
Introduction to AMD ROCm™

Ecosystem

Suyash Tandon, Justin Chang, Julio Maia, Noel Chalmers, Paul T.

Bauman, Nicholas Curtis, Nicholas Malaya, Alessandro Fanfarillo,

Jose Noudohouenou, Chip Freitag, Damon McDougall, Noah

Wolfe, Jakub Kurzak, Samuel Antao, George Markomanolis

Introduction to LUMI-G hardware and programming environment

11/01/2023

2 |

[Public]

Agenda 1. Introduction to the Architecture

2. Introduction to ROCm and HIP

3. Porting Applications to HIP

4. ROCm libraries

5. Profiling

6. Debugging

Introduction to LUMI-G hardware and programming

environment - 11 January 2023

3 |

[Public]

Introduction/Expectations

• This talk is a high level of our ecosystem presentation

• We avoid deep dive topics as the audience is from various domains and levels

• We plan to give more extensive introduction and advanced training

• We hope that you can identify topics that you would like further training

• Contact the LUMI User Support Team for further training requests

Introduction to LUMI-G hardware and programming

environment - 11 January 2023

Introduction to the Architecture

Introduction to LUMI-G hardware and programming

environment - 11 January 2023

5 |

[Public]

https://www.amd.com/system/files/documents/amd-cdna2-white-paper.pdf
Introduction to LUMI-G hardware and programming

environment - 11 January 2023

6 |

[Public]

COMPUTE ENGINE

COMPUTE ENGINE

COMPUTE ENGINE

COMPUTE ENGINE

MATRIX CORES
ENHANCED FOR HPC

SPECIAL FP32 OPS FOR
DOUBLE THROUGHPUT

Introduction to LUMI-G hardware and programming

environment - 11 January 2023

7 |

[Public]

Introduction to LUMI-G hardware and programming

environment - 11 January 2023

8 |

[Public]

Introduction to LUMI-G hardware and programming

environment - 11 January 2023

9 |

[Public]

• Current support for using MFMA instructions:

• AMD libraries: rocBLAS

• Intrinsics

• Inline assembly

• Not currently supported:

• Libraries of device functions, utilizing the matrix

operations, that can be called from kernels

• Abstraction frameworks (Kokkos, Raja, OCCA)

• These would have to use one of the other

mechanisms internally

Introduction to LUMI-G hardware and programming

environment - 11 January 2023

10 |

[Public]

0

10

20

30

40

50

60

70

Base Float2
T

F
L

O
P

/s

MI250X

https://www.amd.com/en/technologies/infinity-hub/mini-hacc
Introduction to LUMI-G hardware and programming

environment - 11 January 2023

11 |

[Public]

From AMD MI100 to AMD MI250X

MI100

• One graphic compute die (GCD)

• 32GB of HBM2 memory

• 11.5 TFLOPS peak performance per GCD

• 1.2 TB/s peak memory bandwidth per GCD

• 120 CU per GPU

• The interconnection is attached on the CPU

AMD CDNA™ 2 white paper:

https://www.amd.com/system/files/documents/amd-

cdna2-white-paper.pdf

MI250X

• Two graphic compute dies (GCDs)

• 64GB of HBM2e memory per GCD (total

128GB)

• 26.5 TFLOPS peak performance per GCD

• 1.6 TB/s peak memory bandwidth per GCD

• 110 CU per GCD, totally 220 CU per GPU

• The interconnection is attached on the GPU (not

on the CPU)

• Both GCDs are interconnected with 200 GB/s

per direction

• 128 single precision FMA operations per cycle

• AMD CDNA 2 Matrix Core supports double-

precision data

• Memory coherency
Introduction to LUMI-G hardware and programming

environment - 11 January 2023

12 |

[Public]

LUMI – MI250X

Credit: ORNL, https://docs.olcf.ornl.gov/systems/crusher_quick_start_guide.html
64-core AMD “Optimized 3rd Gen EPYC” CPU Core Chiplet Die connected to GCD via Infinity Fabric CPU-GPU

GCD 5 GCD 4 GCD 2 GCD 3

GCD 7 GCD 6 GCD 0 GCD 1

https://docs.olcf.ornl.gov/systems/crusher_quick_start_guide.html

13 |

[Public]

AMD GCN GPU Hardware Layout (MI250X one GCD)

Asynchronous Compute Engine (ACE)

Shader Engine (SE0) Shader Engine (SE1)

Shader Engine (SE2) Shader Engine (SE3)

Shader Engine (SE4) Shader Engine (SE5)

Shader Engine (SE6) Shader Engine (SE7)

Introduction to LUMI-G hardware and programming

environment - 11 January 2023

14 |

[Public]

AMD GCN GPU Hardware Layout (MI250X one GCD)

Asynchronous Compute Engine (ACE)

Command Queue Command Queue

Queues reside

in user-visible

DRAM

Workload

Manager

CU
CU
CU
CU
CU
CU
CU

CU
CU
CU
CU
CU
CU
CU

Workload

Manager

CU
CU
CU
CU
CU
CU
CU

CU
CU
CU
CU
CU
CU
CU

Introduction to LUMI-G hardware and programming

environment - 11 January 2023

Workload

Manager

CU
CU
CU
CU
CU
CU
CU

CU
CU
CU
CU
CU
CU
CU

Workload

Manager

CU
CU
CU
CU
CU
CU
CU

CU
CU
CU
CU
CU
CU
CU

Workload

Manager

CU
CU
CU
CU
CU
CU
CU

CU
CU
CU
CU
CU
CU
CU

Workload

Manager

CU
CU
CU
CU
CU
CU
CU

CU
CU
CU
CU
CU
CU
CU

Workload

Manager

CU
CU
CU
CU
CU
CU
CU

CU
CU
CU
CU
CU
CU
CU

Workload

Manager

CU
CU
CU
CU
CU
CU
CU

CU
CU
CU
CU
CU
CU
CU

ROCm and HIP

Introduction to LUMI-G hardware and programming

environment - 11 January 2023

16 |

[Public]

ROCm - Radeon Open Compute Platform

• HIP is part of a larger software distribution called the

Radeon Open Compute Platform, or ROCm, Package

• Install instructions and documentation can be found here:

• https://rocmdocs.amd.com/en/latest/Installation_Guide/Installatio

n-Guide.html

• The ROCm package provides libraries and programming

tools for developing HPC and ML applications on AMD

GPUs

• All the ROCm environment and the libraries are provided

from the supercomputer, usually, there is no need to install

something yourselves

• Heterogeneous System Architecture (HSA) runtime is an API

that exposes the necessary interfaces to access and interact

with the hardware driven by AMDGPU driver

Introduction to LUMI-G hardware and programming

environment - 11 January 2023

https://rocmdocs.amd.com/en/latest/Installation_Guide/Installation-Guide.html

17 |

[Public]

What is HIP?

