Profiler Tools Overview

Gina Sitaraman, Suyash Tandon, Justin Chang, Julio Maia, Noel
Chalmers, Paul T. Bauman, Nicholas Curtis, Nicholas Malaya,

Alessandro Fanfarillo, Jose Noudohouenou, Chip Freitag, Damon
McDougall, Noah Wolfe, Jakub Kurzak, Samuel Antao, George

Markomanolis, Bob Robey, Essam Morsi

LUMI Performance Tunning Workshop
Jun 11-12th, 2024 AMDA

together we advance_

Background — AMD Profilers

ROC-profiler (rocprof)

Hardware
Counters

Traces and
timelines

Raw collection of GPU counters and traces

Counter collection with Counter results printed
user input files to a CSV

Trace co!lection support for

CPUcopy HIPAPI HSA API

Traces visualized with Perfetto

GPU Kernels

Calls TotalDura AverageN:Percentagd
3.22E+10 3.25E+08 44.14872

2.42E+10 73394557 33.225
7.76E+09 89232696 10.64953

5.41E+09 6.01E+08 7.415198

1.32E+09 47006288 1.805515

1.05E+09 61534688 1.435014

1 8.11E+08 19791876 1.113161

1856 58082083 31294 0.079676

2 46380834 23190417 0.063625

JREN hipMemset 2 18847246 9423623 0.025854
4P} hipStreamDestroy 215183338 7591669 0.020828
[EY hipFree 38 8269713 217624 0.011344
{ZY hipEventRecord 330 2520035 7636 0.003457
B hipMalloc 30 1484804 49493 0.002037
_hipPopCallConfigura 1856 229159 123 0.000314
__hipPushCallConfigur. 1856 224177 120 0.000308

REY hipGetlastError 1494 100458 67 0.000138

El hipMemcpyAsync
El hipEventSynchronize
Pl hipMemsetAsync

Bl hipHostMalloc

3l hipDevicesynchronize
[l hipHostFree

Bl hipMemcpy

Bl hipLaunchKernel

i hipStreamCreate

RE] hipEventCreate 330 76675 232 0.000105
Ll hipEventDestroy 64671 195 8.87E-05
PAN hipGetDevicePropertie: 51808 1102 7.11E-05
23 hipGetDevice 6: 11611 181 1.59E-05
PER hipSetDevice 401 401 5.50E-07
PXE hipGetDeviceCount 220 220 3.02E-07

Omnitrace

Trace
collection

Supports

A Ieshrkokkosp.nst 2072429

OpenMP® MPI

Comprehensive trace co'lection

CPU GPU

CPU copy HIP API HSA APl GPU Kernels

Kokkos p-threads multi-GPU

Traces visualized with Perfetto

1l

.

NI

LagrangeNodal

o 'L, e | \E\,”\ | Al
I!*."[‘"ﬁ | H“ ‘H‘H \w ‘\‘llm “\H“\ n \FIH‘ |

‘\HI

I | ‘ |
il il | i

I 1 DA

L

Connected Sice ID

Instr Buff

Wave 0 Instr buff

Wave N-1 Instr butf

Wave Occupancy
29 per-GCD

Wave Life

3405 cycles

Omniperf

Performance
Analysis

Supports

Instr Dispatch ~ Exec

LA A 2 & 2 2 & 4

» | Active CUs
1101110

Automated collection of hardware counters

Analysis Visualization
Spged of Memory Rooflines Kern(.el
Light chart comparison

With Grafana or standalone GU!

Memory Chart (Normalization: “per Wave™)

10s
L2 Cache
Reg: 0 XGMI/
PCle
Re &4 r
e s Fabric o
e 0 w o Latency w s HBM
- -
e O
2 3
GMI

AMDZ1

together we advance_

[Public]

Background — AMD Profilers

l——] |

[Public]

Background — AMD Profilers

_ —1 [
e —

N @ N

-{ Omnitrace

——

Omniperf J

—_——

AMDZ1

4 together we advance_

What is ROC-Profiler?

ROC-profiler (also referred to as) is the command line front-end for AMD's GPU profiling libraries
Repo: https://github.com/ROCm-Developer-Tools/rocprofiler

rocprof contains the central components allowing application traces and counter collection
Under constant development

Distributed with ROCm

The output of rocprof can be visualized in the Chrome browser with Perfetto (https://ui.perfetto.dev/)

There are ROCProfiler V1 and V2 (roctracer and rocprofiler into single library, same API)

A new rocprofiler-sdk is going to be released soon, the repository is public:
https://github.com/ROCm/rocprofiler-sdk development is still going on, no version is released yet

AMDZ1

together we advance_

https://github.com/ROCm-Developer-Tools/rocprofiler
https://ui.perfetto.dev/
https://github.com/ROCm/rocprofiler-sdk

rocprof: Getting Started + Useful Flags

To get help:

Useful housekeeping flags:
--timestamp <on|off> - turn on/off gpu kernel timestamps
--basenames <on|off> - turn on/off truncating gpu kernel names (i.e., removing template parameters and argument types)
-0 <output csv file> - Direct counter information to a particular file name
-d <data directory> - Send profiling data to a particular directory
-t <temporary directory> - Change the directory where data files typically created in /tmp are placed. This allows you to
save these temporary files.
Flags directing rocprofiler activity:
-i input<.txt]|.xml> - specify an input file (note the output files will now be named input.*)
--hsa-trace - to trace GPU Kernels, host HSA events (more later) and HIP memory copies.
--hip-trace - to trace HIP API calls
--roctx-trace - to trace roctx markers
--kfd-trace - to trace GPU driver calls

Advanced usage

-m <metric file> - Allows the user to define and collect custom metrics. See rocprofiler/test/tool/*.xml on GitHub for
examples.

AMDZ1

together we advance_

https://github.com/ROCm-Developer-Tools/rocprofiler/tree/amd-master/test/tool

rocprof: Kernel Information

rocprof can collect kernel(s) execution stats

This will output two csv files:

Content of results.stats.csv to see the list of GPU kernels with their durations and percentage of total GPU time:

"Name","Calls","TotalDurationNs", "AverageNs", "Percentage"
"JacobiIterationKernel",b 1000,556699359,556699,43.291753895270446
"NormKernell",1001,430797387,430367,33.500980655394606
"LocalLaplacianKernel",b 1000,280014065,280014,21.775307970480817

results.csv: information per each call of the kernel
results.stats.csv: statistics grouped by each kernel

"HaloLaplacianKernel",b1000,14635177,14635,1.1381052818810995

"NormKernel2",1001,3770718,3766,0.2932300765671734

" amd rocclr fillBufferAligned.kd",1,8000,8000,0.0006221204058583505

In a spreadsheet viewer, it is easier to read:

1
>
3
4
5
6
7

A
Name
JacobilterationKernel

NormKernel2
amd rocclr fillBufferAliagned

B

1000
1001
1000
1000
1001

1

C

556699359
430797387
280014065
14635177
3770718
8000

D

556699
430367
280014
14635
3766
8000

Percentage
43.2917538952704
33.5009806553946
21.7753079704808

1.1381052818811
0.293230076567173
0.000622120405858

AMDZ1

together we advance_

rocprof + Perfetto: Collecting and Visualizing Application Traces

rocprof can collect traces

This will output a .json file that can be visualized using the Chrome browser and Perfetto (https://ui.perfetto.dev/)

(T Perfetto

Navigation

[Open trace file
D Open with legacy Ul

@) Record new trace

Current Trace

results.json (152 MB)
== Show timeline
¥ Download
<¢» Query (SQL)

Metrics

@
o Info and stats

Convert trace

| o e I wwmmﬂ !

A
A =

A CPUHIPAPI 2

I M II\IMI I

—

A GPU28

Thead NN O

Thread 1

A COPY1

AMDZ1

together we advance_

https://ui.perfetto.dev/

[Public]

Omnitrace: Application Profiling, Tracing, and Analysis

9 Refer to current documentation for recent updates nggﬂamm_

https://github.com/AMDResearch/omnitrace
https://amdresearch.github.io/omnitrace/features.html

[Public]

Omnitrace instrumentation Modes

$ omnitrace [omnitrace-options] -- <CMD> <ARGS>

$ srun [options] omnitrace [omnitrace-options] -- <CMD> <ARGS>

For problems, create an issue here: https://github.com/AMDResearch/omnitrace/issues
Documentation: https://amdresearch.github.io/omnitrace/

10

AMDZ1

together we advance_

https://github.com/AMDResearch/omnitrace/issues
https://amdresearch.github.io/omnitrace/

[Public]

Omniperf: Automated Collection of Hardware Counters and Analysis

. A] — s T I e
b S S 00 = vm % om ow e o S L
s i + SRR | e
- RE o iiii | e
© torpatorROCmsark uiiontopof OCroflr | .
) |
Omniperf GUI Analyzer I
server | T T TTTTTTTT AT T TTTTT T T T T ———— "
T T
e —— Standalone
- I
o —l
C sbesemortomanceanass g Wordoad || 1 Analyzer
il !
___ |
Cws wn o came s DB Importer | .
|

e et o aeies o e @ w

client

b R S —
|

y Y v Y
[P o s commrtie [= LR J [= L J

Refer to current documentation for recent updates

AMDZ1

1 together we advance_

https://amdresearch.github.io/omnitrace/features.html

12

rocprof: Multiple MPI Ranks

rocprof can collect counters and traces for multiple MPI ranks

Say you want to profile an application usually called like this:
mpiexec -np <n> ./Jacobi hip -g <x> <y>

