
HIP and ROCm

Presenter: Sam Antao

LUMI Advanced Training

Oct. 23rd, 2025

4

[Public]

LUMI Comprehensive Training

1. AMD GPU programming concepts

Oct 23rd, 2025

5

[Public]

Device Kernels: Grid Hierarchy

• In HIP, kernels are executed on a "grid" of threads that run on a GPU
❖ 1D, 2D, and 3D grids are supported, but most work maps well to 1D

❖ The grid is what you map your problem to

• Each dimension of the grid is partitioned into equal sized "blocks" of threads

• Each block is made up of multiple "threads"

• The grid and its associated blocks are just
organizational constructs, the threads are

the things that do the work

• If you’re familiar with CUDA already,

the grid+block structure is very similar in HIP

Oct 23rd, 2025

Thread blocks Grid of thread blocks

Threads

AMD NVIDIA

Grid Grid

Workgroup Thread Block

Thread Thread

Wavefront (64) Warp (32)

LUMI Advanced Training

TERMINOLOGY

6

[Public]

The Grid: blocks of threads in 1D

Threads in grid have access to:

• Their respective block (workgroup): blockIdx.x

• Their respective thread ID in a block: threadIdx.x

• Their block’s dimension (# of threads in the block): blockDim.x

• The grid’s dimension (# of blocks in the grid): gridDim.x

Oct 23rd, 2025 LUMI Advanced Training

 rid of blocks

 lock of threads
Thread

int id = blockDim.x * blockIdx.x + threadIdx.x;

 = 4 * 2 + 3

 = 11

Block 0 Block 2Block 1 ...

0 1 2 3 0 1 2 3 0 1 2 3 ...

Global thread ID

For example, thread 3 of block 2

would have a global thread ID of 11

Each color is a block of threads

Each small square is a thread

7

[Public]

The Grid: blocks of threads in 2D

• The concept is the same in 1D and 2D

• In 2D each block and thread now has a two-

dimensional index

Threads in grid have access to:

• Their respective block IDs: blockIdx.x, blockIdx.y

• Their respective thread IDs in a block: threadIdx.x,

threadIdx.y

• Etc.

Oct 23rd, 2025 LUMI Advanced Training

8

[Public]

LUMI Comprehensive Training

2. HIP API calls and GPU kernel code

Oct 23rd, 2025

9

[Public]

What is HIP?

Oct 23rd, 2025 LUMI Advanced Training

AMD’s Heterogeneous-compute Interface for

Portability, or HIP, is a C++ runtime API and kernel

language that allows developers to create portable

applications that can run on AMD’s accelerators as well

as CUDA devices

• Open-source

• Syntactically similar to CUDA. Most CUDA API calls

can be converted in place: cuda -> hip

• Supports a strong subset of CUDA runtime
functionality

Portable HIP C++ (Host & Device Code)

#include “cuda.h”
#include

“hip_runtime.h”

nvcc hipcc

Nvidia GPU AMD GPU

10

[Public]

HIP API
Device Management:

• hipSetDevice(), hipGetDevice(), hipGetDeviceProperties()

Memory Management

• hipMalloc(), hipMemcpy(), hipMemcpyAsync(), hipFree()

Streams

• hipStreamCreate(), hipDeviceSynchronize(), hipStreamSynchronize(), hipStreamDestroy()

Events

• hipEventCreate(), hipEventRecord(), hipStreamWaitEvent(), hipEventElapsedTime()

Device Kernels

• __global__, __device__

Device code

• threadIdx, blockIdx, blockDim, __shared__, 200+ math functions covering entire CUDA math library.

Error handling

• hipGetLastError(), hipGetErrorString()

Oct 23rd, 2025 LUMI Advanced Training

https://rocm.docs.amd.com/projects/HIP/en/latest/.doxygen/docBin/html/index.html

https://rocm.docs.amd.com/projects/HIP/en/latest/.doxygen/docBin/html/index.html

11

[Public]

Example: simple discrete GPU multiply

#include <stdio.h>

#include <math.h>

#include "hip/hip_runtime.h"

__global__ void multiply(double *A, int n)

{

 int id = blockDim.x * blockIdx.x + threadIdx.x;

 if (id < n) A[id] = 2.0 * A[id];

