
Omnitrace By Example

Presenter: Samuel Antão

Bob Robey, Gina Sitaraman, Ian Bogle, Giacomo 
Capodaglio, Asitav Mishra

LUMI Performance Tunning Workshop
11-12 June 2024

June 12th, 2024 LUMI Performance Tunning Workshop



2 |

[Public]

Acknowledgements

• Jonathan Madsen
• David Galiffi
• Nicholas Curtis
• and the rest of the AMD DCGPU team

June 12th, 2024 LUMI Performance Tunning Workshop



3 |

[Public]

Agenda • Omnitrace for Application Profiling and Tracing

• A Simple Ghost Exchange MPI Example Suite

• Orig: CPU implementation

• Ver1: OpenMP® offload port with Managed Memory

• Ver2: Add roctx ranges

• Ver3: Allocate MPI buffers on device (Under construction)

• Ver4: Allocate all buffers once

• Ver5: Convert from 2D to 1D indexing

• Ver6: Add explicit data map directives

June 12th, 2024 LUMI Performance Tunning Workshop



4 |

[Public]

Omnitrace for Application Profiling and Tracing
• Get high level view of entire application run
• Holistic view of CPU, GPU, and system activity
• Sampling and binary instrumentation modes
• Visualize in Perfetto

June 12th, 2024 LUMI Performance Tunning Workshop

https://ui.perfetto.dev/


5 |

[Public]

MPI Ghost Exchange Example Suite

• Many applications need to exchange ghost cells with adjacent processes
• This example suite, developed by Bob Robey, implements the exchange for a regular cartesian grid
• We start with the examples in Chapter 8 of Parallel and High Performance Computing, Manning Publications

 git clone https://EssentialsOfParallelComputing/Chapter8

 cd GhostExchange
• These examples include various versions ranging from simple methods to those using MPI Datatypes and MPI Cartesian 

topology capabilities
• For GPU-Aware MPI, the versions using MPI Datatypes have not been optimized in most MPI implementations
• We will use the simpler methods. We will pack the column data into to a buffer and send the buffer. We can send row 

data directly. If corner data is needed, synchronization is required
• From CPU code, we port to GPU and optimize incrementally using Omnitrace to guide the process
• Uses OpenMP target offload mechanism for offloading compute to AMD GPUs
• Repo: https://github.com/amd/HPCTrainingExamples/tree/main/MPI-examples/GhostExchange/GhostExchange_ArrayAssign

June 12th, 2024 LUMI Performance Tunning Workshop

https://essentialsofparallelcomputing/Chapter8
https://github.com/amd/HPCTrainingExamples/tree/main/MPI-examples/GhostExchange/GhostExchange_ArrayAssign


6 |

[Public]

MPI Ghost Exchange Example – How does it work?
• A rectangular domain is partitioned into a 2D computational grid, distributed among MPI processes
• An initial solution in specified on a cell-wise basis, then advanced with a 5-point stencil averaging operator
• Halo cells are located along the boundary, and around MPI domains (ghost cells) when doing parallel runs
• Boundary conditions are of outflow type, enforced prior to ghost halo exchanges
• Example of 2-step halo exchange with 3x3 grid of processes, each owning a 4x4 subset of the mesh:

June 12th, 2024 LUMI Performance Tunning Workshop



7 |

[Public]

MPI Ghost Exchange Examples – How to run it?
• Parameters:
   -x nprocx  -y nprocy  -i imax -j jmax -h nhalo -t (0 or 1) -c (0 or 1) -I maxIter

 nprocx = number of processes in x dimension
 nprocy = number of processes in y dimension
 imax = number of mesh cells in x dimension
 jmax = number of mesh cells in y dimension
 nhalo = number of halo layers
 maxIter = maximum number of iterations
 -t = enable/disable sync before MPI calls to accurately time MPI overhead
 -c = include/exclude corner cell updates

• Example run on Frontier with 4 ranks:
srun –N1 –n4 –c7 ./GhostExchange -x 2  -y 2  -i 20000 -j 20000 -h 2 -t -c -I 100

June 12th, 2024 LUMI Performance Tunning Workshop



8 |

[Public]