AMD’s Heterogeneous-compute Interface for

Portability, or HIP, is a C++ runtime API and kernel

language that allows developers to create portable

applications that can run on AMD’s accelerators as well

as CUDA devices

HIP:

• Is open-source

• Provides an API for an application to leverage GPU

acceleration for both AMD and CUDA devices

• Syntactically similar to CUDA. Most CUDA API calls

can be converted in place: cuda -> hip

• Supports a strong subset of CUDA runtime

functionality

Portable HIP C++ (Host & Device Code)

#include “cuda.h”
#include

“hip_runtime.h”

nvcc hipcc

Nvidia GPU AMD GPU

Introduction to LUMI-G hardware and programming

environment - 11 January 2023

18 |

[Public]

Getting started with HIP

__global__ void add(int n,

double *x,
double *y){

int index = blockIdx.x * blockDim.x
+ threadIdx.x;

int stride = blockDim.x * gridDim.x;

for (int i = index; i < n; i += stride){
y[i] = x[i] + y[i];

}
}

__global__ void add(int n,

double *x,
double *y){

int index = blockIdx.x * blockDim.x
+ threadIdx.x;

int stride = blockDim.x * gridDim.x;

for (int i = index; i < n; i += stride){
y[i] = x[i] + y[i];

}
}

KERNELS ARE SYNTACTICALLY THE SAME

CUDA VECTOR ADD HIP VECTOR ADD

Introduction to LUMI-G hardware and programming

environment - 11 January 2023

19 |

[Public]

CUDA APIs vs HIP API

cudaMalloc(&d_x, N*sizeof(double));

cudaMemcpy(d_x, x, N*sizeof(double),

cudaMemcpyHostToDevice);

cudaDeviceSynchronize();

hipMalloc(&d_x, N*sizeof(double));

hipMemcpy(d_x, x, N*sizeof(double),

hipMemcpyHostToDevice);

hipDeviceSynchronize();

CUDA HIP

Introduction to LUMI-G hardware and programming

environment - 11 January 2023

20 |

[Public]

Launching a kernel

some_kernel<<<gridsize, blocksize,
shared_mem_size, stream>>>

(arg0, arg1, ...);

hipLaunchKernelGGL(some_kernel,

gridsize, blocksize,
shared_mem_size, stream,

arg0, arg1, ...);

Or

some_kernel<<<gridsize, blocksize,
shared_mem_size, stream>>>

(arg0, arg1, ...);

CUDA KERNEL LAUNCH SYNTAX HIP KERNEL LAUNCH SYNTAX

Introduction to LUMI-G hardware and programming

environment - 11 January 2023

21 |

[Public]

Device Kernels: The Grid

• In HIP, kernels are executed on a 3D ”grid”

• You might feel comfortable thinking in terms of a mesh of points, but it’s not required

• The “grid” is what you can map your problem to

• It’s not a physical thing, but it can be useful to think that way

• AMD devices (GPUs) support 1D, 2D, and 3D grids, but most work maps well to 1D

• Each dimension of the grid partitioned into equal sized “blocks”

• Each block is made up of multiple “threads”

• The grid and its associated blocks are just organizational constructs

• The threads are the things that do the work

• If you’re familiar with CUDA already, the grid+block structure is very similar in HIP
Introduction to LUMI-G hardware and programming

environment - 11 January 2023

22 |

[Public]

Device Kernels: The Grid

CUDA HIP OpenCL™

grid grid NDRange

block block work group

thread work item / thread work item

warp wavefront sub-group

Some Terminology:

Introduction to LUMI-G hardware and programming

environment - 11 January 2023

23 |

[Public]

The Grid: blocks of threads in 1D

Grid of blocks

 lock of threads
Thread

Threads in grid have access to:

• Their respective block: blockIdx.x

• Their respective thread ID in a block: threadIdx.x

• Their block’s dimension: blockDim.x

• The number of blocks in the grid: gridDim.x

Introduction to LUMI-G hardware and programming

environment - 11 January 2023

24 |

[Public]

The Grid: blocks of threads in 2D

• Each color is a block of threads

• Each small square is a thread

• The concept is the same in 1D and 2D

• In 2D each block and thread now has a two-

dimensional index

Threads in grid have access to:

• Their respective block IDs: blockIdx.x, blockIdx.y

• Their respective thread IDs in a block: threadIdx.x,

threadIdx.y

• Etc.

Introduction to LUMI-G hardware and programming

environment - 11 January 2023

25 |

[Public]

Kernels

A simple embarrassingly parallel loop

for (int i=0;i<N;i++) {

h_a[i] *= 2.0;

}

Can be translated into a GPU kernel:

__global__ void myKernel(int N, double *d_a) {

int i = threadIdx.x + blockIdx.x*blockDim.x;

if (i<N) {

d_a[i] *= 2.0;

}

}

▪ A device function that will be launched from the
host program is called a kernel and is declared
with the __global__ attribute

▪ Kernels should be declared void

▪ All threads execute the kernel’s body
“simultaneously”

▪ Each thread uses its unique thread and block IDs
to compute a global ID

▪ There could be more than N threads in the grid

Introduction to LUMI-G hardware and programming

environment - 11 January 2023

26 |

[Public]

Kernels

Kernels are launched from the host:

dim3 threads(256,1,1); //3D dimensions of a block of threads

dim3 blocks((N+256-1)/256,1,1); //3D dimensions the grid of blocks

hipLaunchKernelGGL(myKernel, //Kernel name (__global__ void function)

blocks, //Grid dimensions

threads, //Block dimensions

0, //Bytes of dynamic LDS space

0, //Stream (0=NULL stream)

N, a); //Kernel arguments

Also supported similar to CUDA kernel launch syntax:

myKernel<<<blocks, threads, 0, 0>>>(N,a);

Introduction to LUMI-G hardware and programming

environment - 11 January 2023

27 |

[Public]

Difference between HIP and CUDA

Some things to be aware of writing HIP, or porting from CUDA:

• AMD GCN hardware ‘warp’ size = 64 (warps are referred to as ‘wavefronts’ in AMD documentation)

• Device and host pointers allocated by HIP API use flat addressing

• Unified virtual addressing is available

• Dynamic parallelism not currently supported

• CUDA 9+ thread independent scheduling not supported (e.g., no __syncwarp)

• Some CUDA library functions do not have AMD equivalents

• Shared memory and registers per thread can differ between AMD and Nvidia hardware

• Inline PTX or AMD GCN assembly is not portable

Despite differences, majority of CUDA code in applications can be simply translated.

Introduction to LUMI-G hardware and programming

environment - 11 January 2023

28 |

[Public]

Usage of hipcc
Usage is straightforward. Accepts all/any flags that clang accepts, e.g.,

hipcc --offload-arch=gfx90a dotprod.cpp -o dotprod

Set HIPCC_VERBOSE=7 to see a bunch of useful information

• Compile and link lines

• Various paths

$ HIPCC_VERBOSE=7 hipcc --offload-arch=gfx90a dotprod.cpp -o dotprod
HIP_PATH=/opt/rocm-5.2.0
HIP_PLATFORM=amd
HIP_COMPILER=clang
HIP_RUNTIME=rocclr
ROCM_PATH=/opt/rocm-5.2.0
...
hipcc-args: --offload-arch=gfx90a dotprod.cpp -o dotprod
hipcc-cmd: /opt/rocm-5.2.0/llvm/bin/clang++ -stdc=c++11 -hc -D__HIPCC__ -isystem /opt/rocm-
5.2.0/llvm/lib/clang/14.0.0/include
-isystem /opt/rocm-5.2.0/has/include -isystem /opt/rocm-5.2.0/include –offload-arch=gfx90a –O3 ...