}

int main(int argc, char *argv[]){

 int N = 1024 * 1024;

 size_t bytes = N * sizeof(double);

 double *h_A = (double*)malloc(bytes);

 for(int i=0; i<N; i++){

 h_A[i] = (double)rand()/(double)RAND_MAX;

 }

double *d_A;

 hipMalloc(&d_A, bytes);

 hipMemcpy(d_A, h_A, bytes, hipMemcpyHostToDevice);

 int thr_per_blk = 256;

 int blk_in_grid = ceil(float(N) / thr_per_blk);

 multiply<<<blk_in_grid,thr_per_blk>>>(d_A, N);

 hipMemcpy(h_A, d_A, bytes, hipMemcpyDeviceToHost);

 free(h_A);

 hipFree(d_A);

 printf("__SUCCESS__\n");

 return 0;

}

Oct 23rd, 2025 LUMI Advanced Training

12

[Public]

Example: simple discrete GPU multiply

#include <stdio.h>

#include <math.h>

#include "hip/hip_runtime.h"

__global__ void multiply(double *A, int n)

{

 int id = blockDim.x * blockIdx.x + threadIdx.x;

 if (id < n) A[id] = 2.0 * A[id];

}

int main(int argc, char *argv[]){

 int N = 1024 * 1024;

 size_t bytes = N * sizeof(double);

 double *h_A = (double*)malloc(bytes);

 for(int i=0; i<N; i++){

 h_A[i] = (double)rand()/(double)RAND_MAX;

 }

double *d_A;

 hipMalloc(&d_A, bytes);

 hipMemcpy(d_A, h_A, bytes, hipMemcpyHostToDevice);

 int thr_per_blk = 256;

 int blk_in_grid = ceil(float(N) / thr_per_blk);

 multiply<<<blk_in_grid,thr_per_blk>>>(d_A, N);

 hipMemcpy(h_A, d_A, bytes, hipMemcpyDeviceToHost);

 free(h_A);

 hipFree(d_A);

 printf("__SUCCESS__\n");

 return 0;

}

Include header for HIP runtime

Oct 23rd, 2025
LUMI Advanced Training

13

[Public]

Example: simple discrete GPU multiply

#include <stdio.h>

#include <math.h>

#include "hip/hip_runtime.h"

__global__ void multiply(double *A, int n)

{

 int id = blockDim.x * blockIdx.x + threadIdx.x;

 if (id < n) A[id] = 2.0 * A[id];

}

int main(int argc, char *argv[]){

 int N = 1024 * 1024;

 size_t bytes = N * sizeof(double);

 double *h_A = (double*)malloc(bytes);

 for(int i=0; i<N; i++){

 h_A[i] = (double)rand()/(double)RAND_MAX;

 }

double *d_A;

 hipMalloc(&d_A, bytes);

 hipMemcpy(d_A, h_A, bytes, hipMemcpyHostToDevice);

 int thr_per_blk = 256;

 int blk_in_grid = ceil(float(N) / thr_per_blk);

 multiply<<<blk_in_grid,thr_per_blk>>>(d_A, N);

 hipMemcpy(h_A, d_A, bytes, hipMemcpyDeviceToHost);

 free(h_A);

 hipFree(d_A);

 printf("__SUCCESS__\n");

 return 0;

}

GPU kernel

Oct 23rd, 2025 LUMI Advanced Training

14

[Public]

Example: simple discrete GPU multiply

#include <stdio.h>

#include <math.h>

#include "hip/hip_runtime.h"

__global__ void multiply(double *A, int n)

{

 int id = blockDim.x * blockIdx.x + threadIdx.x;

 if (id < n) A[id] = 2.0 * A[id];

}

int main(int argc, char *argv[]){

 int N = 1024 * 1024;

 size_t bytes = N * sizeof(double);

 double *h_A = (double*)malloc(bytes);

 for(int i=0; i<N; i++){

 h_A[i] = (double)rand()/(double)RAND_MAX;

 }

double *d_A;

 hipMalloc(&d_A, bytes);

 hipMemcpy(d_A, h_A, bytes, hipMemcpyHostToDevice);

 int thr_per_blk = 256;

 int blk_in_grid = ceil(float(N) / thr_per_blk);

 multiply<<<blk_in_grid,thr_per_blk>>>(d_A, N);

 hipMemcpy(h_A, d_A, bytes, hipMemcpyDeviceToHost);

 free(h_A);

 hipFree(d_A);

 printf("__SUCCESS__\n");

 return 0;

