.g. kernels, memcpys, events).
Tasks enqueued in a stream complete in order on that stream.
Tasks being executed in different streams are allowed to overlap and share device resources.

Streams are created via:
stream;
(&stream);

And destroyed via:
(stream);

Passing U or as the argument to a function instructs the function to execute on a
stream called the ‘NULL Stream’:
No task on the NULL stream will begin until all previously enqueued tasks in all other streams have completed.
Blocking calls like run on the NULL stream.

Oct 23rd, 2025 LUMI Advanced Training AMD
a7 together we advance_

42

Streams

Changing to asynchronous memcpys and using streams:

(d_al, h_al, Nbytes, hipMemcpyHostToDevice,
(d_a2, h_a2, Nbytes, hipMemcpyHostToDevice,
(d_a3, h_a3, Nbytes, hipMemcpyHostToDevice,

myKernell<<<blocks, threads,
myKernel2<<<blocks, threads,
myKernel3<<<blocks, threads,

NULL Stream
Stream1
Stream?2
Stream3

Oct 23rd, 2025

(h_al, d _al, Nbytes, hipMemcpyDeviceToHost,
(h_a2, d a2, Nbytes, hipMemcpyDeviceToHost,
(h_a3, d_a3, Nbytes, hipMemcpyDeviceToHost,

HToD1

HToD2

, streaml>>>(N, d_al);
, stream2>>>(N, d_a2);
, stream3>>>(N, d _a3);

DToH1
DToH2

LUMI Advanced Training

streaml);
stream2);
stream3);

streaml);
stream2);
stream3);

AMDA

together we advance_

43

HIP stream example

In real stream overlapping, the communication and computation time will not be the same
For a real example of overlapping compute and communication in HIP

git clone https://github.com/AMD/HPCTrainingExamples

cd HPCTrainingExamples/HIP/Stream Overlap

Oct 23rd, 2025 LUMI Advanced Training

AMDA

together we advance_

https://github.com/AMD/HPCTrainingExamples

5. Shared memory and thread syncronization

AMDA

Oct 23rd, 2025 LUMI Comprehensive Training together we advance

45

Synchronization

How do we coordinate execution on device streams with host execution? Need some synchronization points.

()
Heavy-duty sync point.
Blocks host until all work in all device streams has reported complete.

(stream);
Blocks host until all work in stream has reported complete.

Can a stream synchronize with another stream? For that we need ‘Events’:
https://rocm.docs.amd.com/projects/HIP/en/latest/.doxygen/docBin/html/group

event.html

Oct 23rd, 2025 LUMI Advanced Training

AMDA

together we advance_

https://rocm.docs.amd.com/projects/HIP/en/latest/.doxygen/docBin/html/group___event.html

46

Device management

Multiple GPUs in system? Multiple host threads/MPI ranks? What device are we running on?

Host can query number of devices visible to system:
numDevices = 0;
(&numDevices);

Host tells the runtime to issue instructions to a particular device:
devicelID = 0;
(devicelD);

Host can query what device is currently selected and device properties:

(&devicelD);
props;
(&props, devicelD);

The host can manage several devices by swapping the currently selected device during runtime.
Different processes can use different devices or over-subscribe (share) the same device.

Oct 23rd, 2025 LUMI Advanced Training

AMDA

together we advance_

Function qualifiers

hipcc makes two compilation passes through source code. One to compile host code, and one to compile
device code.

functions:
These are entry points to device code, called from the host
Code in these regions will execute on SIMD units

functions:
Can be called from and other functions.

Cannot be called from host code.
Not compiled into host code — essentially ignored during host compilation pass

functions:
Can be called from , , and host functions.
Will execute on SIMD units when called from device code!

Oct 23rd, 2025 LUMI Advanced Training nghgvﬁladvance

48

Memory declarations in device code

Malloc/free not supported in device code.

Variables/arrays can be declared on the stack.
Stack variables declared in device code are allocated in registers and are private to each thread.

