Introduction to Omniperf

an chical Roofline on AMD Instinct™ MI200 GPUs

AMDZ1

together we advance_

Background — AMD Profilers

ROC-profiler (rocprof) Omnitrace Omniperf

Raw collection of GPU counters and traces Comprehensive trace collection
Hardware Trace
Counters Counter collection with Counter results printed collection
)) CPU GPU
user input files toa CSV
Trace collection support for CPU copy HIP API HSA APl GPU Kernels
Traces and S !
) : upports
timelines pp
CPU copy HIP API HSA APl GPU Kernels OpenMP® MPI Kokkos p-threads multi-GPU
: - T isuali i f : B T isualiz ith
VR R races visualized with Perfetto Visualisation races visualized with Perfetto

A esioklosp ot 2072429
Name Calls TotalDura AverageN:Percentagd eshiokiosp st

1.05E+09 61534688

41 8.11E+08 19791876

hipLaunchKernel 1856 58082083 31294

hipStreamCreate 2 46380834 23190417

hipMemset 2 18847246 9423623

hipStreamDestroy 2 15183338 7591669

hipFree 38 8269713 217624

hipEventRecord 330 2520035 7636

hipMalloc 30 1484804 49493
__hipPopCallConfigura 229159
__hipPushCallConfigur: 224177
hipGetlastError 100458
hipEventCreate 76675
hipEventDestroy 64671
hipGetDevicePropertie: 51808
hipGetDevice 11611
hipSetDevice 401
hipGetDeviceCount 1 220

g

B3l hipMemcpyAsync 3.22E+10 3.25E+08

Ell hipEventSynchronize 2.42E+10 73394557 okl CaForcfanlods Es

Pl hipMemsetAsync 7.76E+09 89232696 Nolaunchere cive CUs
Bl hipHostMalloc 5.41E+09 6.01E+08 110110
[l hipDeviceSynchronize 1.32E+09 47006288

7

8

9

0P 0 Frequency (5)

)

[cPU1) Frequency (8)

[CPU2) Frequency

Y]

13
14
15

ot AARtemal 1
et

e 3
I 1

Curent Selecton | Flow Evnts

Flow events

Direction Connected Sice ID Connected Slce Name

s:Experimental:iml:
mpl-Paral

e AMDA

together we advance_

Ougaing

Omniperf: Automated Collection of Hardware Counters and Analysis

‘—‘ FEmamm=a — e ENEE | o s
i e e e R —
L [E— e I Ers e
2 == | e B
- - == ' I B
| I
Omniperf GUI Analyzer :
server | TTTTTTTTTTTT { __ } ______________________
Workload | :
S 11— | Standalone
> [
Backend Workioad . Analyzer
il —
___ :
DB Importer | l
1
—
ﬁ U [Ccsvsute || cu ﬁ
omniperf, G ________________________________
client :
ROC Profiler Microbench
| | | | |
v v v v
GCDO0O [MI200| GCD1 GCDO0O [MI200| GCD1
Refer to current documentation for recent updates
P AMDZU

together we advance_

https://amdresearch.github.io/omnitrace/features.html

Omniperf

Omniperf is an integrated performance analyzer for AMD GPUs built on ROCprofiler
Omniperf executes the code many times to collect various hardware counters (over 100 counters default
behavior)
Using specific filtering options (kernel, dispatch ID, metric group), the overhead of profiling can be reduced
Roofline analysis is supported on MI1200 GPUs
Omniperf shows many panels of metrics based on hardware counters, we will show a few here
Typical Omniperf workflows:
Profile + Analyze with CLI or visualize with standalone GUI
Profile + Import to database and visualize with Grafana
Omniperf targets MI100 and MI200 and future generation AMD GPUs
Omniperf requires to use just 1 MPI process

AMDZ1

together we advance_

Omniperf modes

$ omniperf profile -n workload_name [profile options]
[roofline options] -- <CMD> <ARGS>

$ omniperf analyze -p
<path/to/workloads/workload_name/MI200/>

$ omniperf analyze -p
<path/to/workloads/workload_name/MI200/> --gui

$ omniperf database <interaction type> [connection options]

$ omniperf profile --help

For problems, create an issue here: https://github.com/AMDResearch/omniperf/issues
Documentation: https://amdresearch.github.io/omniperf

AMDZ1

together we advance_

https://github.com/AMDResearch/omniperf/issues
https://amdresearch.github.io/omniperf

Omniperf profiling

$ wget https://github.com/AMDResearch/omniperf/raw/main/sample/vcopy.cpp

$ hipcc -o vcopy vcopy.cpp

$ omniperf profile -n vcopy_all -- ./vcopy -n 1048576 -b 256

omniperf ver: 1.0.4
Path: /pfs/lustrep4/scratch/project_462000075/markoman/omniperf-
1.0.4/build/workloads

mi200

./vcopy 1048576 256

Kernel Selection: None
Dispatch Selection: None
IP Blocks: All

AMDZ1

together we advance_

Omniperf analyze

$ wget https://github.com/AMDResearch/omniperf/raw/main/sample/vcopy.cpp

$ hipcc --offload-arch=gfx90a -o vcopy vcopy.cpp

$ omniperf profile -n vcopy_all -- ./vcopy -n 1048576 -b 256

0. Top Stat

KernelName Count Sum(ns) Mean(ns) Median(ns) Pc

$ Omniper"F analyze -p WOf‘kloadS/VCOPy_all/MIZGO/ &> VCOpy_analyze.txt © | vecCopy(double*, doublex, doublex, int, 1 | 301123.00 | 341123.00 341123.00 | 100.0

int) [clone .kd]