Getting Started with Omnitrace - Configuring Omnitrace Runtime

• First, create a default configuration file
 omnitrace-avail –G ~/.omnitrace.cfg
 export OMNITRACE_CONFIG_FILE=~/.omnitrace.cfg
• Contains settings to control Omnitrace runtime behavior, modify settings as desired

OMNITRACE_PROFILE  = true
OMNITRACE_USE_ROCM_SMI  = true
OMNITRACE_USE_MPIP  = true
OMNITRACE_USE_ROCTRACER  = true
OMNITRACE_USE_ROCPROFILER  = true
OMNITRACE_USE_ROCTX  = true

Function durations

GPU system sampling

MPI tracing

GPU activity

Refer to documentation for more omnitrace-avail capabilities: https://rocm.github.io/omnitrace/runtime.html

June 12th, 2024 LUMI Performance Tunning Workshop



9 |

[Public]

Running Omnitrace on Ghost Exchange Examples
• Set up your environment on LUMI

module load CrayEnv buildtools/23.09
module load PrgEnv-cray/8.4.0 cce/16.0.1
module load craype-accel-amd-gfx90a craype-x86-trento

module use /pfs/lustrep2/projappl/project_462000125/samantao-public/mymodules
module load rocm/5.4.3 omnitrace/1.11.2-rocm-5.4.x

• Build the code
 mkdir build; cd build; cmake ..; make -j8

• Instrument the binary
omnitrace-instrument -o ./GhostExchange.inst -- ./GhostExchange

• Profile the instrumented binary
srun -N1 -n4 -c7 --gpu-bind=closest -A <proj> -t 05:00 omnitrace-run --

./GhostExchange.inst -x 2 -y 2 -i 20000 -j 20000 -h 2 -t -c -I 100

June 12th, 2024 LUMI Performance Tunning Workshop



10 |

[Public]

Understanding output from omnitrace-instrument

June 12th, 2024 LUMI Performance Tunning Workshop



11 |

[Public]

Understanding output from omnitrace-run

June 12th, 2024 LUMI Performance Tunning Workshop

Omnitrace ASCII art is proof that Omnitrace is running, shows version used 



12 |

[Public]

Visualizing Omnitrace .proto files

June 12th, 2024 LUMI Performance Tunning Workshop

Copy .proto file to local workstation or laptop, open in Perfetto: https://ui.perfetto.dev/

https://ui.perfetto.dev/


Orig
CPU implementation of Ghost Exchange

June 12th, 2024 LUMI Performance Tunning Workshop



14 |

[Public]

Orig: First look at Omnitrace profile for Rank 0

<snip>

June 12th, 2024 LUMI Performance Tunning Workshop



15 |

[Public]

Orig: First profile – zoom in

June 12th, 2024 LUMI Performance Tunning Workshop



16 |

[Public]

Orig: Keep profile short - sample one CPU core
• Update config file to sample only 1 CPU core:
 OMNITRACE_SAMPLING_CPUS  = 0
• Just rerun, no need to instrument again
 

June 12th, 2024 LUMI Performance Tunning Workshop



17 |

[Public]

Orig: Generate CPU-side wall clock times in profile

• Enable tracking of function durations in config file
 OMNITRACE_PROFILE  = true
• Omnitrace generates wall_clock files with durations of each instrumented function

• Look for durations of MPI calls here

June 12th, 2024 LUMI Performance Tunning Workshop



18 |

[Public]

Orig: Use flat profiles for finding hotspots

• To flatten the hierarchy in the wall clock profile, enable flat profile:
 OMNITRACE_FLAT_PROFILE  = true 
• Now each function appears once, all timings are consolidated for each function:

June 12th, 2024 LUMI Performance Tunning Workshop

Not much here other than MPI calls not being the bottleneck



Ver1
First GPU implementation of Ghost Exchange
OpenMP offload + Managed Memory Programming Model

June 12th, 2024 LUMI Performance Tunning Workshop



20 |

[Public]