Threads can all access common memory via device pointers, but otherwise do not share memory.
Important exception: memory

Stack variables declared as
Allocated once per block in LDS memory
Shared and accessible by all threads in the same block
Access is faster than device global memory (but slower than register)
Must have size known at compile time

Oct 23rd, 2025 LUMI Advanced Training nghgvﬁladvance

49

Shared memory

(*d_a) {
s al]; //array of doubles, shared in this block

tid = threadIdx.x;
s a[tid] = d_a[tid]; //each thread fills one entry

//all wavefronts must reach this point before any wavefront is allowed to continue.

OF
d a[tid] = s_a[-tid]; //write out array in reverse order
}
() {
reverse<<< (1), (), @, 9>>>(d_a); //Launch kernel
}
Oct 23rd, 2025 LUMI Advanced Training

AMDA

together we advance_

Thread synchronization

Blocks a wavefront from continuing execution until all wavefronts have reached ()
Memory transactions made by a thread before () are visible to all other threads in the block after

()

Can have a noticeable overhead if called repeatedly

Best practice: Avoid deadlocks by checking that all threads in a block execute the same
() instruction.

Note 1: So long as at least one thread in the wavefront encounters (), the
whole wavefront is considered to have encountered ().

Note 2: Wavefronts can synchronize at different () instructions, and if a
wavefront exits a kernel completely, other wavefronts waiting at a () may be

allowed to continue.

Oct 23rd, 2025 LUMI Advanced Training Qgt?hgvﬁladvance

50

Hands-on exercises

https://hackmd.io/@sfantao/lumi-training-tal-2025#HIP-Exercises
https://hackmd.io/@sfantao/lumi-training-tal-2025#Hipify

We welcome you to explore our HPC Training Examples repo:
https://github.com/amd/HPCTrainingExamples

A table of contents for the READMEs if available at the top-level README in the repo
Relevant exercises for this presentation located in HIP directory.

Link to instructions on how to run the tests: HIP/README.md and subdirectories

Oct 23rd, 2025 LUMI Advanced Training AMDZ1

51 together we advance_

https://hackmd.io/@sfantao/lumi-training-tal-2025#HIP-Exercises
https://hackmd.io/@sfantao/lumi-training-tal-2025#HIP-Exercises
https://hackmd.io/@sfantao/lumi-training-tal-2025#HIP-Exercises
https://hackmd.io/@sfantao/lumi-training-tal-2025#HIP-Exercises
https://hackmd.io/@sfantao/lumi-training-tal-2025#HIP-Exercises
https://hackmd.io/@sfantao/lumi-training-tal-2025#HIP-Exercises
https://hackmd.io/@sfantao/lumi-training-tal-2025#HIP-Exercises
https://hackmd.io/@sfantao/lumi-training-tal-2025#HIP-Exercises
https://hackmd.io/@sfantao/lumi-training-tal-2025#HIP-Exercises
https://hackmd.io/@sfantao/lumi-training-tal-2025#Hipify
https://hackmd.io/@sfantao/lumi-training-tal-2025#Hipify
https://hackmd.io/@sfantao/lumi-training-tal-2025#Hipify
https://hackmd.io/@sfantao/lumi-training-tal-2025#Hipify
https://hackmd.io/@sfantao/lumi-training-tal-2025#Hipify
https://hackmd.io/@sfantao/lumi-training-tal-2025#Hipify
https://hackmd.io/@sfantao/lumi-training-tal-2025#Hipify
https://github.com/amd/HPCTrainingExamples
https://github.com/amd/HPCTrainingExamples/blob/main/README.md
https://github.com/amd/HPCTrainingExamples/tree/main/HIP
https://github.com/amd/HPCTrainingExamples/blob/main/HIP/README.md

52

Disclaimer

The information presented in this document is for informational purposes only and may contain technical inaccuracies, omissions, and typographical errors. The
information contained herein is subject to change and may be rendered inaccurate for many reasons, including but not limited to product and roadmap changes,
component and motherboard version changes, new model and/or product releases, product differences between differing manufacturers, software changes, BIOS
flashes, firmware upgrades, or the like. Any computer system has risks of security vulnerabilities that cannot be completely prevented or mitigated. AMD assumes
no obligation to update or otherwise correct or revise this information. However, AMD reserves the right to revise this information and to make changes from time to
time to the content hereof without obligation of AMD to notify any person of such revisions or changes.