2. System Speed-of-Light |’7.1 Wavefront Launch Stats
Index Metric Value | Unit Peak PoP Index Metric Avg Min Max Unit
2.1.0 VALU FLOPs 0.00 | Gflop 23936.6 | 0.8 N A N
7.1.0 Grid Size 16048576.00 16048576.00 1048576.00 Work items
2.1.1 VALU IOPs 89.14 | Giop 23936.6 | ©.37242200388114116
Doilad Workgroup Size 256.00 256.00 256.00 | Work items
2.1.2 MFMA FLOPs (BF16) 0.0 | Gflop 957u4.0 | 0.0
2.1.3 MFMA FLOPs (F16) 0.00 | Gflop 191488.0 | 0.0 Tola?d Total Wavefronts 16384.00 16384.00 16384.00 | Wavefronts
Botlcl MFHA FLOPs (F32) 000 | GAley Q|| e 7.1.3 Saved Wavefronts 0.00 0.00 0.00 | wWavefronts
2.1.5 MFMA FLOPs (F64) 0.00 | Gflop 47872.6 | 0.0
7.1.4 Restored Wavefronts 0.00 0.00 0.00 | Wavefronts
2.1.6 MFMA IOPs (Int8) 0.00 | Giop 191488.0 | 0.0
2.1.7 Active CUs 58.00 | Cus 110 52.72727272727273 7.1.5 VGPRs td.ee td.ee 44.60 | Registers
2.1.8 SALU Util 3.69 | Pct 100 3.6862586934167525 7.1.6 SGPRs 48.0e 48.00 u48.e0 | Registers
2.1.9 VALU Util 5.90 | Pct 100 5.895531580380328 7.1.7 LDS Allocation .00 .00 0.00 | Bytes
2.1.10 | MFMA Util 0.00 | Pct 100 0.0 AMDH
7.1.8 Scratch Allocation 16496.00 16496.00 16496.00 | Bytes
2.1.11 | VALU Active Threads/Wave 32.71 | Threads 64 51.10526315789473 together we advance_
- . A [e e o] n 0o D e e - TN CYecNnNQoO2102021 "

Omniperf analyze with standalone GUI

2. System Speed-of-Light

[tMetric [Value[s Unit[s Peak|s Pop|
$ wget https://github.com/AMDResearch/omniperf/raw/main/sample/vcopy.cpp e = = S

|MFMA FLOPS (BF16) o.00| GFlop| 95744.00)| 0.00|

o o == — g o

|MFMa FLOPS (Fea) 0.00| GFlop| 47872.00| 0.00|

e — o .
$ hipcc --offload-arch=gfx90a -o vcopy vcopy.cpp =

10. Compute Units - Instruction Mix

101 Instruction Mix

$ omniperf profile -n vcopy_all -- ./vcopy 1048576 256

] # of instr per wave.

$ omniperf analyze -p workloads/vcopy_all/mi200/ --gui

of instr per wave

10.2 VALU Arithmetic Instr Mix

G Q+iiO BRAKA @

u::m # of instr per wave
Foa-mA
Foa-muL 25
Fo4-ADD.
Instr Buff Exec F32Trans, 20
g
" 5 m2mu
Active CUs XGMI / £ 200, =
F16-Trans
58/110 PCle Fi6-FA s
‘Wave 0 Instr buff F16-MUL
F16-ADD 5
NTea
w22 o
3 s 10 15 2 25 £
Wave N-1 Instr buff — # of instr per wave.
Fabric
Wave Occupancy Wr_ 138 e — wr 138
14 per-GCD || om0
Wave Life
62014 cycles
I GMI
Fetch: 198

AMDZ1

together we advance_

Easy things you can check

Are all the CUs being used?
If not, more parallelism is required (for most of the cases)

Are all the VGPRs being spilled?
Try smaller workgroup sizes

|s the code Integer limited?
Try reducing the integer ops, usually in the index calculation

AMDZ1

together we advance_

AMD

Background - What is a roofline?

Background — What is Roofline

Attainable FLOPs/s

FLOPs/s rate as measured empirically on
a given device

FLOP = floating point operation

FLOP counts for common operations
Add: 1 FLOP
Mul: 1 FLOP
FMA: 2 FLOP

FLOPs/s = Number of floating-point
operations performed per second

(%2]
S~
[%p]
Q.
@)
—
L
Q
o]
©
k=
©
i)
)
<

AMDZ1

together we advance_

Background — What is Roofline

Arithmetic Intensity (Al)

characteristic of the workload indicating
how much compute (FLOPSs) is performed
per unit of data movement (Byte)
Ex: = +

FLOPs = 1

Bytes = + =4+4=8

Al=1/8

(%2]
S~
[%p]
Q.
@)
—
L
Q
o]
©
k=
©
i)
)
<

Arithmetic Intensity (FLOPs/Byte)

AMDZ1

together we advance_

Background — What is Roofline

Log-Log plot

makes it easy to doodle, extrapolate
performance along Moore’s Law, etc...

(%2]
S~
[%p]
Q.
@)
—
L
Q
o]
©
k=
©
i)
)
<

1
Arithmetic Intensity (FLOPs/Byte)

AMDZ1

together we advance_

Background — What is Roofline

Roofline Limiters
Peak FLOPs/s

Al * Peak GB/s
Note: Peak FLOPs/s

These are empirically measured values
Different SKUs will have unique plots
Individual devices within a SKU will have
slightly different plots based on thermal
solution, system power, etc.

Omniperf uses suite of simple kernels to
empirically derive these values

These are NOT theoretical values

indicating peak performance under
“‘unicorn” conditions

(%2]
S~
[%p]
Q.
@)
—
L
Q2
o]
©
k=
©
i)
)
<

1
Arithmetic Intensity (FLOPs/Byte)

AMDZ1

together we advance_

Background — What is Roofline

Attainable FLOPs/s =

min {

Machine Balance:
Where

Typical machine balance: 5-10 FLOPs/B
40-80 FLOPs per double to exploit compute
capability

machine balance: ~16 FLOPs/B

128 FLOPs per double to exploit compute
capability

(%2]
S~
[%p]
Q.
@)
—
L
Q
o]
©
k=
©
i)
)
<

Peak FLOPs/s

1
Arithmetic Intensity (FLOPs/Byte)

AMDZ1

together we advance_

Background — What is Roofline

Attainable FLOPs/s =

min {

Machine Balance:
Where

Five Performance Regions:
Unattainable Compute

(%2]
S~
[%p]
Q.
@)
—
L
Q
o]
©
k=
©
i)
)
<

1

Peak FLOPs/s

Arithmetic Intensity (FLOPs/Byte)