Introduction to LUMI-G hardware and programming

environment - 11 January 2023

• You can use also hipcc -v … to print some information

• With the command hipconfig you can see many information about environment variables declaration

29 |

[Public]

HIP API
▪ Device Management: hipSetDevice(), hipGetDevice(), hipGetDeviceProperties()

▪ Memory Management: hipMalloc(), hipMemcpy(), hipMemcpyAsync(), hipFree(), hipHostMalloc()

▪ Streams: hipStreamCreate(), hipSynchronize(), hipStreamSynchronize(), hipStreamFree()

▪ Events: hipEventCreate(), hipEventRecord(), hipStreamWaitEvent(), hipEventElapsedTime()

▪ Device Kernels: __global__, __device__, hipLaunchKernelGGL()

▪ Device code:

▪ threadIdx, blockIdx, blockDim, __shared__

▪ 200+ math functions covering entire CUDA math library

▪ Error handling: hipGetLastError(), hipGetErrorString()

▪ More information: https://docs.amd.com/bundle/HIP_API_Guide/page/modules.html

Introduction to LUMI-G hardware and programming

environment - 11 January 2023

https://docs.amd.com/bundle/HIP_API_Guide/page/modules.html

30 |

[Public]

Error Checking
▪ Most HIP API functions return error codes of type hipError_t

hipError_t status1 = hipMalloc(…);

hipError_t status2 = hipMemcpy(…);

▪ If API function was error-free, returns hipSuccess, otherwise returns an error code

▪ Can also peek/get at last error returned with

hipError_t status3 = hipGetLastError();

hipError_t status4 = hipPeekLastError();

▪ Can get a corresponding error string using hipGetErrorString(status). Helpful for debugging, e.g.,

#define HIP_CHECK(command) { \

hipError_t status = command; \

if (status!=hipSuccess) { \

std::cerr << “Error: HIP reports ” << hipGetErrorString(status) << std::endl; \

std::abort(); } }

Introduction to LUMI-G hardware and programming

environment - 11 January 2023

31 |

[Public]

Streams

• A stream in HIP is a queue of tasks (e.g., kernels, memcpys, events)

• Tasks enqueued in a stream are completed in the order enqueued

• Tasks being executed in different streams are allowed to overlap and share device resources

• Streams are created via:

hipStream_t stream;
hipStreamCreate(&stream);

• And destroyed via:
hipStreamDestroy(stream);

• Passing 0 or NULL as the hipStream_t argument to a function instructs the function to execute on a stream
called the ‘NULL Stream’:

• No task on the NULL stream will begin until all previously enqueued tasks in all other streams have
completed

• Blocking calls like hipMemcpy run on the NULL stream

Introduction to LUMI-G hardware and programming

environment - 11 January 2023

32 |

[Public]

Streams
• Suppose we have 4 small kernels to execute:

hipLaunchKernelGGL(myKernel1, dim3(1), dim3(256), 0, 0, 256, d_a1);

hipLaunchKernelGGL(myKernel2, dim3(1), dim3(256), 0, 0, 256, d_a2);

hipLaunchKernelGGL(myKernel3, dim3(1), dim3(256), 0, 0, 256, d_a3);

hipLaunchKernelGGL(myKernel4, dim3(1), dim3(256), 0, 0, 256, d_a4);

• Even though these kernels use only one block each, they’ll execute in serial on the NULL stream:

NULL

Stream
myKernel1 myKernel2 myKernel3 myKernel4

Time

Introduction to LUMI-G hardware and programming

environment - 11 January 2023

33 |

[Public]

Streams
• With streams we can effectively share the GPU’s compute resources:

hipLaunchKernelGGL(myKernel1, dim3(1), dim3(256), 0, stream1, 256, d_a1);

hipLaunchKernelGGL(myKernel2, dim3(1), dim3(256), 0, stream2, 256, d_a2);

hipLaunchKernelGGL(myKernel3, dim3(1), dim3(256), 0, stream3, 256, d_a3);

hipLaunchKernelGGL(myKernel4, dim3(1), dim3(256), 0, stream4, 256, d_a4);

Note 1: Kernels must modify different parts of memory to avoid data races.

Note 2: With large kernels, overlapping computations may not help performance.

NULL

Stream

Stream1

Stream2

Stream3

Stream4

myKernel1

myKernel2

myKernel3

myKernel4

Introduction to LUMI-G hardware and programming

environment - 11 January 2023

34 |

[Public]

SIMD operations

Why blocks and threads?

Natural mapping of kernels to hardware:

• Blocks are dynamically scheduled onto CUs

• All threads in a block execute on the same CU

• Threads in a block share LDS memory and L1 cache

• Threads in a block are executed in 64-wide chunks called “wavefronts”

• Wavefronts execute on SIMD units (Single Instruction Multiple Data)

• If a wavefront stalls (e.g., data dependency) CUs can quickly context switch to another wavefront

A good practice is to make the block size a multiple of 64 and have several wavefronts (e.g., 256 threads)

Introduction to LUMI-G hardware and programming

environment - 11 January 2023

Porting Applications to HIP

Introduction to LUMI-G hardware and programming

environment - 11 January 2023

36 |

[Public]

HIPification Tools for faster code porting

• ROCm provides ‘HIPification’ tools to do the heavy-lifting on porting CUDA codes to ROCm

• Hipify-perl

• Hipify-clang

• Good resource to help with porting: https://github.com/ROCm-Developer-

Tools/HIPIFY/blob/master/README.md

• In practice, large portions of many HPC codes have been automatically Hipified:

• ~90% of CUDA code in CORAL-2 HACC

• ~80% of CUDA code in CORAL-2 PENNANT

• ~80% of CUDA code in CORAL-2 QMCPack

• ~95% of CUDA code in CORAL-2 Laghos

The remaining code requires programmer intervention

Introduction to LUMI-G hardware and programming

environment - 11 January 2023

https://github.com/ROCm-Developer-Tools/HIPIFY/blob/master/README.md

37 |

[Public]

Hipify tools

• Hipify-perl:

• Easy to use –point at a directory and it will attempt to hipify CUDA code

• Very simple string replacement technique: may make incorrect translations

• sed -e ‘s/cuda/hip/g’, (e.g., cudaMemcpy becomes hipMemcpy)

• Recommended for quick scans of projects

• It will not translate if it does not recognize a CUDA call and it will report it

• Hipify-clang:

• Requires clang compiler

• More robust translation of the code. Uses clang to parse files and perform semantic translation

• Can generate warnings and assistance for code for additional user analysis

• High quality translation, particularly for cases where the user is familiar with the make system

Introduction to LUMI-G hardware and programming

environment - 11 January 2023

38 |

[Public]

Hipify-perl

• It is located in $HIP/bin/ (export PATH=$PATH:[MYHIP]/bin)

• Command line tool: hipify-perl foo.cu > new_foo.cpp

• Compile: hipcc new_foo.cpp

• How does this this work in practice?

• Hipify source code

• Check it in to your favorite version control

• Try to build

• Manually work on the rest

Introduction to LUMI-G hardware and programming

environment - 11 January 2023

39 |

[Public]

Hipify-clang

• Build from source

• hipify-clang has unit tests using LLVM lit/FileCheck (44 tests)

• Hipification requires same headers that would be needed to compile it with clang:

• ./hipify-clang foo.cu -I /usr/local/cuda-8.0/samples/common/inc

• https://github.com/ROCm-Developer-Tools/HIP/tree/master/hipify-clang

Introduction to LUMI-G hardware and programming

environment - 11 January 2023

https://github.com/ROCm-Developer-Tools/HIP/tree/master/hipify-clang

40 |

[Public]

Gotchas

• Hipify tools are not running your application, or checking correctness

• Code relying on specific Nvidia hardware aspects (e.g., warp size == 32) may need attention after

conversion

• Certain functions may not have a correspondent hip version (e.g., __shfl_down_sync)

• Hipifying can’t handle inline PTX assembly

• Can either use inline GCN ISA, or convert it to HIP

• Hipify-perl and hipify-clang can both convert library calls

• None of the tools convert your build system script such as CMAKE or whatever else you use. The user is

responsible to find the appropriate flags and paths to build the new converted HIP code.

Introduction to LUMI-G hardware and programming

environment - 11 January 2023

41 |

[Public]

What to look for when porting:

• Inline PTX assembly

• CUDA Intrinsics

• Hardcoded dependencies on warp size, or shared memory size

• Grep for "32" just in case

• Do not hardcode the warpsize! Rely on warpSize device definition, #define WARPSIZE size, or props.warpSize from

host

• Code geared toward limiting size of register file on NVIDIA hardware

• Unsupported functions

Introduction to LUMI-G hardware and programming

environment - 11 January 2023

42 |

[Public]

A Tale of Host and Device

▪ The Host is the CPU

▪ Host code runs here

▪ Usual C++ syntax and features

▪ Entry point is the ‘main’ function

▪ HIP API can be used to create device buffers,
move between host and device, and launch
device code.