}

Allocate and initialize host memory buffer

Oct 23rd, 2025 LUMI Advanced Training

15

[Public]

Example: simple discrete GPU multiply

#include <stdio.h>

#include <math.h>

#include "hip/hip_runtime.h"

__global__ void multiply(double *A, int n)

{

 int id = blockDim.x * blockIdx.x + threadIdx.x;

 if (id < n) A[id] = 2.0 * A[id];

}

int main(int argc, char *argv[]){

 int N = 1024 * 1024;

 size_t bytes = N * sizeof(double);

 double *h_A = (double*)malloc(bytes);

 for(int i=0; i<N; i++){

 h_A[i] = (double)rand()/(double)RAND_MAX;

 }

double *d_A;

 hipMalloc(&d_A, bytes);

 hipMemcpy(d_A, h_A, bytes, hipMemcpyHostToDevice);

 int thr_per_blk = 256;

 int blk_in_grid = ceil(float(N) / thr_per_blk);

 multiply<<<blk_in_grid,thr_per_blk>>>(d_A, N);

 hipMemcpy(h_A, d_A, bytes, hipMemcpyDeviceToHost);

 free(h_A);

 hipFree(d_A);

 printf("__SUCCESS__\n");

 return 0;

}

Allocate GPU buffer and copy values

from CPU buffer to GPU buffer

Oct 23rd, 2025 LUMI Advanced Training

Not needed for unified

memory

16

[Public]

Example: simple discrete GPU multiply

#include <stdio.h>

#include <math.h>

#include "hip/hip_runtime.h"

__global__ void multiply(double *A, int n)

{

 int id = blockDim.x * blockIdx.x + threadIdx.x;

 if (id < n) A[id] = 2.0 * A[id];

}

int main(int argc, char *argv[]){

 int N = 1024 * 1024;

 size_t bytes = N * sizeof(double);

 double *h_A = (double*)malloc(bytes);

 for(int i=0; i<N; i++){

 h_A[i] = (double)rand()/(double)RAND_MAX;

 }

double *d_A;

 hipMalloc(&d_A, bytes);

 hipMemcpy(d_A, h_A, bytes, hipMemcpyHostToDevice);

 int thr_per_blk = 256;

 int blk_in_grid = ceil(float(N) / thr_per_blk);

 multiply<<<blk_in_grid,thr_per_blk>>>(d_A, N);

 hipMemcpy(h_A, d_A, bytes, hipMemcpyDeviceToHost);

 free(h_A);

 hipFree(d_A);

 printf("__SUCCESS__\n");

 return 0;

}

Launch GPU

 kernel

Oct 23rd, 2025 LUMI Advanced Training

17

[Public]

Example: simple discrete GPU multiply

#include <stdio.h>

#include <math.h>

#include "hip/hip_runtime.h"

__global__ void multiply(double *A, int n)

{

 int id = blockDim.x * blockIdx.x + threadIdx.x;

 if (id < n) A[id] = 2.0 * A[id];

}

int main(int argc, char *argv[]){

 int N = 1024 * 1024;

 size_t bytes = N * sizeof(double);

 double *h_A = (double*)malloc(bytes);

 for(int i=0; i<N; i++){

 h_A[i] = (double)rand()/(double)RAND_MAX;

 }

double *d_A;

 hipMalloc(&d_A, bytes);

 hipMemcpy(d_A, h_A, bytes, hipMemcpyHostToDevice);

 int thr_per_blk = 256;

 int blk_in_grid = ceil(float(N) / thr_per_blk);

 multiply<<<blk_in_grid,thr_per_blk>>>(d_A, N);

 hipMemcpy(h_A, d_A, bytes, hipMemcpyDeviceToHost);

 hipFree(d_A);

 free(h_A);

 printf("__SUCCESS__\n");

 return 0;

}

Copy data from GPU buffer

to CPU buffer and free memory

Oct 23rd, 2025 LUMI Advanced Training

Not needed for unified

memory

21

[Public]

Software to

hardware mapping

Oct 23rd, 2025 LUMI Advanced Training

Blocks and threads allow a natural mapping of kernels to hardware:
• Upon kernel launch, a grid of thread blocks is launched to compute the kernel on the compute units (CUs)

Threads within a thread block (workgroup):
• Execute on the same CU in chunks of 64 threads called wavefronts (or waves).