AMDZ1

together we advance_

Background — What is Roofline

Attainable FLOPs/s =

min {

Machine Balance:
Where

Five Performance Regions:

Unattainable Compute
Unattainable Bandwidth

(%2]
S~
[%p]
Q.
@)
—
L
Q
o]
©
k=
©
i)
)
<

1

Peak FLOPs/s

Arithmetic Intensity (FLOPs/Byte)

AMDZ1

together we advance_

Background — What is Roofline

Attainable FLOPs/s =

min {

Machine Balance:
Where

Five Performance Regions:

Unattainable Compute
Unattainable Bandwidth
Compute Bound

(%2]
S~
[%p]
Q.
@)
—
L
Q
o]
©
k=
©
i)
)
<

1

Peak FLOPs/s

Arithmetic Intensity (FLOPs/Byte)

AMDZ1

together we advance_

Background — What is Roofline

Attainable FLOPs/s =

min {

Machine Balance:
Where

Five Performance Regions:
Unattainable Compute
Unattainable Bandwidth
Compute Bound
Bandwidth Bound

(%2]
S~
[%p]
Q.
@)
—
L
Q
o]
©
k=
©
i)
)
<

Peak FLOPs/s

Arithmetic Intensity (FLOPs/Byte)

AMDZ1

together we advance_

20

Background — What is Roofline

Attainable FLOPs/s =

min {

Machine Balance:
Where

Five Performance Regions:
Unattainable Compute
Unattainable Bandwidth
Compute Bound
Bandwidth Bound
Poor Performance

(%2]
S~
[%p]
Q.
@)
—
L
Q
o]
©
k=
©
i)
)
<

Peak FLOPs/s

Arithmetic Intensity (FLOPs/Byte)

AMDZ1

together we advance_

21

Background — What is Roofline

Attainable FLOPs/s =

min {

Final result is a single roofline plot
presenting the peak attainable
performance (in terms of FLOPs/s) on a
given device based on the arithmetic
intensity of any potential workload

We have an application independent way
of measuring and comparing performance
on any platform

(%2]
S~
[%p]
Q.
@)
—
L
Q
o]
©
k=
©
i)
)
<

Peak FLOPs/s

1
Arithmetic Intensity (FLOPs/Byte)

AMDZ1

together we advance_

Background — What is “Good” Performance?

Example:

We run a number of kernels and measure
FLOPs/s

22

AMDZ1

together we advance_

Background — What is “Good” Performance?

Example:

We run a number of kernels and measure
FLOPs/s

Sort kernels by arithmetic intensity

0.1 1 10

Arithmetic Intensity (FLOPs/Byte)

23

AMDZ1

together we advance_

24

Background — What is “Good” Performance?

Example:

We run a number of kernels and measure
FLOPs/s

Sort kernels by arithmetic intensity

Compare performance relative to hardware
capabilities

(%2]
S~
[%p]
Q.
@)
—
L
Q
o]
©
k=
©
i)
)
<

Peak FLOPs/s

Arithmetic Intensity (FLOPs/Byte)

AMDZ1

together we advance_

25

Background — What is “Good” Performance?

Example:
We run a number of kernels and measure
FLOPs/s
Sort kernels by arithmetic intensity
Compare performance relative to hardware
capabilities
Kernels near the roofline are making good

use of computational resources

Kernels can have low performance (FLOPS/s), but
make good use of BW

(%2]
S~
[%p]
Q.
@)
—
L
Q
o]
©
k=
©
i)
)
<

Peak FLOPs/s

1
Arithmetic Intensity (FLOPs/Byte)

AMDZ1

together we advance_

Background — What is “Good” Performance?

Example:

We run a number of kernels and measure
FLOPs/s

Sort kernels by arithmetic intensity

Compare performance relative to hardware
capabilities

Kernels near the roofline are making good
use of computational resources

Kernels can have low performance (FLOPS/s), but
make good use of BW

Increase arithmetic intensity when
bandwidth limited

Reducing data movement increases Al
Kernels not near the roofline sf..//" have

optimizations that can be made to get
closer to the roofline

Peak FLOPs/s

(%2]
S~
[%p]
Q.
@)
—
L
Q
o]
©
k=
©
i)
)
<

1
Arithmetic Intensity (FLOPs/Byte)

AMDZ1

together we advance_

AMD

Roofline Calculations on AMD Instinct™ MI200 GPUs

Overview - AMD Instinct™ MI200 Architecture

Graphics Compute Die (GCD)

Scal [[R [
Seaar || sigop | $igpp || $Mop | $iMDB ot || $MDp | $iMDp | $iMDR | $IMDB Scaar || siop | $iMpp || $Mo2 | $iMDB
SGPR VGPR | VGPR | VGPR || VGPR SGPR VGPR || VGPR | VGPR || VGPR SGPR VGPR || VGPR | VGPR || VGPR

['Vector L1 Data Gahe (vL1D)] | Vector L1 Data Cache (vLiD) [Vector L1 Data Gashe (4L1D)
& s ¥

Remote
(Peer GCD)<:> <:> Socket

(CPU, GPU)

Y Y

AMDZ1

28 together we advance_

Performance (GF LOPsfsec)

100k

10k

1000

100
0.01

29

Empirical Hierarchical Roofline on MI200 - Overview

Peak LDS BW

0.1

Peak vL1D BW

»

Peak L2 BW

Empirical Roofline (MI200)

Peak HBM BW

Workload Perf:
(GFLOP/sec, Al)

10 - 5 100

Arithmetic Intensity (FLOPs/Byte)

HBM-VLAU
L2-VALU
vL1D-VALU
LDS-VALU
Cur - HBM
ur -2

Peak MFMA GFLOP/sec

*& N

C
Cur-vL1D
laseline - HBM
laseline - L2
Baseline - vL1D
HBM-MFMA
L2-MFMA
vL1D-MFMA
LDS-MFMA