▪ The Device is the GPU

▪ Device code runs here

▪ C-like syntax

▪ Device codes are launched via “kernels”

▪ Instructions from the Host are enqueued into
“streams”

Source code in HIP has two flavors: Host code and Device code

Introduction to LUMI-G hardware and programming

environment - 11 January 2023

43 |

[Public]

Fortran

• First Scenario: Fortran + CUDA C/C++

oAssuming there is no CUDA code in the Fortran files.

oHipify CUDA

oCompile and link with hipcc

• Second Scenario: CUDA Fortran

oThere is no hipify equivalent but there is another approach…

oHIP functions are callable from C, using `extern C`

oSee hipfort

Introduction to LUMI-G hardware and programming environment - 11 January

2023

44 |

[Public]

CUDA Fortran -> Fortran + HIP C/C++

• There is no HIP equivalent to CUDA Fortran

• But HIP functions are callable from C, using `extern C`, so they can be called directly from Fortran

• The strategy here is:

• Manually port CUDA Fortran code to HIP kernels in C-like syntax

• Wrap the kernel launch in a C function

• Call the C function from Fortran through Fortran’s ISO_C_binding. It requires Fortran 2008 because of

the pointers utilization.

• This strategy should be usable by Fortran users since it is standard conforming Fortran

• ROCm has an interface layer, hipFort, which provides the wrapped bindings for use in Fortran

• https://github.com/ROCmSoftwarePlatform/hipfort

Introduction to LUMI-G hardware and programming

environment - 11 January 2023

https://github.com/ROCmSoftwarePlatform/hipfort

45 |

[Public]

Alternatives to HIP

• Can also target AMD GPUs through OpenMP 5.0 target offload

• ROCm provides OpenMP support

• AMD OpenMP compiler (AOMP) could integrate updated improvements regarding OpenMP offloading performance,

sometimes experimental stuff to validate before ROCm integration (https://github.com/ROCm-Developer-Tools/aomp)

• GCC provides OpenMP offload support.

• GCC will provide OpenACC

• Clacc from ORNL: https://github.com/llvm-doe-org/llvm-project/tree/clacc/main OpenACC from LLVM only

for C (Fortran and C++ in the future)

• Translate OpenACC to OpenMP Offloading

Introduction to LUMI-G hardware and programming

environment - 11 January 2023

https://github.com/ROCm-Developer-Tools/aomp

46 |

[Public]

OpenMP Offload GPU Support

• ROCm and AOMP
• ROCm supports both HIP and OpenMP

• AOMP: the AMD OpenMP research compiler, it is used to prototype the new OpenMP features for ROCm

• HPE Compilers
• Provides offloading support to AMD GPUs, through OpenMP, HIP, and OpenACC (only for Fortran)

• GNU compilers:
• Provide OpenMP and OpenACC offloading support for AMD GPUs

• GCC 11: Supports AMD GCN gfx908

• GCC 13: Supports AMD GCN gfx90a

Introduction to LUMI-G hardware and programming

environment - 11 January 2023

47 |

[Public]

Understanding the hardware options

• rocminfo

• 110 CUs

• Wavefront of size 64

• 4 SIMDs per CU

#pragma omp target teams distribute parallel for simd
Options for pragma omp teams target:

• num_teams(220): Multiple number of workgroups with regards the

compute units

• thread_limit(256): Threads per workgroup

• Thread limit is multiple of 64

• Teams*thread_limit should be multiple or a divisor of the trip count of a

loop

Introduction to LUMI-G hardware and programming

environment - 11 January 2023

48 |

[Public]

NDA NOT REQUIRED | AMD PUBLIC

USE

ROCm Libraries

49 |

[Public]

ROCm GPU Libraries

ROCm provides several GPU math libraries

• Typically, two versions:

• roc* -> AMD GPU library, usually written in HIP

• hip* -> Thin interface between roc* and Nvidia cu* library

When developing an application meant to target both CUDA

and AMD devices, use the hip* libraries (portability)

When developing an application meant to target only AMD

devices, may prefer the roc* library API (performance).

• Some roc* libraries perform better by using addition APIs not

available in the cu* equivalents

hipBLAS

rocBLAS cuBLAS

Introduction to LUMI-G hardware and programming

environment - 11 January 2023

50 |

[Public]

AMD Math Library Equivalents: “Decoder Ring”

Basic Linear Algebra

Subroutines
CUBLAS ROCBLAS

Fast Fourier TransformsCUFFT ROCFFT

C++ Parallel AlgorithmsTHRUST ROCTHRUST

Optimized Parallel

Primitives
CUB ROCPRIM

CURAND ROCRAND
Random Number

Generation

Introduction to LUMI-G hardware and programming

environment - 11 January 2023

51 |

[Public]

AMD Math Library Equivalents: “Decoder Ring”

Sparse BLAS, SpMV, etc. CUSPARSE ROCSPARSE

Linear SolversCUSOLVER ROCSOLVER

AMGX ROCALUTION

GITHUB.COM/ROCM-DEVELOPER-TOOLS/HIP → HIP_PORTING_GUIDE.MD FOR A COMPLETE LIST

Solvers and preconditioners

for sparse linear systems

Introduction to LUMI-G hardware and programming

environment - 11 January 2023

52 |

[Public]

Some Links to Key Libraries
• BLAS

• rocBLAS (https://github.com/ROCmSoftwarePlatform/rocBLAS)

• hipBLAS (https://github.com/ROCmSoftwarePlatform/hipBLAS)

• FFTs

• rocFFT (https://github.com/ROCmSoftwarePlatform/rocFFT)

• hipFFT (https://github.com/ROCmSoftwarePlatform/hipFFT)

• Random number generation

• rocRAND (https://github.com/ROCmSoftwarePlatform/rocRAND)

• Sparse linear algebra

• rocSPARSE (https://github.com/ROCmSoftwarePlatform/rocSPARSE)

• hipSPARSE (https://github.com/ROCmSoftwarePlatform/hipSPARSE)

• Iterative solvers

• rocALUTION (https://github.com/ROCmSoftwarePlatform/rocALUTION)

• Parallel primitives

• rocPRIM (https://github.com/ROCmSoftwarePlatform/rocPRIM)

• hipCUB (https://github.com/ROCmSoftwarePlatform/hipCUB)

Introduction to LUMI-G hardware and programming

environment - 11 January 2023

https://github.com/ROCmSoftwarePlatform/rocBLAS
https://github.com/ROCmSoftwarePlatform/hipBLAS
https://github.com/ROCmSoftwarePlatform/rocFFT
https://github.com/ROCmSoftwarePlatform/hipFFT
https://github.com/ROCmSoftwarePlatform/rocRAND
https://github.com/ROCmSoftwarePlatform/rocSPARSE
https://github.com/ROCmSoftwarePlatform/hipSPARSE
https://github.com/ROCmSoftwarePlatform/rocALUTION
https://github.com/ROCmSoftwarePlatform/rocPRIM
https://github.com/ROCmSoftwarePlatform/hipCUB

53 |

[Public]

AMD Machine Learning Library Support

Machine Learning Frameworks:
• Tensorflow: https://github.com/ROCmSoftwarePlatform/tensorflow-upstream
• Pytorch: https://github.com/ROCmSoftwarePlatform/pytorch
• Caffe: https://github.com/ROCmSoftwarePlatform/hipCaffe

Machine Learning Libraries:
• MIOpen (similar to cuDNN): https://github.com/ROCmSoftwarePlatform/MIOpen
• Tensile (GEMM Autotuner): https://github.com/ROCmSoftwarePlatform/Tensile
• RCCL (ROCm analogue of NCCL): https://github.com/ROCmSoftwarePlatform/rccl
• Horovod (Distributed ML): https://github.com/ROCmSoftwarePlatform/horovod