Invoke the profiler by executing:
mpiexec -np <n> rocprof <rocprof_options> ./Jacobi hip -g <x> <y>

or
srun --ntasks=n rocprof <rocprof options> ./Jacobi hip -g <x> <y>

By directing output files from each rank to different directories, we can collect traces for each rank

separately
Use a helper script for this, and run your program as shown below:
mpiexec -np <n> ./Jacobi_hip -g <x> <y>

Multi-node profiling currently isn’t supported

AMDZ1

together we advance_

13

Profiling Multiple MPI Ranks

$cat rocprof_wrapper.sh

#!/bin/bash
set -euo pipefail
depends on ROCM _PATH being set outside; input arguments are the output directory & the name
outdir="¢1"
name="$2"
if [[-n ${OMPI_COMM_WORLD_RANK+z}]]; then
mpich
export MPI_RANK=${OMPI_COMM_WORLD RANK}
elif [[-n ${MV2_COMM_WORLD_RANK+z}]]; then
ompi
export MPI_RANK=${MV2_COMM_WORLD_RANK}
elif [[-n ${SLURM_PROCID+z}]]; then
export MPI_RANK=${SLURM_PROCID}

else

echo "Unknown MPI layer detected! Must use OpenMPI, MVAPICH, or SLURM"

exit 1
fi
rocprof="${ROCM_PATH}/bin/rocprof"

Output directory per rank:

pid="$$" e
outdir="¢{outdir}/rank_${pid}_${MPI_RANK}"

outfile="${name} ${pid}_ ${MPI_RANK}.csv"
${rocprof} -d ${outdir} --hsa-trace -o ${outdir}/${outfile} "${@:3}" — Applicationandits arguments:

AMDZ1

together we advance_

14

Profiling Overhead

As with every profiling tool, there is an overhead

The percentage of the overhead depends on the profiling options used
For example, tracing is faster than hardware counter collection

When collecting many counters, the collection may require multiple passes

With rocTX markers/regions, tracing can take longer and the output may be large
Sometimes too large to visualize

The more data collected, the more the overhead of profiling
Depends on the application and options used

AMDZ1

together we advance_

15

Disclaimer

The information presented in this document is for informational purposes only and may contain technical inaccuracies, omissions, and typographical errors. The
information contained herein is subject to change and may be rendered inaccurate for many reasons, including but not limited to product and roadmap changes,
component and motherboard version changes, new model and/or product releases, product differences between differing manufacturers, software changes,
BIOS flashes, firmware upgrades, or the like. Any computer system has risks of security vulnerabilities that cannot be completely prevented or mitigated. AMD
assumes no obligation to update or otherwise correct or revise this information. However, AMD reserves the right to revise this information and to make changes
from time to time to the content hereof without obligation of AMD to notify any person of such revisions or changes.

THIS INFORMATION IS PROVIDED ‘AS IS.” AMD MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE CONTENTS HEREOF
AND ASSUMES NO RESPONSIBILITY FOR ANY INACCURACIES, ERRORS, OR OMISSIONS THAT MAY APPEAR IN THIS INFORMATION. AMD
SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR ANY PARTICULAR
PURPOSE. IN NO EVENT WILL AMD BE LIABLE TO ANY PERSON FOR ANY RELIANCE, DIRECT, INDIRECT, SPECIAL, OR OTHER CONSEQUENTIAL

DAMAGES ARISING FROM THE USE OF ANY INFORMATION CONTAINED HEREIN, EVEN IF AMD IS EXPRESSLY ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.

Third-party content is licensed to you directly by the third party that owns the content and is not licensed to you by AMD. ALL LINKED THIRD-PARTY
CONTENT IS PROVIDED “AS I1S” WITHOUT A WARRANTY OF ANY KIND. USE OF SUCH THIRD-PARTY CONTENT IS DONE AT YOUR

SOLE DISCRETION AND UNDER NO CIRCUMSTANCES WILL AMD BE LIABLE TO YOU FOR ANY THIRD-PARTY CONTENT. YOU ASSUME ALL RISK
AND ARE SOLELY RESPONSIBLE FOR ANY DAMAGES THAT MAY ARISE FROM YOUR USE OF THIRD-PARTY CONTENT.

© 2023 Advanced Micro Devices, Inc. All rights reserved. AMD, the AMD Arrow logo, ROCm, and combinations thereof are trademarks of Advanced Micro
Devices, Inc. in the United States and/or other jurisdictions. Other names are for informational purposes only and may be trademarks of their respective owners.

Linux is the registered trademark of Linus Torvalds in the U.S. and other countries.

The OpenMP name and the OpenMP logo are registered trademarks of the OpenMP Architecture Review Board
Python

Windows is a registered trademark of Microsoft Corporation in the US and/or other countries.

AMDZ1

together we advance_