B
B

Peak VALU GFLOP/sec

1000

AMDZ1

together we advance_

30

Guided Exercises

1. Launch Parameters

2. LDS Occupancy Limiter

3. VGPR Occupancy Limiter
4. Strided Data Access Pattern
5. Algorithmic Optimizations

6. Daxpy example

AMDZ1

together we advance_

Guided Exercises: Logistics/Preamble

To accommodate the virtual setting and attendees with varied access to Omniperf:
I'll read through the slides without waiting for everyone to finish working through each exercise

If you have access to a system with Omniperf, clone the repo and start working through the exercises:
git clone https://github.com/amd/HPCTrainingExamples/ .
The READMEs contain all of what I'm saying and include platform-specific instructions for this training in the top-level directory

We have used Omniperf 2.0.1 to generate output for these slides:
Behavior may differ if using a different version of Omniperf (e.g. 1.0.10)
Generally, building stable releases is the best practice

Some numbers shown in the exercises and these slides were generated using MI210 accelerators

Implementations in these exercises are not fully-optimized kernels

AMDZ1

31 together we advance_

32

Guided Exercises: Representative Optimization Tasks

The Exercises are roughly in order of ease of development effort and performance impact:

Exercise 1: Verify Reasonable Launch Parameters

Exercise 2: Attempt to Cache Data in Shared Memory

Exercise 3: Determining a Source of Unexpected Resource Usage
Exercise 4: Verifying Efficient Data Access Patterns

Exercise 5: Analyzing an Algorithmic Change

The underlying code is kept simple to emphasize the optimization techniques

These slides are intended as a “Cheat Sheet” starting point providing:
Omniperf commands to filter through output for common optimization concerns
Some optimization direction given certain Omniperf output

AMDZ1

together we advance_

Guided Exercises: Optimizing a yAx Kernel

We'll be looking at a relatively simple kernel that solves the same problem in each exercise, yAx
yAX is a vector-matrix-vector product that can be implemented in serial as:

double result = 0.0;
for (int 1 = 0; 1 < n; i++){
double temp = 0.0;
for (int j = 0; j < m; j++){
temp += A[i*m + j] * x[J];
}

result += y[i] * temp;

}

Where:
Ais a 1-D array of size n*m
X is an array of size m
y is an array of size n

AMDZ1

33 together we advance_

Exercise 1: First Things First, Generate a Roofline

Run this command to generate roofline plots and a legend for each kernel (in PDF form):

omniperf profile -n problem roof only --roof-only --kernel-names -- ./problem.exe
The files will appear in the . /workloads/problem_roof_only/MI200 folder.
--roof-only generates PDF roofline plots, and does not generate any non-roofline profiling data
--kernel-names generates a PDF showing which kernel names correspond to which icons in the roofline

Rooflines are a useful tool in determining which kernels are good optimization targets
They are only one perspective of performance: runtime of the kernel cannot be inferred from the roofline

Generated PDF roofline plots can have overlapping data points but should still be instructive
There are fixes to this, but they may be difficult to setup for different cluster installations
Generating the PDF plots from the command line interface should always work

Complete sets of Roofline plots and commands can be found in the READMEs for each exercise

AMDZ1

34 together we advance_

Exercise 1: Problem Roofline Plots

suzsrions | — a2 T
21036 GFLOP/s — L2-FP32

L1-FP32

LDS-FP32

—— HBM-FP16
—— L2-FP16

L1-FP16

LDS-FP16
Peak VALU-FP32 Peak MFMA-FP16
Peak MFMA-FP32 ai_l1
ai_ll ai_l2
ai_l2 ai_hbm
ai_hbm HBM-18

L2-18
19250°GB/s — L1-18
—— LDS-18

5026 GB/s Peak MFMA-I8

)48 Glis Note: The L2 data point
is hidden behind the
HBM data point

0.1 1 10 100 . . 1 10 100

19250°GRTs

922)/GB/s
5026 GB

@/s

7

o
)
0
0
S
3
[V
e
)
[}
c
©
£
_
o
L
_
[
o

Performance (GFLOP/sec)

1000
Arithmetic Intensity (FLOPs/Byte) Kernel Names and Markers Arithmetic Intensity (FLOPs/Byte)

-1

Ke rnel Iegend _J yax(double*, double*, double*, int, int, double*)

AMDZ1

together we advance_

Exercise 1: Prep to use Omniperf to Find Kernel Launch Parameters

Launch parameters are given at the time of the kernel launch, as in lines 49 and 54

yax<<<grid,block>>>(y,A,x,n,m,result);
Where grid and block are the kernel yax’s launch parameters

In problem, grid = (4,1,1), and block = (64,1,1)
In solution, grid = (2048,1,1), and block = (64,1,1)

Sometimes the launch parameters for a given kernel can be obfuscated

Omniperf can easily show launch parameter information regardless of the code
You just need the dispatch ID

To generate profiling data, use the commands:
omniperf profile -n problem --no-roof -- ./problem.exe

omniperf profile -n solution --no-roof -- ./solution.exe
--no-roof saves time by not generating roofline data — profile commands can take a while

Real benchmarks can take prohibitively long to profile — use smaller representative problems if possible

AMDZ1

36 together we advance_

Exercise 1: CLI Omniperf Comparisons are Easy

omniperf analyzel | --dispatch 1 --block 7.1.0 7.1.1 7.1.2
Analyze
0. Top Stat
KernelName Count | Count Sum(ns) " Sum(ns) Mean(ns) " EERIGE) " I ERIGE) I I ERTGE) " Pct | Pct
@ | yax(double*, double*, double*, int, int, 1.00 || 1.0 (0.0%) | 754934306.50 | 69702016.5 (-90.77%) | 754934306.50 || 69702016.5 (-90.77%) | 754934306.50 | 69702016.5 (-90.77%) | 100.00 | 100.0 (0.0%)
double*)