• Share Local Data Share (LDS) memory and L1 cache

• Can synchronize

About wavefronts:
• Wavefronts execute on SIMD units (located inside the CU)

• If a wavefront stalls (e.g., data dependency) CUs can quickly context switch to another wavefront

A good practice is to make the block size a multiple of 64 and have several wavefronts (e.g., 256 threads)

22

[Public]

LUMI Comprehensive Training

3. ROCm and ROCm libraries

Oct 23rd, 2025

23

[Public]

ROCm

ROCm is an open-source platform for GPU computing (including drivers,

development tools, APIs, and libraries) on AMD GPUs.

• ROCm drivers allow the OS to communicate with the GPU hardware.

• ROCm libraries provide optimized routines for scientific computing and machine learning tasks, such

as BLAS, FFT, etc.

• ROCm is powered by AMD’s HIP programming environment and runtime.

is supported on AMD & certain GPUs.

For the full list, please visit https://rocm.docs.amd.com/en/latest/release/gpu_os_support.html#linux-supported-gpus

Oct 23rd, 2025 LUMI Advanced Training

https://rocm.docs.amd.com/en/latest/release/gpu_os_support.html#linux-supported-gpus
https://rocm.docs.amd.com/en/latest/release/gpu_os_support.html#linux-supported-gpus
https://rocm.docs.amd.com/en/latest/release/gpu_os_support.html#linux-supported-gpus
https://rocm.docs.amd.com/en/latest/release/gpu_os_support.html#linux-supported-gpus
https://rocm.docs.amd.com/en/latest/release/gpu_os_support.html#linux-supported-gpus

24

[Public]

Querying system

• rocminfo: Queries and displays information on the system’s hardware
• More info at: https://github.com/ROCm/rocminfo

Querying ROCm version:

• If you install ROCm in the standard location (/opt/rocm) version info is at: /opt/rocm/.info/version-dev

• rocm-smi: Queries and sets AMD GPU frequencies, power usage, and fan speeds

• sudo privileges are needed to set frequencies and power limits

• sudo privileges are not needed to query information

• Get more info by running rocm-smi -h or looking at:

https://github.com/ROCm/rocm_smi_lib/tree/master/python_smi_tools

Oct 23rd, 2025 LUMI Advanced Training

$ /opt/rocm/bin/rocm-smi

========================ROCm System Management Interface========================

==

GPU Temp AvgPwr SCLK MCLK Fan Perf PwrCap VRAM% GPU%

1 38.0c 18.0W 1440Mhz 945Mhz 0.0% manual 220.0W 0% 0%

==

==============================End of ROCm SMI Log ==============================

https://github.com/ROCm/rocminfo
https://github.com/ROCm/rocm_smi_lib/tree/master/python_smi_tools

26

[Public]

Driver

User level

6.0.3

6.1.36.0.35.7.3 6.2.1 6.3

Dec 2023

6.4

Mar 2024 Jun 2024 Sep 2024 Nov 2024 Apr 2025

Meant to support older

version of apps and
frameworks

Facilitate transition

GPU address sanitizer
(beta)

Data pre-processing
capabilities

 (MIVisionX)

Default version

Officially supported

Recommended for
debugging

Improved sparse matrix
operations

Latest Pytorch and

other AI frameworks
require this version

Introduced many
performance

improvements

Many stability and performance

improvements for performance libraries

Improved support for lower precisions

Best tunned for AI inference workloads

Integration of profiling tools
Autocast (mixed-precision)

Native OpenXLA support

Not supported by the driver

GPU-Aware MPI

ROCm on LUMI

Oct 23rd, 2025 LUMI Advanced Training

27

[Public]

ROCm 6.2 release specific modifications

With the release of ROCm 6.2 (https://github.com/ROCm/ROCm/releases) Omnitrace and Omniperf are included

in the ROCm stack, but they still need to be installed.