Ver1: Code changes

• Pragma for unified memory added to each translation unit 
 #pragma omp requires unified_shared_memory
• Target offload pragma added to all compute loops
 #pragma omp target teams distribute parallel for collapse(2)
• Data still resides in host memory, but accessed from compute kernels and MPI calls
• On Frontier nodes, this means data is moved across AMD Infinity Fabric™ link between CPU and GPU

• Needs environment variable to enable OS managed page migration
 export HSA_XNACK=1

June 12th, 2024 LUMI Performance Tunning Workshop



21 |

[Public]

Ver1: Profile shows offloaded compute regions

June 12th, 2024 LUMI Performance Tunning Workshop



22 |

[Public]

Ver1: Observe GPU characteristics from rocm-smi in profile

June 12th, 2024 LUMI Performance Tunning Workshop



23 |

[Public]

Ver1: Trim profile to GPU of interest

June 12th, 2024 LUMI Performance Tunning Workshop

• Indicate which GPU to sample in config file 
 OMNITRACE_SAMPLING_GPUS  = 0

Concise trace, 
easier to analyze



24 |

[Public]

Ver1: Wall clock profile shows OMP offload kernels and HIP APIs

June 12th, 2024 LUMI Performance Tunning Workshop

Managed memory affects kernel performance – but profile does not show in what way, yet



25 |

[Public]

Ver1: Seeing HSA runtime activity

• To implement OpenMP offload capability,
• the AMD compiler uses the HSA layer
• the Cray compiler uses the HIP layer

• Set up config file to see HSA activity in profile:
 OMNITRACE_ROCTRACER_HSA_ACTIVITY = true 
 OMNITRACE_ROCTRACER_HSA_API = true

• More details about HIP and HSA runtime libraries

June 12th, 2024 LUMI Performance Tunning Workshop

https://rocm.docs.amd.com/projects/HIP/en/latest/index.html
https://rocm.docs.amd.com/projects/ROCR-Runtime/en/latest/index.html


Ver2
Manually instrument code with roctx ranges to study regions 
of code

June 12th, 2024 LUMI Performance Tunning Workshop



27 |

[Public]

Ver2: Profile shows roctx ranges

June 12th, 2024 LUMI Performance Tunning Workshop



28 |

[Public]

Ver2: Wall clock files show timings of roctx regions

June 12th, 2024 LUMI Performance Tunning Workshop



Ver4
Allocate all host buffers just once

June 12th, 2024 LUMI Performance Tunning Workshop



30 |

[Public]

Ver4: Profile shows only 1 allocation

June 12th, 2024 LUMI Performance Tunning Workshop



Ver5
Convert indexing from 2D to 1D – a step towards allocating 
buffers directly on device

June 12th, 2024 LUMI Performance Tunning Workshop



32 |

[Public]

Ver5: Changing indexing to 1D does not change performance

June 12th, 2024 LUMI Performance Tunning Workshop



Ver6
Use explicit data management directives to allocate buffers 
on device and keep them on device for entire run

June 12th, 2024 LUMI Performance Tunning Workshop



34 |

[Public]

Ver6: Adding explicit OpenMP map directives 

• Allocate buffers once on device at the beginning:
#pragma omp target enter data map(alloc: xbuf_left_send[0:bufcount], xbuf_rght_send[0:bufcount])
#pragma omp target enter data map(alloc: xbuf_rght_recv[0:bufcount], xbuf_left_recv[0:bufcount])
#pragma omp target enter data map(alloc: x[0:totcells], xnew[0:totcells])

• Release buffers at the end:
#pragma omp target exit data map(release: x, xnew)
#pragma omp target exit data map(release: xbuf_left_send, xbuf_rght_send)
#pragma omp target exit data map(release: xbuf_rght_recv, xbuf_left_recv)

• Keeping data on HBM improves performance of memory bound kernels on MI250X GPUs
• Managed memory support no longer needed:
#pragma omp requires unified_shared_memory

unset HSA_XNACK

June 12th, 2024 LUMI Performance Tunning Workshop



35 |

[Public]

Ver6: Profile shows significantly faster kernels

June 12th, 2024 LUMI Performance Tunning Workshop



36 |

[Public]

Ver6: Allocation of MPI buffers on device is our new bottleneck

June 12th, 2024 LUMI Performance Tunning Workshop



37 |

[Public]