THIS INFORMATION IS PROVIDED ‘AS IS.” AMD MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE CONTENTS HEREOF

AND ASSUMES NO RESPONSIBILITY FOR ANY INACCURACIES, ERRORS, OR OMISSIONS THAT MAY APPEAR IN THIS INFORMATION. AMD
SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR ANY PARTICULAR PURPOSE.
IN NO EVENT WILLAMD BE LIABLE TO ANY PERSON FOR ANY RELIANCE, DIRECT, INDIRECT, SPECIAL, OR OTHER CONSEQUENTIAL DAMAGES
ARISING FROM THE USE OF ANY INFORMATION CONTAINED HEREIN, EVEN IF AMD IS EXPRESSLY ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

Third-party content is licensed to you directly by the third party that owns the content and is not licensed to you by AMD. ALL LINKED THIRD-PARTY CONTENT IS
PROVIDED “AS I1S” WITHOUT A WARRANTY OF ANY KIND. USE OF SUCH THIRD-PARTY CONTENT IS DONE AT YOUR SOLE DISCRETION AND UNDER
NO CIRCUMSTANCES WILL AMD BE LIABLE TO YOU FOR ANY THIRD-PARTY CONTENT. YOU ASSUME ALL RISK AND ARE SOLELY RESPONSIBLE FOR
ANY DAMAGES THAT MAY ARISE FROM YOUR USE OF THIRD-PARTY CONTENT.

© 2025 Advanced Micro Devices, Inc. All rights reserved. AMD, the AMD Arrow logo, AMD CDNA, AMD ROCm, AMD Instinct, and combinations thereof are
trademarks of Advanced Micro Devices, Inc. in the United States and/or other jurisdictions. Other names are for informational purposes only and may be
trademarks of their respective owners.

OpenCL™ is a trademark of Apple Inc. used by permission by Khronos Group, Inc.
The OpenMP® name and the OpenMP logo are registered trademarks of the OpenMP Architecture Review Board

Git and the Git logo are either registered trademarks or trademarks of Software Freedom Conservancy, Inc., corporate home of the Git Project, in the United States
and/or other countries

Oct 23rd, 2025 LUMI Advanced Training nglhgvﬁladvance

	Slide 1: HIP and ROCm
	Slide 4: 1. AMD GPU programming concepts
	Slide 5: Device Kernels: Grid Hierarchy
	Slide 6: The Grid: blocks of threads in 1D
	Slide 7: The Grid: blocks of threads in 2D
	Slide 8: 2. HIP API calls and GPU kernel code
	Slide 9: What is HIP?
	Slide 10: HIP API
	Slide 11: Example: simple discrete GPU multiply
	Slide 12: Example: simple discrete GPU multiply
	Slide 13: Example: simple discrete GPU multiply
	Slide 14: Example: simple discrete GPU multiply
	Slide 15: Example: simple discrete GPU multiply
	Slide 16: Example: simple discrete GPU multiply
	Slide 17: Example: simple discrete GPU multiply
	Slide 21: Software to hardware mapping
	Slide 22: 3. ROCm and ROCm libraries
	Slide 23: ROCm
	Slide 24: Querying system
	Slide 26: ROCm on LUMI
	Slide 27: ROCm 6.2 release specific modifications
	Slide 28: ROCm GPU libraries
	Slide 29: AMD math library equivalents: “decoder ring”
	Slide 30: AMD math library equivalents: “decoder ring”
	Slide 32: 4. Error checking, device management, and asynchronous computing
	Slide 36: Blocking vs Nonblocking API functions
	Slide 37: Streams
	Slide 42: Streams
	Slide 43: HIP stream example
	Slide 44: 5. Shared memory and thread syncronization
	Slide 45: Synchronization
	Slide 46: Device management
	Slide 47: Function qualifiers
	Slide 48: Memory declarations in device code
	Slide 49: Shared memory
	Slide 50: Thread synchronization
	Slide 51: Hands-on exercises
	Slide 52: Disclaimer
	Slide 53