10.8x speedup

7. Wavefront
7.1 Wavefront Launch Stats

Index Metric | Avg I Avg | Min | Min | Max | Max Unit

256.00 | 1310720 (s1100.0%) | 25808 | 131072.0 (s1100.0%) | 28608 | 1310720 (ses.00) | werw eens | 1N §€NErAL it is difficult to pre-determine
7.1.1 | Workgroup Size | 64.00 | 64.0 (0.0%) 64.00 | c4.0 (0.0%) 64.00 | ca.0 (0.0%) wri itens | Optimal launch bounds, so some

7.1.2 Total Wavefronts 4.00 | 2048.0 (51100.0%) 4.00 | 2048.0 (51100.0%) 4.00 | 2048.0 (51100.0%) Wavefronts eXperimentatiOn iS |Ike|y necessary

Increased launched wavefronts, which increases
Grid Size

These slides always put as the , and as the

AMDZ1

37 together we advance_

Exercise 1: Comparing Problem and Solution Roofline Plots

Problem FP32 Roofline Plot Solution FP32 Roofline Plot

41425 GFLOP/s ——— HBM-FP32
21036 GFLOP/s —— L2-FP32
L1-FP32
LDS-FP32
Peak VALU-FP32
Peak MFMA-FP32
ai Il
ai_lI2
ai_hbm

41506 GFLOP/s —— HBM-FP32

- L2-FP32

L1-FP32
LDS-FP32

Peak VALU-FP32
Peak MFMA-FP32
ai_ll

ai_I2

ai_hbm

21080 GFLOP/s

19250°GRTs

972)Gers
5026 GB/
/

1488 GB/s

20913 GRls

Performance (GFLOP/sec)

/
9237Ge/s /

[
Q
2
u
a
S
[V
e
0]
O
o
©
S
—
o
e
| -
[
(s

5035 GB/s

/
1388 GB/s

0.1 1 10 100
Arithmetic Intensity (FLOPs/Byte)

0.01 0.1 1 10 100

Arithmetic Intensity (FLOPs/Byte)

Generally, moving up and to the right is good.

AMDZ1

38 together we advance_

39

Exercise 1: It’s Easy to Check Launch Parameters with Omniperf

Use this omniperf command to check launch parameters:
omniperf analyze -p workloads/problem/MI200 --dispatch 1 --block 7.1.0 7.1.1 7.1.2

Shows the launch parameters of the kernel with dispatch ID 1
--block filters the output to only show these launch parameters

Good launch parameters are essential to a performant GPU kernel
Determining which parameters give the best performance usually requires experimenting

It can be difficult to track down where launch parameters are set in code

Omniperf can easily show the launch parameters of a kernel
Need the dispatch ID or index given by --1ist-stats

--list-stats index can be passed to -k as in:
omniperf analyze -p workloads/problem/MI200 -k @ -metric 7.1.0 7.1.1 7.1.2

Note:
These metric numbers are for Omniperf 1.0.10

AMDZ1

together we advance_

Exercise 2: Diagnosing a Shared Memory Occupancy Limiter

Using LDS (Local Data Store — Shared Memory) to cache re-used data can be an effective optimization
strategy

Using too much LDS can restrict occupancy however, and reduce performance

Line 12 in problem.cpp shows the allocation of LDS:
__shared__ double tmp[fully allocate lds];

There are two solutions:
solution-no-1ds removes the LDS allocation, and thus the occupancy limiter

solution reduces the size of the LDS allocation, removes occupancy limiter, and is faster than solution-no-1ds
This is the solution used to generate the Omniperf output in the next slide

Omniperf makes it easy to determine if LDS allocations restrict occupancy, as before profile with:
omniperf profile -n problem --no-roof -- ./problem.exe
omniperf profile -n solution --no-roof -- ./solution.exe
AMDZ1

40 together we advance_

Exercise 2: LDS Occupancy Limiter — Relevant Omniperf Output

omniperf analyze -p workloads/problem/MI200 -p workloads/solution/MI200 --dispatch 1 --block 2.1.15 6.2.7

0. Top Stats
0.1 Top Kernels
Kernel_Name Count | Count Abs Diff Sum(ns) | Sum(ns) Mean(ns) | Mean(ns) Median(ns) | Median(ns) Pct | Pct
0 | yax(doublex, doublex, doublex, int, int, 1.00 | 1.0 (0.0%) 0.00 | 166543303.00 | 38718894.0 (-76.75%) 166543303.00 | 38718894.0 (-76.75%) 166543303.00 | 38718894.0 (-76.75%) 100.00 | 100.0 (0.0%)
doublex) [clone .kd]

0.2 Dispatch List

Dispatch_ID | Kernel_Name GPU_ID 4 4X Speed u p

0 1 | yax(doublex, doublex, doublex, int, int, doublex) [clone .kd] 4

2. System Speed-of-Light
2.1 Speed-of-Light

Metric_ID Metric Avag | Ava Abs Diff | Unit Peak | Peak Pct of Peak | Pct of Peak

~149 ()
2.1.15 Wavefront Occupancy | 98.45 | 476.47 (383.96%) 10.74 | Wavefronts | 3520.00 | 3520.0 (0.0%) 2.80 | 13.54 (383.98%) + 14/0 Occupancy Overa”

6. Workgroup Manager (SPI)
6.2 Workgroup Manager - Resource Allocation

e Avg | Avg Ao B || [|| B Max | Max it Sharp decrease in SPI stat

6.2.7 Insufficient CU LDS | 69.53 | 0.0 (-99.99%) -69.53 | 69.53 | 0.0 (-99.99%) | 69.53 | 0.0 (-99.99%) | Pct

AMDZ1

41 together we advance_

Exercise 2: Use SPI Stats to Determine if LDS Limits Occupancy

Occupancy limiters can negatively impact performance
Workgroup manager (SPI) stats in Omniperf indicate whether a kernel resource limits occupancy

You can get the SPI stat for LDS for a single kernel with:
omniperf analyze -p workloads/problem/MI200 --dispatch 1 --block 2.1.15 6.2.7

Note:

In current Omniperf release 2.0.1, the SPI “insufficient resource” stats are a percentage of cycles count:
If two fields are nonzero, the larger number indicates that resource is limiting occupancy more