One LUMI, we are including both version of Omnitrace and Omniperf:

❖The built-in versions included in the ROCm 6.2.2 software stack (installed with sudo apt-get as above)

❖ These can be used loading the modules: module use /appl/local/containers/test-modules
 module load rocm/6.2.2 omnitrace/1.12.0-rocm6.2.x omniperf/2.1.0

❖The latest versions from AMD Research that would be used for ROCm releases < 6.2 (install from source)

❖ These can be used by loading their dedicated modules: module use /appl/local/containers/test-modules
 module load rocm/6.0.3 omnitrace/1.12.0-rocm6.0.x
 module load omniperf/2.1.0

Oct 23rd, 2025 LUMI Advanced Training

https://github.com/ROCm/ROCm/releases

28

[Public]

ROCm GPU libraries

Oct 23rd, 2025 LUMI Advanced Training

ROCm provides several GPU math libraries

• Typically, two versions:

• roc* -> AMD GPU library, usually written in HIP

• hip* -> Thin interface between roc* and Nvidia cu* library

When developing an application meant to target both CUDA
and AMD devices, use the hip* libraries (portability)

When developing an application meant to target only AMD

devices, may prefer the roc* library API (performance).

• Some roc* libraries perform better by using addition APIs not

available in the cu* equivalents

hipBLAS

rocBLAS cuBLAS

29

[Public]

AMD math library equivalents: “decoder ring”

Oct 23rd, 2025 LUMI Advanced Training

Basic Linear Algebra

Subroutines
CUBLAS ROCBLAS

Fast Fourier TransformsCUFFT ROCFFT

C++ Parallel AlgorithmsTHRUST ROCTHRUST

Optimized Parallel

Primitives
CUB ROCPRIM

CURAND ROCRAND
Random Number

Generation

30

[Public]

AMD math library equivalents: “decoder ring”

Oct 23rd, 2025 LUMI Advanced Training

Sparse BLAS, SpMV, etc. CUSPARSE ROCSPARSE

Linear SolversCUSOLVER ROCSOLVER

AMGX ROCALUTION

HTTPS://GITHUB.COM/ROCM/HIP/BLOB/AMD-STAGING/DOCS/HOW-TO/HIP_PORTING_GUIDE.MD

Solvers and preconditioners

for sparse linear systems

See the link below for the full list:

https://github.com/ROCm/HIP/blob/amd-staging/docs/how-to/hip_porting_guide.md
https://github.com/ROCm/HIP/blob/amd-staging/docs/how-to/hip_porting_guide.md
https://github.com/ROCm/HIP/blob/amd-staging/docs/how-to/hip_porting_guide.md
https://github.com/ROCm/HIP/blob/amd-staging/docs/how-to/hip_porting_guide.md
https://github.com/ROCm/HIP/blob/amd-staging/docs/how-to/hip_porting_guide.md
https://github.com/ROCm/HIP/blob/amd-staging/docs/how-to/hip_porting_guide.md

32

[Public]

LUMI Comprehensive Training

4. Error checking, device management, and
asynchronous computing

Oct 23rd, 2025

36

[Public]

Blocking vs Nonblocking API functions

• Launching a kernel is non-blocking for the host

• After sending instructions/data, the host continues to do more work while the device executes the kernel

• However, hipMemcpy is blocking for the host

• The data pointed to in the arguments can be safely accessed/modified after the function returns

• To make asynchronous copies, we need to allocate non-pageable (pinned) host memory using

hipHostMalloc and copy using hipMemcpyAsync

 hipHostMalloc(h_a, Nbytes, hipHostMallocDefault);

hipMemcpyAsync(d_a, h_a, Nbytes, hipMemcpyHostToDevice, stream);

• It is not safe to access/modify the arguments of hipMemcpyAsync without some sort of synchronization.

Oct 23rd, 2025 LUMI Advanced Training

 Side Note: H2D/D2H bandwidth increases significantly when host memory is pinned
• It is good practice to use pinned host memory where data is frequently transferred to/from the device

37

[Public]

Streams

• A stream in HIP is a queue of tasks (e.g. kernels, memcpys, events).

• Tasks enqueued in a stream complete in order on that stream.

• Tasks being executed in different streams are allowed to overlap and share device resources.

• Streams are created via:

hipStream_t stream;

hipStreamCreate(&stream);

• And destroyed via:

hipStreamDestroy(stream);

• Passing 0 or NULL as the hipStream_t argument to a function instructs the function to execute on a

stream called the ‘NULL Stream’:

• No task on the NULL stream will begin until all previously enqueued tasks in all other streams have completed.