Benchmarks:
• DeepBench: https://github.com/ROCmSoftwarePlatform/DeepBench
• MLPerf: https://mlperf.org

Introduction to LUMI-G hardware and programming

environment - 11 January 2023

https://github.com/ROCmSoftwarePlatform/tensorflow-upstream
https://github.com/ROCmSoftwarePlatform/pytorch
https://github.com/ROCmSoftwarePlatform/hipCaffe
https://github.com/ROCmSoftwarePlatform/MIOpen
https://github.com/ROCmSoftwarePlatform/Tensile
https://github.com/ROCmSoftwarePlatform/rccl
https://github.com/ROCmSoftwarePlatform/horovod
https://github.com/ROCmSoftwarePlatform/DeepBench
https://mlperf.org/

54 |

[Public]

NDA NOT REQUIRED | AMD PUBLIC

USE

Profiling

55 |

[Public]

Background – AMD Profilers
• rocprof

• github.com/ROCm-Developer-Tools/rocprofiler

• Raw collection of GPU counters

and traces

• Counter collection driven by user

provided input files

• Counter results output in CSV

• Trace collection support for:
• HIP

• HSA

• GPU

• Traces visualized with Perfetto

A
tt

ai
n

ab
le

 F
LO

P
s/

s

1000

100

▪ Omnitrace
⁃ github.com/AMDResearch/omnitrace

⁃ Comprehensive trace collection
and visualization of CPU+GPU

⁃ Includes support for:

⁃ HIP, HSA, GPU

⁃ OpenMP®

⁃ MPI

⁃ Kokkos

⁃ Pthreads

⁃ Multi-GPU

⁃ Visualizations with Perfetto

▪ Omniperf
⁃ github.com/AMDResearch/omniperf

⁃ Automated collection, analysis
and visualization of performance
counters

⁃ Includes support for:

⁃ GPU Speed-of-Light Analysis

⁃ Memory Chart Analysis

⁃ Roofline Analysis

⁃ Kernel comparison

⁃ Visualizations with Grafana or
standalone GUI

Introduction to LUMI-G hardware and programming

environment - 11 January 2023

https://github.com/ROCm-Developer-Tools/rocprofiler
https://github.com/AMDResearch/omnitrace
https://github.com/AMDResearch/omniperf

56 |

[Public]

Background – AMD Profilers

Roofline
HW

Counters

Timeline

Trace

Analysis

Approach

How well am I using the GPU? Why am I seeing this perf? Where should I focus my time?Objective

AMD

Tools
Omniperf Omnitrace

Introduction to LUMI-G hardware and programming

environment - 11 January 2023

Rocprof

58 |

[Public]

AMD GPU Profiling

• ROC-profiler (or simply rocprof) is the command line front-end for AMD's GPU profiling libraries

• Repo: https://github.com/ROCm-Developer-Tools/rocprofiler

• rocprof contains the central components allowing the collection of application tracing and counter

collection

• Under constant development

• Provided in the ROCm releases

• The output of rocprof can be visualized using the chrome browser with Perfetto (https://ui.perfetto.dev/)

Introduction to LUMI-G hardware and programming

environment - 11 January 2023

https://github.com/ROCm-Developer-Tools/rocprofiler
https://ui.perfetto.dev/

59 |

[Public]

rocProf: Getting started + useful flags

• To get help:

• $ /opt/rocm-5.2.0/bin/rocprof -h

• Useful housekeeping flags:

• --timestamp <on|off> : turn on/off gpu kernel timestamps

• --basenames <on|off>: turn on/off truncating gpu kernel names (i.e., removing template parameters and argument types)

• -o <output csv file>: Direct counter information to a particular file name

• -d <data directory>: Send profiling data to a particular directory

• -t <temporary directory>: Change the directory where data files typically created in /tmp are placed. This allows you to save

these temporary files.

• Flags directing rocprofiler activity:

• -i input<.txt|.xml> - specify an input file (note the output files will now be named input.*)

• --hsa-trace - to trace GPU Kernels, host HSA events (more later) and HIP memory copies.

• --hip-trace - to trace HIP API calls

• --roctx-trace - to trace roctx markers

• --kfd-trace - to trace GPU driver calls

• Advanced usage

• -m <metric file>: Allows the user to define and collect custom metrics. See rocprofiler/test/tool/*.xml on GitHub for examples.

Introduction to LUMI-G hardware and programming

environment - 11 January 2023

https://github.com/ROCm-Developer-Tools/rocprofiler/tree/amd-master/test/tool

60 |

[Public]

rocProf: Collecting application traces

• rocProf can collect a variety of trace event types, and generate timelines in JSON format for use with

Perfetto, currently:

• You can combine modes like --hip-trace --hsa-trace

Trace Event rocprof Trace Mode

HIP API call --hip-trace

GPU Kernels --hip-trace

Host <-> Device Memory copies --hip-trace

CPU HSA Calls --hsa-trace

User code markers --roctx-trace

Introduction to LUMI-G hardware and programming

environment - 11 January 2023

61 |

[Public]

rocProf: Information about the kernels

• rocprofiler can collect kernels information

• $ /opt/rocm/bin/rocprof --stats --basenames on <app with arguments>

• This will output two csv files, one with information per each call of the kenel results.csv and one with statistics grouped

by each kernel results.stats.csv.

• Content of results.stats.csv:

"Name", "Calls", "TotalDurationNs", "AverageNs", "Percentage"

"LocalLaplacianKernel", 1000, 817737586, 817737, 40.908259879301134

"JacobiIterationKernel", 1000, 699515425, 699515, 34.994060790890174

"NormKernel1", 1001, 454737348, 454283, 22.748756969583884

"HaloLaplacianKernel", 1000, 14561933, 14561, 0.7284773865206329

"NormKernel2", 1001, 12395374, 12382, 0.620092789636225

"__amd_rocclr_fillBufferAligned.kd", 1, 7040, 7040, 0.00035218406794656007

• This way you know directly which kernels consume most of the time, it does not mean that the performance is slow, for

now.

Introduction to LUMI-G hardware and programming

environment - 11 January 2023

62 |

[Public]

rocProf and Perfetto: Collecting and visualizing application traces
• rocprofiler can collect traces

• $ /opt/rocm/bin/rocprof --hip-trace --hsa-trace <app with arguments>

• This will output a .json file that can be visualized using the chrome browser and Perfetto (https://ui.perfetto.dev/)

Introduction to LUMI-G hardware and programming

environment - 11 January 2023

https://ui.perfetto.dev/

63 |

[Public]

Perfetto: Visualizing application traces

• We have expanded the COPY 1, CPU HIP API 2 and GPU0 6

• X axis is time and it displays events or counters.