In a coming release, these “insufficient resource” fields are changing to percentages:
Large numbers will no longer be expected, but the other points will still hold

AMDZ1

42 together we advance_

Exercise 3: Diagnosing a Register Occupancy Limiter

Seemingly innocuous function calls inside kernels can lead to unexpected performance characteristics
In this case an assert on line 15 causes occupancy to be limited by register usage
The solution simply removes the assert

The types of registers on AMD GPUs are:
VGPRs (Vector General Purpose Registers): registers that can hold distinct values for each thread in the wavefront
SGPRs (Scalar General Purpose Registers): uniform across a wavefront. If possible, using these is preferable

AGPRs (Accumulation vector General Purpose Registers): special-purpose registers for MFMA (Matrix Fused
Multiply-Add) operations, or low-cost register spills

Using too many of one of these register types can impact occupancy and negatively impact performance

We use the same profile commands to get the profiling data:
omniperf profile -n problem --no-roof -- ./problem.exe

omniperf profile -n solution --no-roof -- ./solution.exe
AMDZ1

43 together we advance_

Exercise 3: Register Occupancy Limiter — Relevant Omniperf Output

omniperf analyze -p workloads/problem/MI200 -p workloads/solution/MI200 --dispatch 1

0. Top Stats
0.1 Top Kernels

--block 2.1.15 6.2.5 7.1.5 7.1.6 7.1.7

Kernel_Name

Count Count

Abs Diff |

SILIGE)] | Sum(ns)

| Mean(ns)

Mean(ns) Median(ns) | Median(ns) Pct | Pct

0 | yax(doublex, doublex, doublex, int, int,
doublex) [clone .kd]

1.00

1.0 (0.0%)

0.00 l 79412646.00 ‘ 69695296.0 (-12.24%) ‘ 79412646.00

69695296.0 (-12.24%) 79412646.00 | 69695296.0 (-12.24%) | 100.00 | 100.0 (0.0%)

0.2 Dispatch List

Minor speedup

Small increase in

OCCupancy

Large decrease

in SP| stat

Dispatch_ID | Kernel_Name GPU_ID
0 1 | yax(doublex, doublex, doublex, int, int, doublex) [clone .kd] 4
2. System Speed-of-Light
2.1 Speed-of-Light
Metric_ID Metric Ava | Avg Abs Diff | Unit Peak | Peak Pct of Peak | Pct of Peak
2.1.15 Wavefront Occupancy | 410.58 | 416.09 (1.34%) 0.16 | Wavefronts | 3520.00 | 3520.0 (0.0%) 11.66 | 11.82 (1.37%)
6. Workgroup Manager (SPI)
6.2 Workgroup Manager — Resource Allocation
Metric_ID Metric Avg | Avg Abs Diff Min | Min Max [Max Unit
6.2.5 Insufficient SIMD VGPRs 0.04 | 0.0 (-94.08%) -0.04 0.04 | 0.0 (-94.08%) 0.04 | 0.0 (-94.08%) = Pct
7. Wavefront
7.1 Wavefront Launch Stats
Metric_ID Metric Avg | Avg Abs Diff Min | Min Max | Max ' Unit
7.1.5 VGPRs 92.00 | 32.0 (-65.22%) -60.00 92.00 | 32.0 (-65.22%) 92.00 | 32.0 (-65.22%) | Registers
7.1.6 AGPRs 132.00 | 0.0 (-100.0%) -132.00 132.00 | 0.0 (-100.0%) 132.00 | 0.0 (-100.0%) Registers
7ol SGPRs 64.00 | 112.0 (75.0%) 48.00 64.00 | 112.0 (75.0%) 64.00 | 112.0 (75.0%) Registers
44

Able to use:
Fewer VGPRs,
No AGPRS,
more SGPRs

AMDZ1

together we advance_

Exercise 3: Register Occupancy Limiter - Takeaways

Seemingly innocuous function calls inside kernels can lead to unexpected performance characteristics
Asserts, and even excessive use of math functions in kernels can degrade performance

In this case the occupancy limit was very minor, despite a large number in the SPI stat

AGPR usage in the absence of MFMA (Matrix Fused Multiply Add) instructions can indicate degraded

performance.
Spilling registers to AGPRs, due to running out of VGPRs

To determine if any SPI “insufficient resource” stats are nonzero, you can do:
omniperf analyze -p workloads/problem/MI200 --dispatch 1 --block 6.2

Note: This will report more than just all “insufficient resource” fields

AMDZ1

45 together we advance_

46

Exercise 4: Data Access Patterns are Important to Performance

The way in which threads access memory has a big impact on performance

“Striding” in global memory has adverse effects on kernel performance, especially on GPUs.
“Strided data access patterns” lead to poor utilization of cache memory systems

These access patterns can be difficult to spot in the code
They are valid methods of indexing data

Using Omniperf can quickly show if a kernel's data access is adversarial to the caches

AMDZ1

together we advance_

Exercise 4: What is a “Strided Data Access Pattern”?
Thread O Thread 1 Thread 63

Data that each thread accesses at each step requires striding through

Matrix A Memory, which leads to sub-optimal memory system usage.

Threads

AMDZ1

47 together we advance_

Exercise 4: Strided Data Access Patterns <& <

Increasing the locality of data accesses of nearby
threads allows for more efficient memory usage

/Note: This is the same computation as before, only
data layout has changed.