Ver6: Wall clock shows shorter durations of kernels

June 12th, 2024 LUMI Performance Tunning Workshop



Omnitrace Tips and Status

June 12th, 2024 LUMI Performance Tunning Workshop



39 |

[Public]

Tips: Reduce generated output for profiling at scale

• Turn off all options in config file except OMNITRACE_PROFILE to reduce generated output
 
 OMNITRACE_TRACE                   = false
 OMNITRACE_PROFILE                  = true
 OMNITRACE_FLAT_PROFILE               = true
 OMNITRACE_USE_ROCTRACER               = false
 OMNITRACE_USE_ROCM_SMI               = false
 OMNITRACE_USE_MPIP                 = true
 OMNITRACE_USE_PID                  = true
 OMNITRACE_USE_ROCPROFILER              = false
 OMNITRACE_USE_ROCTX                 = false

June 12th, 2024 LUMI Performance Tunning Workshop



40 |

[Public]

Tips: If Omnitrace does nothing, check app or environment

• If Omnitrace starts, but does not generate any output files, something prevented the app from running
• To check, unload Omnitrace module, build and run app. Fix errors, then profile with Omnitrace

• If app fails only when being profiled with Omnitrace, try profiling interactively using srun instead of sbatch
• Conflict due to mismatch in loaded libraries at runtime

• If you use omnitrace-run and it complains saying "Use omnitrace-run", then try running your job 
interactively using srun instead of using sbatch
• Conflict due to mismatch in loaded libraries at runtime

June 12th, 2024 LUMI Performance Tunning Workshop



41 |

[Public]

Tips: To visualize very large proto files, load into memory first

Linux®

• curl -LO https://get.perfetto.dev/trace_processor
• chmod +x ./trace_processor

• ./trace_processor –httpd <path to trace file>
• Open up Chrome browser and go to https://ui.perfetto.dev
• When prompted, click on "Yes, use loaded trace"

Windows®

• Open up https://get.perfetto.dev/trace_processor in a browser to download the Python™ script
• py trace_processor --httpd <trace file>
• You may need to download and install Python on your windows system

• Open up Chrome browser and go to https://ui.perfetto.dev
• When prompted, click on "Yes, use loaded trace"

June 12th, 2024 LUMI Performance Tunning Workshop

https://ui.perfetto.dev/
https://get.perfetto.dev/trace_processor
https://ui.perfetto.dev/


42 |

[Public]

Research version of Omnitrace is brittle

• Viewing traces of multiple ranks together was possible using simple concatenation of proto files:
 cat perfetto-trace-0.proto perfetto-trace-1.proto > merged.proto

• Merging broken now due to change in expected data format in Perfetto

• Building Omnitrace with Dyninst from source requires GCC, may interfere with CCE
• On LUMI, omnitrace/1.11.2 is set up to work with CCE and show OpenMP offload and HIP activity

• If you load ROCm, reload Omnitrace as the right build has to be made available

• Python version in your environment matters

• Production version of Omnitrace will be more robust

June 12th, 2024 LUMI Performance Tunning Workshop



43 |

[Public]

Homework

• See HIP equivalent of Ver1 here:
https://github.com/amd/HPCTrainingExamples/tree/main/MPI-examples/GhostExchange/GhostExchange_ArrayAssign_HIP/Ver1

• Use Omnitrace to obtain traces for a 4-rank run
• Progressively port the changes in Ver2 – Ver6 in the HIP version using HIP APIs for memory copies, etc.
• Look for memory copy activity and HIP API calls in Omnitrace traces
• Submit a PR with your code or add an issue with any concerns

June 12th, 2024 LUMI Performance Tunning Workshop

https://github.com/amd/HPCTrainingExamples/tree/main/MPI-examples/GhostExchange/GhostExchange_ArrayAssign_HIP/Ver1
https://github.com/amd/HPCTrainingExamples/pulls
https://github.com/amd/HPCTrainingExamples/issues


44 |

[Public]