• Handle the zoom by keystrokes: W zoom, S zoom out, A move left, D move right

Introduction to LUMI-G hardware and programming

environment - 11 January 2023

64 |

[Public]

Perfetto: Kernel and flows

• Zoom and select a kernel, you can see the link to the HSA call enables the kernel

• Try to open the information for the kernel (button right down)

Introduction to LUMI-G hardware and programming

environment - 11 January 2023

65 |

[Public]

Perfetto: Information about kernels and flow events

Introduction to LUMI-G hardware and programming

environment - 11 January 2023

66 |

[Public]

rocprof: Collecting application traces with markers

• Rocprof can collect user code-markers using rocTX

• See MatrixTranspose.cpp example on roctracer GitHub page for sample in-code usage

• $ /opt/rocm/bin/rocprof --hip-trace --roctx-trace <app with arguments>

roctracer_mark("before HIP

LaunchKernel");

roctxMark("before hipLaunchKernel");

int rangeId =

roctxRangeStart("hipLaunchKernel

range");

roctxRangePush("hipLaunchKernel");

hipLaunchKernelGGL(matrixTranspose,…)

;

roctracer_mark("after HIP

LaunchKernel");

roctxMark("after hipLaunchKernel");

Introduction to LUMI-G hardware and programming

environment - 11 January 2023

https://github.com/ROCm-Developer-Tools/roctracer/blob/amd-master/test/MatrixTranspose/MatrixTranspose.cpp

67 |

[Public]

rocprof: Collecting hardware counters

• rocprofiler can collect a number of hardware counters and derived counters

• $ /opt/rocm/bin/rocprof --list-basic

• $ /opt/rocm/bin/rocprof --list-derived

• Specify counters in a counter file. For example:

• $ /opt/rocm/bin/rocprof -i rocprof_counters.txt <app with args>

• $ cat rocprof_counters.txt
pmc : Wavefronts VALUInsts VFetchInsts VWriteInsts VALUUtilization VALUBusy WriteSize

pmc : SALUInsts SFetchInsts LDSInsts FlatLDSInsts GDSInsts SALUBusy FetchSize

pmc : L2CacheHit MemUnitBusy MemUnitStalled WriteUnitStalled ALUStalledByLDS LDSBankConflict

...

• A limited number of counters can be collected during a specific pass of code

• Each line in the counter file will be collected in one pass

• You will receive an error suggesting alternative counter ordering if you have too many / conflicting counters on one line

• A csv file will be created by this command containing all of the requested counters

Introduction to LUMI-G hardware and programming

environment - 11 January 2023

68 |

[Public]

rocprof: Commonly Used Counters

• VALUUtilization: The percentage of ALUs active in a wave. Low VALUUtilization is likely due to high

divergence or a poorly sized grid

• VALUBusy: The percentage of GPUTime vector ALU instructions are processed. Can be thought of as

something like compute utilization

• FetchSize: The total kilobytes fetched from global memory

• WriteSize: The total kilobytes written to global memory

• L2CacheHit: The percentage of fetch, write, atomic, and other instructions that hit the data in L2 cache

• MemUnitBusy: The percentage of GPUTime the memory unit is active. The result includes the stall time

• MemUnitStalled: The percentage of GPUTime the memory unit is stalled

• WriteUnitStalled: The percentage of GPUTime the write unit is stalled

Full list at: https://github.com/ROCm-Developer-Tools/rocprofiler/blob/amd-master/test/tool/metrics.xml

Introduction to LUMI-G hardware and programming

environment - 11 January 2023

https://github.com/ROCm-Developer-Tools/rocprofiler/blob/amd-master/test/tool/metrics.xml

69 |

[Public]

Performance counters tips and tricks

• GPU Hardware counters are global

• Kernel dispatches are serialized to ensure that only one dispatch is ever in flight

• It is recommended that no other applications are running that use the GPU when collecting performance counters.

• Use “--basenames on” which will report only kernel names, leaving off kernel arguments.

• How do you time a kernel’s duration?

• $ /opt/rocm/bin/rocprof --timestamp on -i rocprof_counters.txt <app with args>

• This produces four times: DispatchNs, BeginNs, EndNs, and CompleteNs

• Closest thing to a kernel duration: EndNs - BeginNs

• If you run with “--stats” the resultant results file will automatically include a column that calculates kernel

duration

• Note: the duration is aggregated over repeated calls to the same kernel

Introduction to LUMI-G hardware and programming

environment - 11 January 2023

70 |

[Public]

rocprof: Multiple MPI Ranks

• rocprof can collect counters and traces for multiple MPI ranks

• Say you want to profile an application usually called like this:

• mpiexec –np <n> ./Jacobi_hip –g <x> <y>

• Then invoke the profiler by executing:

mpiexec -np <n> rocprof --hip-trace ./Jacobi_hip -g <x> <y>

or

srun –-ntasks=n rocprof --hip-trace ./Jacobi_hip -g <x> <y>

• This will produce a single CSV file per MPI process

• Multi-node profiling currently isn’t supported

Introduction to LUMI-G hardware and programming

environment - 11 January 2023

71 |

[Public]

Profiling Per MPI Rank: From Another Node(1)

AMD Confidential – Provided under NDA to CINES

• Let’s consider a 3-step run:
• sbatch_profiling.sh with sbatch command line to launch the app
• rocprof_batch.slurm This file contains sbatch parameters and the call to srun command line
• rocprof_wrapper.sh calls rocprof command line with input parameters to run the application to be profiled

• $cat sbatch_profiling.sh
• sbatch -p <partition> -w <node> rocprof_batch.slurm

• $cat rocprof_batch.slurm
#!/bin/bash
#SBATCH --job-name=run
#SBATCH --ntasks=2
#SBATCH --ntasks-per-node=2
#SBATCH --gpus-per-task=1
#SBATCH --cpus-per-task=1
#SBATCH --distribution=block:block
#SBATCH --time=00:20:00
#SBATCH --output=out.txt
#SBATCH --error=err.txt
#SBATCH -A XXXXX
cd ${SLURM_SUBMIT_DIR}
• load necessary modules
• export necessary environment variables
make clean all

srun ./rocprof_wrapper.sh ${repository} triad_off_mpi triad_off_mpiIntroduction to LUMI-G hardware and programming environment - 11 January

2023

72 |

[Public]

Profiling Per MPI Rank: From Another Node(2)

AMD Confidential – Provided under NDA to CINES

• $cat rocprof_wrapper.sh
#!/bin/bash
set -euo pipefail
depends on ROCM_PATH being set outside; input arguments are the output directory & the name
outdir="$1"
name="$2"
if [[-n ${OMPI_COMM_WORLD_RANK+z}]]; then
mpich
export MPI_RANK=${OMPI_COMM_WORLD_RANK}

elif [[-n ${MV2_COMM_WORLD_RANK+z}]]; then
ompi
export MPI_RANK=${MV2_COMM_WORLD_RANK}

elif [[-n ${SLURM_PROCID+z}]]; then
export MPI_RANK=${SLURM_PROCID}

else
echo "Unknown MPI layer detected! Must use OpenMPI, MVAPICH, or SLURM"
exit 1

fi
rocprof="${ROCM_PATH}/bin/rocprof"

pid="$$"
outdir="${outdir}/rank_${pid}_${MPI_RANK}"
outfile="${name}_${pid}_${MPI_RANK}.csv"
${rocprof} -d ${outdir} --hsa-trace -o ${outdir}/${outfile} "${@:3}"

Introduction to LUMI-G hardware and programming environment - 11 January

2023

73 |

[Public]

rocprof: Profiling Overhead

• As with every profiling tool that collects data, there is an overhead

• The percentage of the overhead depends on many aspects, for example if you try to instrument tiny tasks in a

loop, this can take more time than tasks outside a loop

• If you try to collect many counters and especially ones that need more than one pass, then this could cause

overhead if there a lot of related calls

• Also, if a lot of markers are added and especially in a loop then the roctx-trace can take significantly more time

than the non instrumented execution time

• In general, more the data you collect, more the overhead can be, and it depends on the application.

Introduction to LUMI-G hardware and programming

environment - 11 January 2023

Omnitrace

75 |

[Public]

Omnitrace: Application Profiling, Tracing, and Analysis

• It is an AMD Research tool, repository: https://github.com/AMDResearch/omnitrace

• It is not part of ROCm stack

• Omnitrace is a comprehensive profiling and tracing tool for parallel applications written in C, C++,

Fortran, HIP, OpenCL™, and Python™ which execute on the CPU or CPU+GPU

• Data collection modes:

• Dynamic instrumentation

• Statistical sampling

• Process-level sampling

• Critical trace generation

• Data analysis:

• High-level summary profiles

• Comprehensive traces

• Critical trace analysis

• Parallelism support: HIP, HSA, Pthreads, MPI, Kokkos, OpenMP®

• GPU Metrics: GPU hardware counters, HIP/HSA API, HIP kernel tracing, HSA operation tracing,

memory/power/temperature/utilization

• CPU Metrics: Hardware counters, timing metrics, memory metrics, network statistics, I/O, and more
Introduction to LUMI-G hardware and programming

environment - 11 January 2023

https://github.com/AMDResearch/omnitrace

76 |

[Public]

Installation (if required)

• Instructions for binary installation

• Visit the Omnitrace releases page: https://github.com/AMDResearch/omnitrace/releases

• Select the version that matches your operating system, ROCm version, etc.