Threads

AMDZ1

48 together we advance_

Exercise 4: Using Omniperf to Diagnose a Strided Data Access Pattern

This exercise’s setup makes it very easy to change the data access pattern
Generally, these optimizations can have nontrivial development overhead
Re-conceptualizing the data structure can be difficult

All the solution does is re-work the indexing scheme to better use caches
No required change to underlying data, because all the values in y, A, and x are set to 1

To get started run:
omniperf profile -n problem --no-roof -- ./problem.exe
omniperf profile -n solution --no-roof -- ./solution.exe

AMDZ1

49 together we advance_

Exercise 4: Strided Data Access Pattern — Relevant Omniperf Output

omniperf analyze -p workloads/problem/MI200 -p workloads/solution/MI200 --dispatch 1 --block 16.1 17.1

0. Top Stat
KernelName Count | Count Sum(ns) | Sum(ns) | Mean(ns) | Mean(ns) Median(ns) | Median(ns) Pct | Pct
|
@ | yax(double*, double*, double*, int, int, 1.00 | 1.0 (0.0%) | 69875592.00 | 12469690.5 (-82.15%) || 69875592.00 | 12469690.5 (-82.15%) 69875592.00 | 12469690.5 (-82.15%) | 100.00 | 100.0 (0.0%)
double*)

5.6x speedup

16. Vector L1 Data Cache
16.1 Speed-of-Light

Index Metric Value Value Unit
16.1.0 Buffer Coalescing 25.00 | 25.0 (0.0%) Pct of peak
16.1.1 Cache Util 87.80 | 98.08 (11.7%) Pct of peak
16.1.2 Cache BW 8.69 | 12.18 (40.19%) | Pct of peak
| 16.1.3 | Cache Hit | .00 | 49.98 (inf%) | Pct of peak | + ~50% in L1 hit
__ The solution better uses the L1, but our
e Light L2 hit rate has degraded, which points
Index | Metric Value | value nit L2 Cache Hit to a deficiency in our algorithm
17.1.0 L2 Util 98.74 98.39 (-90.36%) Pct decreases Sharp|y,
17.1.1 Cache Hit 93.45 0.52 (-99.44%) Pct

17.1.2 | L2-EA Rd BW | 125.69 | 688.98 (448.16%) | Gb/s Read BW from HBM
17.1.3 | L2-EA Wr BW 0.00 | 0.0 (inf%) Gb/s INnCreases by ~5X

AMDZ1

50 together we advance_

Exercise 4: Omniperf Speed-of-Light Cache Access Statistics

This Omniperf command will show high-level details about L1 and L2 cache accesses:
omniperf analyze -p workloads/problem/MI200 --dispatch 1 --block 16.1 17.1

Ensuring better data locality will generally provide better performance
In this case, we start hitting in the L1 cache, rather than having to go out to L2 for everything

Note: In a real code, optimizations of this type likely have much more development overhead
Need to change how the data structure is indexed everywhere

AMDZ1

51 together we advance_

52

Exercise 5: Algorithmic Optimizations

These types of optimizations are the most difficult to execute
Generally, it is difficult to determine if the runtime of one algorithm will be faster than another

We start with the solution from last exercise as our problem
Speed-of-light cache statistics showed that we had ~0% hit rate in the L2, could it be better?

Our initial algorithm is naive in terms of parallelization:
Each thread computes the sum of a row

Exposing more parallelism is possible and should get us more performance in this case

AMDZ1

together we advance_

Exercise 5: Algorithmic Optimizations

Matrix A

In our current algorithm, each thread
computes the sum of a single row

Threads

AMDZ1

53 together we advance_

Exercise 5: Algorithmic Optimizations

Matrix A

T
2,
5 . In a more efficient implementation, wavefronts
S M have multiple threads sum up the rows in parallel,
§ T using shared memory to reduce partial sums

PP

P,

O]

- @@0OOO]

O]

Note: The original data layout allows the
wavefronts to avoid striding memory

AMDZ1

54 together we advance_

Exercise 5: Using Omniperf to Evaluate an Algorithmic Optimization

The strided data access pattern issue is everywhere
This solution gets about 2x faster when the data layout is switched to optimize locality

Though the solution shows a 29x speedup from the problem, cache speed-of-light stats aren’t convincing
The rooflines for these problems do not tell the full performance story either

Running the solution shows it is much faster, but does it use the caches more efficiently?

To get started, run:
omniperf profile -n problem --no-roof -- ./problem.exe
omniperf profile -n solution --no-roof -- ./solution.exe

AMDZ1

55 together we advance_

56

Exercise 5: Sometimes the Full Story is in the Details

omniperf analyze -p workloads/problem/MI200 -p workloads/solution/MI200 --dispatch 1

--block 16.3 17.2 17.3

0. Top Stat
KernelName Count | Count Sum(ns) | Sum(ns) Mean(ns) | Mean(ns) Median(ns) | Median(ns) Pct | Pct
@ | yax(double*, double*, double*, int, int, 1.00 | 1.0 (0.0%) |/ 12443928.00 | 408316.0 (-96.72%) | 12443928.00 | 408316.0 (-96.72%) 12443928.00 | 408316.0 (-96.72%) | 100.00 | 100.0 (0.0%)
double*) | | | |

16. Vector L1 Data Cache
16.3 L1D Cache Accesses

- ~32X

- ~32X

~29x faster

|| + ~40%

Index Metric Avg | Avg Min | Min Max | Max Unit
16.3.0 Total Req 524368.00 | 16448.0 (-96.86%) 524368.00 | 16448.0 (-96.86%) 524368.00 | 16448.0 (-96.86%) | Req per wave
16.3.5 Cache Accesses 131140.00 | 4097.0 (-96.88%) 131140.00 | 4097.0 (-96.88%) 131140.00 | 4097.0 (-96.88%) Req per wave
16.3.6 | Cache Hits 65538.00 | 2864.8 (-95.63%) 65538.00 | 2864.0 (-95.63%) 65538.00 | 2864.8 (-95.63%) Req per wave
| 16.3.7 I Cache Hit Rate 49.98 i 69.9 (39.87%) i 49.98 i 69.9 (39.87%) i 49.98 i 69.9 (39.87%) i Pct |
T T T T T T T T 1
17. L2 Cache
17.2 L2 - Fabric Transactions
Index Metric Avg Avg Min Min Max Max Unit
17.2.0 Read BW 4194916.56 65688.69 (-98.43%) 4194916.56 65688.69 (-98.43%) 4194916.56 65688.69 (-98.43%) Bytes per wave
17.3 L2 Cache Accesses
Index Metric Avg | Avg Min | Min Max | Max Unit
17.3.0 Req 32945.33 | 617.41 (-98.13%) | 32945.33 | 617.41 (-98.13%) | 32945.33 | 617.41 (-98.13%) | Req per wave _ ~53X
17.3.6 | Hits 171.28 | 104.03 (-39.27%) 171.28 | 104.03 (-39.27%) 171.28 | 104.03 (-39.27%) | Hits per wave
17.3.7 Misses 32774.06 | 513.38 (-98.43%) | 32774.06 | 513.38 (-98.43%) | 32774.06 | 513.38 (-98.43%) | Misses per wave | _ ..6311)(
17.3.8 Cache Hit 0.52 16.85 (3140.15%) 0.52 16.85 (3140.15%) 0.52 16.85 (3140.15%) Pct