References 

• Omnitrace documentation website: https://rocm.github.io/omnitrace/index.html
• Previous talk describing various Omnitrace options: 15: GPU Profiling - Performance Timelines
• Ghost Exchange OpenMP offload Example suite on github
• ROCm docs: https://rocm.docs.amd.com/en/latest/
• ROCm Blog post: Introduction to profiling tools for AMD hardware

June 12th, 2024 LUMI Performance Tunning Workshop

https://rocm.github.io/omnitrace/index.html
https://fs.hlrs.de/projects/par/events/2024/GPU-AMD/
https://github.com/amd/HPCTrainingExamples/tree/main/MPI-examples/GhostExchange/GhostExchange_ArrayAssign
https://rocm.docs.amd.com/en/latest/
https://rocm.blogs.amd.com/software-tools-optimization/profilers/README.html


Questions?
ssh <you user>@lumi.csc.fi

https://hackmd.io/@sfantao/lumi-training-oslo2024-basic-examples 

https://hackmd.io/@sfantao/lumi-training-oslo2024-advanced-omnitrace 

June 12th, 2024 LUMI Performance Tunning Workshop

https://hackmd.io/@sfantao/lumi-training-oslo2024-basic-examples
https://hackmd.io/@sfantao/lumi-training-oslo2024-advanced-omnitrace


46 |

[Public]

Disclaimer

The information presented in this document is for informational purposes only and may contain technical inaccuracies, omissions, and typographical errors. The information 
contained herein is subject to change and may be rendered inaccurate for many reasons, including but not limited to product and roadmap changes, component and motherboard 
version changes, new model and/or product releases, product differences between differing manufacturers, software changes, BIOS flashes, firmware upgrades, or the like. Any 
computer system has risks of security vulnerabilities that cannot be completely prevented or mitigated.  AMD assumes no obligation to update or otherwise correct or revise this 
information. However, AMD reserves the right to revise this information and to make changes from time to time to the content hereof without obligation of AMD to notify any person 
of such revisions or changes.

THIS INFORMATION IS PROVIDED ‘AS IS.” AMD MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE CONTENTS HEREOF AND ASSUMES NO 
RESPONSIBILITY FOR ANY INACCURACIES, ERRORS, OR OMISSIONS THAT MAY APPEAR IN THIS INFORMATION. AMD SPECIFICALLY DISCLAIMS ANY IMPLIED 
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR ANY PARTICULAR PURPOSE. IN NO EVENT WILL AMD BE LIABLE TO ANY PERSON 
FOR ANY RELIANCE, DIRECT, INDIRECT, SPECIAL, OR OTHER CONSEQUENTIAL DAMAGES ARISING FROM THE USE OF ANY INFORMATION CONTAINED HEREIN, 
EVEN IF AMD IS EXPRESSLY ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Third-party content is licensed to you directly by the third party that owns the content and is not licensed to you by AMD.  ALL LINKED THIRD-PARTY CONTENT IS PROVIDED 
“AS IS” WITHOUT A WARRANTY OF ANY KIND.  USE OF SUCH THIRD-PARTY CONTENT IS DONE AT YOUR SOLE DISCRETION AND UNDER NO CIRCUMSTANCES 
WILL AMD BE LIABLE TO YOU FOR ANY THIRD-PARTY CONTENT.  YOU ASSUME ALL RISK AND ARE SOLELY RESPONSIBLE FOR ANY DAMAGES THAT MAY ARISE 
FROM YOUR USE OF THIRD-PARTY CONTENT.

© 2024 Advanced Micro Devices, Inc. All rights reserved. AMD, the AMD Arrow logo, ROCm, Infinity Fabric, and combinations thereof are trademarks of Advanced Micro Devices, 
Inc. in the United States and/or other jurisdictions. Other names are for informational purposes only and may be trademarks of their respective owners.

Windows is a registered trademark of Microsoft Corporation in the US and/or other countries.

Git and the Git logo are either registered trademarks or trademarks of Software Freedom Conservancy, Inc., corporate home of the Git Project, in the United States and/or other 
countries

PCIe® is a registered trademark of PCI-SIG Corporation.

The OpenMP name and the OpenMP logo are registered trademarks of the OpenMP Architecture Review Board

June 12th, 2024 LUMI Performance Tunning Workshop