• For an HPE/AMD system, we select OpenSuse operating system

• For example, download the installer omnitrace-1.7.2-opensuse-15.4-ROCm-50300-PAPI-OMPT-

Python3.sh

• Any user can install it in his project space but it should not be required

• There are rpm and deb files for installation also
• Full documentation: https://amdresearch.github.io/omnitrace/

wget https://github.com/AMDResearch/omnitrace/releases/download/v1.7.3/omnitrace-1.7.3-

opensuse-15.4-ROCm-50300-PAPI-OMPT-Python3.sh

mkdir /opt/omnitrace/

module load rocm // not required if you build it on your laptop

chmod +x omnitrace-1.7.3-opensuse-15.4-ROCm-50300-PAPI-OMPT-Python3.sh

./omnitrace-1.7.3-opensuse-15.4-ROCm-50300-PAPI-OMPT-Python3.sh --prefix=/opt/omnitrace -

-exclude-subdir

export PATH=/opt/omnitrace/bin:$PATH

source omnitrace_installation_path/share/omnitrace/setup-env.sh
Introduction to LUMI-G hardware and programming

environment - 11 January 2023

https://github.com/AMDResearch/omnitrace/releases
https://amdresearch.github.io/omnitrace/

77 |

[Public]

Omnitrace instrumentation modes

• Runtime instrumentation: Dynamic binary instrumentation, it can instrument a lot of data and

increased overhead

• Sampling instrumentation (omnitrace-sample)

• Attaching to a process (-p)

• Binary rewriting (-o)

• It will not instrument the dynamically-linked libraries, thus lower overhead and faster execution

• This approach is recommended when the target executable uses process-level parallelism (e.g.

MPI)
• To instrument dynamic libraries: https://amdresearch.github.io/omnitrace/instrumenting.html#binary-

rewriting-a-library

For problems, create an issue here: https://github.com/AMDResearch/omnitrace/issues
Documentation: https://amdresearch.github.io/omniperf/

Introduction to LUMI-G hardware and programming

environment - 11 January 2023

https://amdresearch.github.io/omnitrace/instrumenting.html#binary-rewriting-a-library
https://github.com/AMDResearch/omnitrace/issues
https://amdresearch.github.io/omniperf/

78 |

[Public]

Execution

• Runtime instrumentation

srun … omnitrace <omnitrace-options> -- <exe> [<exe-options>]

• Sampling instrumentation

srun … omnitrace-sample <omnitrace-options> -- <exe> [<exe-options>]

• Binary rewriting

srun … omnitrace <omnitrace-options> -o <name-of-new-exe-or-library> -- <exe-or-

library>

srun … <name-of-new-exe>

Introduction to LUMI-G hardware and programming

environment - 11 January 2023

79 |

[Public]

Omnitrace configuration (I)

srun -n 1 --gpus 1 omnitrace-avail --categories omnitrace

Introduction to LUMI-G hardware and programming

environment - 11 January 2023

80 |

[Public]

Omnitrace configuration (II)

srun -n 1 --gpus 1 omnitrace-avail --categories omnitrace --brief --description

Introduction to LUMI-G hardware and programming

environment - 11 January 2023

81 |

[Public]

Create a configuration file

• Use a name of non-existing config file

srun -n 1 omnitrace-avail -G omnitrace.cfg

[omnitrace-avail] Outputting text configuration file './omnitrace.cfg'...

• To add also description for each variable

srun -n 1 omnitrace-avail -G omnitrace_all.cfg --all

[omnitrace-avail] Outputting text configuration file './omnitrace_all.cfg’...

• Declare which cfg file to use :

export OMNITRACE_CONFIG_FILE=/path/omnitrace.cfg

Introduction to LUMI-G hardware and programming

environment - 11 January 2023

82 |

[Public]

Executing MatrixTranspose

• Get and compile the https://github.com/ROCm-Developer-

Tools/HIP/tree/develop/samples/2_Cookbook/0_MatrixTranspose/MatrixTranspose.cpp

• Compile: hipcc –offload-arch=gfx90a –o MatrixTranspose MatrixTranspose.cpp

• Non instrumented execution:

time srun -n 1 --gpus 1 ./MatrixTranspose

real 0m1.245s

• Dynamic instrumentation

time srun –n 1 –gpus 1 omnitrace -- ./MatrixTranspose

[omnitrace][exe]

[omnitrace][exe] command ::

'/pfs/lustrep4/scratch/project_462000075/markoman/HIP/samples/2_Cookbook/0_MatrixTranspose/MatrixTranspose'...

[omnitrace][exe]

[omnitrace][118151][metadata]> Outputting 'omnitrace-MatrixTranspose-output/2022-10-16_22.53/metadata-118151.json' and

'omnitrace-MatrixTranspose-output/2022-10-16_22.53/functions-118151.json'

[omnitrace][118151][0][omnitrace_finalize] Finalized

[706.822] perfetto.cc:57383 Tracing session 1 ended, total sessions:0

[omnitrace][exe] End of omnitrace

real 1m27.841s
Introduction to LUMI-G hardware and programming

environment - 11 January 2023

https://github.com/ROCm-Developer-Tools/HIP/tree/develop/samples/2_Cookbook/0_MatrixTranspose/MatrixTranspose.cpp

83 |

[Public]

Identify overhead

Command: nm --demangle MatrixTranspose | egrep -i ' (t|u) '

Introduction to LUMI-G hardware and programming

environment - 11 January 2023

84 |

[Public]

Available functions to instrument

srun -n 1 --gpus 1 omnitrace -v -1 --simulate --print-available functions --

./MatrixTranspose

More than 36000 functions

Introduction to LUMI-G hardware and programming

environment - 11 January 2023

85 |

[Public]

Custom including/excluding functions

• Include functions

srun -n 1 --gpus 1 omnitrace -v -1 --simulate --print-available functions -I

'function_name1' 'function_name2' -- ./MatrixTranspose

• Exclude functions

srun -n 1 --gpus 1 omnitrace -v -1 --simulate --print-available functions -E

'function_name1' 'function_name2' -- ./MatrixTranspose

The above commands include the simulate flag that it will demonstrate the available functions but it will not

run the MatrixTranspose executable

Introduction to LUMI-G hardware and programming

environment - 11 January 2023

86 |

[Public]

Decreasing profiling overhead

• Binary rewriting and print available functions

srun -n 1 --gpus 1 omnitrace -v -1 --print-available functions -o matrix.inst --

./MatrixTranspose

• Default instrumentation is

main function and functions of

1024 instructions and more

(for CPU)

• To instrument routines with for

example 50 instructions, add

the option "–i 50" to instrument

function of 50 instructions and

above (move overhead)

Introduction to LUMI-G hardware and programming

environment - 11 January 2023

87 |

[Public]

Executing the new instrumented binary

time srun -n 1 --gpus 1 ./matrix.inst

Introduction to LUMI-G hardware and programming

environment - 11 January 2023

88 |

[Public]

Check the list of the GPU calls instrumented

omnitrace-matrix.inst-output/2022-11-14_12.33_PM/roctracer.txt

Introduction to LUMI-G hardware and programming

environment - 11 January 2023

89 |

[Public]