- ~64x

Cache hit rates alone do not
give a convincing reason for
our performance increase

Large relative gain, + ~16% overall

AMDZ1

together we advance_

Exercise 5: It Can Be Hard to Compare Rooflines Between Algorithms

omniperf profile -n problem_roof_only --roof-only --kernel-names -- ./problem.exe

omniperf profile -n solution_roof_only --roof-only --kernel-names -- ./solution.exe

Problem FP32 Roofline Solution FP32 Roofline

41510 GFLOP/s —— HBM-FP32 41564 GFLOP/s ——— HBM-FP32

- Lo / —_— L2
21085 GFLOP/s L2-FP32 / 21101 GFLOP/s L2-FP32
L1-FP32 L1-FP32

LDS-FP32 LDS-FP32
Peak VALU-FP32 Peak VALU-FP32

Peak MFMA-FP32 Peak MFMA-FP32
ai_I1 ai_Il1
°* ail2 * ail2

/ ® ai_hbm ai_hbm

26028/ 6o / 2603065 Looking at just the rooflines,

9542 GB/S/) 9552/GB/s it’s difficult to tell which

5637 Gfé sow/eaé approach is more
performant

%)
[}
0
£
o
Q
3
[T
e
(]
v]
c
©
S
_
O
«
_
)
o

Performance (GFLOP/sec)

/
¥388 GB/s ¥388 GB/s

0.01 0.1 1 10 100 0.01 0.1 1 10 100

Arithmetic Intensity (FLOPs/Byte) Arithmetic Intensity (FLOPs/Byte)

problem is closer to being HBM bandwidth bound: It needs to
request much more data from HBM than the optimized version AMDZ1

together we advance_

Exercise 5: Omniperf Detailed Cache Statistics - Takeaways

To get detailed cache statistics (including data movement) for kernel with dispatch ID 1:
omniperf analyze -p workloads/problem/mi200 --dispatch 1 --block 16.2 16.3 17.2 17.3

Note: The slide omitted some Omniperf output from this metric filtering

Algorithmic optimizations can be powerful, but are usually time-intensive to design and implement

It can be difficult to understand the performance differences between algorithms
Rooflines can be misleading
Assuming correctness is verified, timings don’t lie
Detailed profiling data can help shed light on the why of performance differences

AMDZ1

58 together we advance_

59

Summary

Omniperf is a tool that collects many counters automatically

It can create roofline analysis to understand how efficient are your kernels
It displays a lot of metrics regarding your kernels, however, it is required to know more about your kernel

It does not have learning curve to start running it, but requies knowledge for the analysis
It supports Grafana, standalone GUI, and CLI

Includes several features such as:
System Speed-of-Light Panel
Memory Chart Analysis Panel
Vector L1D Cache Panel
Shader Processing Input (SPI) Panel
AMDZ1

together we advance_

Questions?

ssh <you user>@Ilumi.csc.fi

https://hackmd.io/@sfantao/lumi-training-oslo2024-basic-examples

https://hackmd.io/@sfantao/lumi-training-oslo2024-advanced-omniperf1i
https://hackmd.io/@sfantao/lumi-training-oslo2024-advanced-omniperf2

https://hackmd.io/@sfantao/lumi-training-oslo2024-basic-examples
https://hackmd.io/@sfantao/lumi-training-oslo2024-advanced-omniperf1
https://hackmd.io/@sfantao/lumi-training-oslo2024-advanced-omniperf2

61

DISCLAIMERS AND ATTRIBUTIONS

The information contained herein is for informational purposes only and is subject to change without notice. While every precaution has been taken
in the preparation of this document, it may contain technical inaccuracies, omissions and typographical errors, and AMD is under no obligation to
update or otherwise correct this information. Advanced Micro Devices, Inc. makes no representations or warranties with respect to the accuracy or
completeness of the contents of this document, and assumes no liability of any kind, including the implied warranties of noninfringement,
merchantability or fitness for particular purposes, with respect to the operation or use of AMD hardware, software or other products described
herein. No license, including implied or arising by estoppel, to any intellectual property rights is granted by this document. Terms and limitations
applicable to the purchase or use of AMD’s products are as set forth in a signed agreement between the parties or in AMD's Standard Terms and
Conditions of Sale. GD-18

THIS INFORMATION IS PROVIDED ‘AS IS.” AMD MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE
CONTENTS HEREOF AND ASSUMES NO RESPONSIBILITY FOR ANY INACCURACIES, ERRORS, OR OMISSIONS THAT MAY

APPEAR IN THIS INFORMATION. AMD SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY, OR FITNESS FOR ANY PARTICULAR PURPOSE. IN NO EVENT WILL AMD BE LIABLE TO ANY PERSON FOR

ANY RELIANCE, DIRECT, INDIRECT, SPECIAL, OR OTHER CONSEQUENTIAL DAMAGES ARISING FROM THE USE OF ANY
INFORMATION CONTAINED HEREIN, EVEN IF AMD IS EXPRESSLY ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

© 2023 Advanced Micro Devices, Inc. All rights reserved.

AMD, the AMD Arrow logo, Radeon™ Instinct™, EPYC, Infinity Fabric, ROCm™, and combinations thereof are trademarks of Advanced
Micro Devices, Inc. Other product names used in this publication are for identification purposes only and may be trademarks of their

respective companies.

AMDZ1

together we advance_