• Blocking calls like hipMemcpy run on the NULL stream.

Oct 23rd, 2025 LUMI Advanced Training

42

[Public]

Streams

Changing to asynchronous memcpys and using streams:

hipMemcpyAsync(d_a1, h_a1, Nbytes, hipMemcpyHostToDevice, stream1);

hipMemcpyAsync(d_a2, h_a2, Nbytes, hipMemcpyHostToDevice, stream2);

hipMemcpyAsync(d_a3, h_a3, Nbytes, hipMemcpyHostToDevice, stream3);

myKernel1<<<blocks, threads, 0, stream1>>>(N, d_a1);

myKernel2<<<blocks, threads, 0, stream2>>>(N, d_a2);

myKernel3<<<blocks, threads, 0, stream3>>>(N, d_a3);

hipMemcpyAsync(h_a1, d_a1, Nbytes, hipMemcpyDeviceToHost, stream1);

hipMemcpyAsync(h_a2, d_a2, Nbytes, hipMemcpyDeviceToHost, stream2);

hipMemcpyAsync(h_a3, d_a3, Nbytes, hipMemcpyDeviceToHost, stream3);

Oct 23rd, 2025 LUMI Advanced Training

NULL Stream

Stream1

Stream2

Stream3

myKernel

1
myKernel

2
myKernel

3

HToD1

HToD2

HToD3

DToH1

DToH2

DToH3

43

[Public]

HIP stream example

In real stream overlapping, the communication and computation time will not be the same

For a real example of overlapping compute and communication in HIP

git clone https://github.com/AMD/HPCTrainingExamples

cd HPCTrainingExamples/HIP/Stream_Overlap

Oct 23rd, 2025 LUMI Advanced Training

https://github.com/AMD/HPCTrainingExamples

44

[Public]

LUMI Comprehensive Training

5. Shared memory and thread syncronization

Oct 23rd, 2025

45

[Public]

Synchronization

How do we coordinate execution on device streams with host execution? Need some synchronization points.

• hipDeviceSynchronize();

• Heavy-duty sync point.

• Blocks host until all work in all device streams has reported complete.

• hipStreamSynchronize(stream);

• Blocks host until all work in stream has reported complete.

Can a stream synchronize with another stream? For that we need ‘Events’:

https://rocm.docs.amd.com/projects/HIP/en/latest/.doxygen/docBin/html/group___event.html

Oct 23rd, 2025 LUMI Advanced Training

https://rocm.docs.amd.com/projects/HIP/en/latest/.doxygen/docBin/html/group___event.html

46

[Public]

Device management
Multiple GPUs in system? Multiple host threads/MPI ranks? What device are we running on?

• Host can query number of devices visible to system:

 int numDevices = 0;

 hipGetDeviceCount(&numDevices);

• Host tells the runtime to issue instructions to a particular device:

 int deviceID = 0;

 hipSetDevice(deviceID);

• Host can query what device is currently selected and device properties:

 hipGetDevice(&deviceID);
 hipDeviceProp_t props;

 hipGetDeviceProperties(&props, deviceID);

The host can manage several devices by swapping the currently selected device during runtime.

Different processes can use different devices or over-subscribe (share) the same device.

Oct 23rd, 2025 LUMI Advanced Training

47

[Public]

Function qualifiers

hipcc makes two compilation passes through source code. One to compile host code, and one to compile
device code.

• __global__ functions:
• These are entry points to device code, called from the host

• Code in these regions will execute on SIMD units

• __device__ functions:
• Can be called from __global__ and other __device__ functions.

• Cannot be called from host code.

• Not compiled into host code – essentially ignored during host compilation pass

• __host__ __device__ functions:
• Can be called from __global__, __device__, and host functions.

• Will execute on SIMD units when called from device code!

Oct 23rd, 2025 LUMI Advanced Training

48

[Public]

Memory declarations in device code

• Malloc/free not supported in device code.

• Variables/arrays can be declared on the stack.

• Stack variables declared in device code are allocated in registers and are private to each thread.

• Threads can all access common memory via device pointers, but otherwise do not share memory.
• Important exception: __shared__ memory

• Stack variables declared as __shared__:
• Allocated once per block in LDS memory

• Shared and accessible by all threads in the same block

• Access is faster than device global memory (but slower than register)

• Must have size known at compile time

Oct 23rd, 2025 LUMI Advanced Training

49

[Public]

Shared memory

__global__ void reverse(double *d_a) {

 __shared__ double s_a[256]; //array of doubles, shared in this block

 int tid = threadIdx.x;

 s_a[tid] = d_a[tid]; //each thread fills one entry

 //all wavefronts must reach this point before any wavefront is allowed to continue.

 __syncthreads();

 d_a[tid] = s_a[255-tid]; //write out array in reverse order

}

int main() {

 …

 reverse<<<dim3(1), dim3(256), 0, 0>>>(d_a); //Launch kernel

 …

}

Oct 23rd, 2025 LUMI Advanced Training

50

[Public]

Thread synchronization

_syncthreads():
• Blocks a wavefront from continuing execution until all wavefronts have reached __syncthreads()
• Memory transactions made by a thread before __syncthreads() are visible to all other threads in the block after

__syncthreads()
• Can have a noticeable overhead if called repeatedly

Best practice: Avoid deadlocks by checking that all threads in a block execute the same
__syncthreads() instruction.

• Note 1: So long as at least one thread in the wavefront encounters __syncthreads(), the
whole wavefront is considered to have encountered __syncthreads().

• Note 2: Wavefronts can synchronize at different __syncthreads() instructions, and if a
wavefront exits a kernel completely, other wavefronts waiting at a __syncthreads() may be
allowed to continue.

Oct 23rd, 2025 LUMI Advanced Training

51

[Public]

Hands-on exercises

https://hackmd.io/@sfantao/lumi-training-tal-2025#HIP-Exercises

https://hackmd.io/@sfantao/lumi-training-tal-2025#Hipify

We welcome you to explore our HPC Training Examples repo:

 https://github.com/amd/HPCTrainingExamples

A table of contents for the READMEs if available at the top-level README in the repo

Relevant exercises for this presentation located in HIP directory.

Link to instructions on how to run the tests: HIP/README.md and subdirectories

Oct 23rd, 2025 LUMI Advanced Training

https://hackmd.io/@sfantao/lumi-training-tal-2025#HIP-Exercises
https://hackmd.io/@sfantao/lumi-training-tal-2025#HIP-Exercises
https://hackmd.io/@sfantao/lumi-training-tal-2025#HIP-Exercises
https://hackmd.io/@sfantao/lumi-training-tal-2025#HIP-Exercises
https://hackmd.io/@sfantao/lumi-training-tal-2025#HIP-Exercises
https://hackmd.io/@sfantao/lumi-training-tal-2025#HIP-Exercises
https://hackmd.io/@sfantao/lumi-training-tal-2025#HIP-Exercises
https://hackmd.io/@sfantao/lumi-training-tal-2025#HIP-Exercises
https://hackmd.io/@sfantao/lumi-training-tal-2025#HIP-Exercises
https://hackmd.io/@sfantao/lumi-training-tal-2025#Hipify
https://hackmd.io/@sfantao/lumi-training-tal-2025#Hipify
https://hackmd.io/@sfantao/lumi-training-tal-2025#Hipify
https://hackmd.io/@sfantao/lumi-training-tal-2025#Hipify
https://hackmd.io/@sfantao/lumi-training-tal-2025#Hipify
https://hackmd.io/@sfantao/lumi-training-tal-2025#Hipify
https://hackmd.io/@sfantao/lumi-training-tal-2025#Hipify
https://github.com/amd/HPCTrainingExamples
https://github.com/amd/HPCTrainingExamples/blob/main/README.md
https://github.com/amd/HPCTrainingExamples/tree/main/HIP
https://github.com/amd/HPCTrainingExamples/blob/main/HIP/README.md

52

[Public]

Disclaimer

Oct 23rd, 2025 LUMI Advanced Training

The information presented in this document is for informational purposes only and may contain technical inaccuracies, omissions, and typographical errors. The

information contained herein is subject to change and may be rendered inaccurate for many reasons, including but not limited to product and roadmap changes,

component and motherboard version changes, new model and/or product releases, product differences between differing manufacturers, software changes, BIOS

flashes, firmware upgrades, or the like. Any computer system has risks of security vulnerabilities that cannot be completely prevented or mitigated. AMD assumes

no obligation to update or otherwise correct or revise this information. However, AMD reserves the right to revise this informat ion and to make changes from time to

time to the content hereof without obligation of AMD to notify any person of such revisions or changes.

THIS INFORMATION IS PROVIDED ‘AS IS.” AMD MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE CONTENTS HEREOF

AND ASSUMES NO RESPONSIBILITY FOR ANY INACCURACIES, ERRORS, OR OMISSIONS THAT MAY APPEAR IN THIS INFORMATION. AMD

SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR ANY PARTICULAR PURPOSE.

IN NO EVENT WILL AMD BE LIABLE TO ANY PERSON FOR ANY RELIANCE, DIRECT, INDIRECT, SPECIAL, OR OTHER CONSEQUENTIAL DAMAGES

ARISING FROM THE USE OF ANY INFORMATION CONTAINED HEREIN, EVEN IF AMD IS EXPRESSLY ADVISED OF THE POSSIBILITY OF SUCH

DAMAGES.

Third-party content is licensed to you directly by the third party that owns the content and is not licensed to you by AMD. ALL LINKED THIRD-PARTY CONTENT IS

PROVIDED “AS IS” WITHOUT A WARRANTY OF ANY KIND. USE OF SUCH THIRD-PARTY CONTENT IS DONE AT YOUR SOLE DISCRETION AND UNDER

NO CIRCUMSTANCES WILL AMD BE LIABLE TO YOU FOR ANY THIRD-PARTY CONTENT. YOU ASSUME ALL RISK AND ARE SOLELY RESPONSIBLE FOR

ANY DAMAGES THAT MAY ARISE FROM YOUR USE OF THIRD-PARTY CONTENT.

© 2025 Advanced Micro Devices, Inc. All rights reserved. AMD, the AMD Arrow logo, AMD CDNA, AMD ROCm, AMD Instinct, and combinations thereof are

trademarks of Advanced Micro Devices, Inc. in the United States and/or other jurisdictions. Other names are for informational purposes only and may be

trademarks of their respective owners.

OpenCL is a trademark of Apple Inc. used by permission by Khronos Group, Inc.

The OpenMP® name and the OpenMP logo are registered trademarks of the OpenMP Architecture Review Board

Git and the Git logo are either registered trademarks or trademarks of Software Freedom Conservancy, Inc., corporate home of the Git Project, in the United States

and/or other countries

	Slide 1: HIP and ROCm
	Slide 4: 1. AMD GPU programming concepts
	Slide 5: Device Kernels: Grid Hierarchy
	Slide 6: The Grid: blocks of threads in 1D
	Slide 7: The Grid: blocks of threads in 2D
	Slide 8: 2. HIP API calls and GPU kernel code
	Slide 9: What is HIP?
	Slide 10: HIP API
	Slide 11: Example: simple discrete GPU multiply
	Slide 12: Example: simple discrete GPU multiply
	Slide 13: Example: simple discrete GPU multiply
	Slide 14: Example: simple discrete GPU multiply
	Slide 15: Example: simple discrete GPU multiply
	Slide 16: Example: simple discrete GPU multiply
	Slide 17: Example: simple discrete GPU multiply
	Slide 21: Software to hardware mapping
	Slide 22: 3. ROCm and ROCm libraries
	Slide 23: ROCm
	Slide 24: Querying system
	Slide 26: ROCm on LUMI
	Slide 27: ROCm 6.2 release specific modifications
	Slide 28: ROCm GPU libraries
	Slide 29: AMD math library equivalents: “decoder ring”
	Slide 30: AMD math library equivalents: “decoder ring”
	Slide 32: 4. Error checking, device management, and asynchronous computing
	Slide 36: Blocking vs Nonblocking API functions
	Slide 37: Streams
	Slide 42: Streams
	Slide 43: HIP stream example
	Slide 44: 5. Shared memory and thread syncronization
	Slide 45: Synchronization
	Slide 46: Device management
	Slide 47: Function qualifiers
	Slide 48: Memory declarations in device code
	Slide 49: Shared memory
	Slide 50: Thread synchronization
	Slide 51: Hands-on exercises
	Slide 52: Disclaimer
	Slide 53