Visualizing trace

• Copy the perfetto-trace.proto to your laptop

• Go to https://ui.perfetto.dev/ click open trace and select the perfetto-trace.proto

Introduction to LUMI-G hardware and programming

environment - 11 January 2023

https://ui.perfetto.dev/

90 |

[Public]

Visualizing trace

• Copy the perfetto-trace.proto to your laptop

• Go to https://ui.perfetto.dev/ click open trace and select the perfetto-trace.proto

Introduction to LUMI-G hardware and programming

environment - 11 January 2023

https://ui.perfetto.dev/

91 |

[Public]

Hardware counters (I)

srun -n 1 --gpus 1 omnitrace-avail --all

…

Introduction to LUMI-G hardware and programming

environment - 11 January 2023

92 |

[Public]

Commonly Used Counters

• VALUUtilization: The percentage of ALUs active in a wave. Low VALUUtilization is likely due to high

divergence or a poorly sized grid

• VALUBusy: The percentage of GPUTime vector ALU instructions are processed. Can be thought of as

something like compute utilization

• FetchSize: The total kilobytes fetched from global memory

• WriteSize: The total kilobytes written to global memory

• L2CacheHit: The percentage of fetch, write, atomic, and other instructions that hit the data in L2 cache

• MemUnitBusy: The percentage of GPUTime the memory unit is active. The result includes the stall time

• MemUnitStalled: The percentage of GPUTime the memory unit is stalled

• WriteUnitStalled: The percentage of GPUTime the write unit is stalled

Full list at: https://github.com/ROCm-Developer-Tools/rocprofiler/blob/amd-master/test/tool/metrics.xml

Introduction to LUMI-G hardware and programming

environment - 11 January 2023

https://github.com/ROCm-Developer-Tools/rocprofiler/blob/amd-master/test/tool/metrics.xml

93 |

[Public]

Hardware counters (II)

• Declare in your cfg file the metrics you want to profile

• For example, profile metrics only for the GPU with id 0:

OMNITRACE_ROCM_EVENTS = GPUBusy:device=0,Wavefronts:device=0,

VALUBusy:device=0,L2CacheHit:device=0,MemUnitBusy:device=0

• Profile for all the participated GPUs:

OMNITRACE_ROCM_EVENTS = GPUBusy,Wavefronts,VALUBusy,L2CacheHit,MemUnitBusy

Introduction to LUMI-G hardware and programming

environment - 11 January 2023

94 |

[Public]

Execution with hardware counters

srun -n 1 --gpus 1 ./matrix.inst

Introduction to LUMI-G hardware and programming

environment - 11 January 2023

95 |

[Public]

Visualization with hardware counters

Introduction to LUMI-G hardware and programming

environment - 11 January 2023

96 |

[Public]

Sampling call-stack (I)

• Another application with OMNITRACE_USE_SAMPLING = false

• With OMNITRACE_USE_SAMPLING = true and OMNITRACE_SAMPLING_FREQ = 100 (100 samples

per second)

Introduction to LUMI-G hardware and programming

environment - 11 January 2023

97 |

[Public]

Sampling call-stack (II)

• Zoom in call-stack sampling

Introduction to LUMI-G hardware and programming

environment - 11 January 2023

98 |

[Public]

How to see kernels timing?

• omnitrace-binary-output/timestamp/wall_clock.txt

Introduction to LUMI-G hardware and programming

environment - 11 January 2023

99 |

[Public]

How to see kernels timing? (II)

• Add/edit in your omnitrace.cfg file, OMNITRACE_USE_TIMEMORY = true and

OMNITRACE_FLAT_PROFILE = true

Introduction to LUMI-G hardware and programming

environment - 11 January 2023

100 |

[Public]

User API

• Omnitrace provides an API to control the instrumentation

All the API calls: https://amdresearch.github.io/omnitrace/user_api.html

API Call Description

int omnitrace_user_start_trace(void) Enable tracing on this thread and all

subsequently created threads

int omnitrace_user_stop_trace(void) Disable tracing on this thread and all

subsequently created threads

int

omnitrace_user_start_thread_trace(vo

id)

Enable tracing on this specific thread. Does not

apply to subsequently created threads

int

omnitrace_user_stop_thread_trace(voi

d)

Disable tracing on this specific thread. Does not

apply to subsequently created threads

Introduction to LUMI-G hardware and programming

environment - 11 January 2023

101 |

[Public]

MPI

• We use the example omnitrace/examples/mpi/mpi.cpp

• Compile and run it to check the output, then create an instrumented binary

srun -n 1 omnitrace -o mpi.inst -- ./mpi

srun -n 2 ./mpi.inst

MPI 0

MPI 1

Introduction to LUMI-G hardware and programming

environment - 11 January 2023

102 |

[Public]

MPI visualizing one Perfetto per MPI process

MPI 0

MPI 1

Introduction to LUMI-G hardware and programming

environment - 11 January 2023

103 |

[Public]

Visualizing all the MPI processes in once

• Merge the Perfetto files:

cat omnitrace-mpi.inst-output/timestamp/perfetto-trace-0.proto omnitrace-

mpi.inst-output/timestamp/perfetto-trace-1.proto > allprocesses.proto

• For large number or processes a different approach is required if willing to visualize many processes

Introduction to LUMI-G hardware and programming

environment - 11 January 2023

104 |

[Public]

OpenMP®

• We use the example /omnitrace/examples/openmp/

• Build the code:

cmake –B build .

• We use the openmp-lu binary, execution:

export OPENMP_NUM_THREADS=4

srun –n 1 –c 4 ./openmp-lu

• Create a new instrumented binary:

srun -n 1 omnitrace -o openmp-lu.inst -- ./openmp-lu

Introduction to LUMI-G hardware and programming

environment - 11 January 2023

105 |

[Public]

OpenMP® (II)
• Execution:

srun -n 1 –c 4 ./openmp-lu.inst

Introduction to LUMI-G hardware and programming

environment - 11 January 2023

106 |

[Public]

OpenMP® visualization

Introduction to LUMI-G hardware and programming

environment - 11 January 2023

107 |

[Public]

Python™

• The omnitrace Python package is installed in /path/omnitrace_install/lib/pythonX.Y/site-packages/omnitrace

• Setup the environment

export PYTHONPATH=/path/omnitrace/lib/python/site-packages/:${PYTHONPATH}

• We use the Fibonacci example:

omnitrace/examples/python/source.py

• Execute:

srun -n 1 --gpus 1 omnitrace-python ./external.py

There will be a new directory called omnitrace-source-output with contents

Python documentation: https://amdresearch.github.io/omnitrace/python.html

Introduction to LUMI-G hardware and programming

environment - 11 January 2023

108 |

[Public]

Python™ (II)

• omnitrace-source-output/timestamp/wall_clock.txt

Introduction to LUMI-G hardware and programming

environment - 11 January 2023

109 |

[Public]

Visualizing Python™ Perfeto tracing

Introduction to LUMI-G hardware and programming

environment - 11 January 2023

110 |

[Public]

Kokkos (I)

• The Omnitrace can instrument Kokkos applications

• Edit your omnitrace.cfg file and enable Kokkos:

OMNITRACE_USE_KOKKOSP = true

Introduction to LUMI-G hardware and programming

environment - 11 January 2023

111 |

[Public]

Kokkos (II)

• Check the file kokkos_memory0.txt

Introduction to LUMI-G hardware and programming

environment - 11 January 2023

112 |

[Public]

Kokkos – Perfetto I

• Visualize perfetto-trace-0.proto (with sampling enabled)

Introduction to LUMI-G hardware and programming

environment - 11 January 2023

113 |

[Public]

Kokkos – Perfetto II

Introduction to LUMI-G hardware and programming

environment - 11 January 2023

114 |

[Public]

Omnitrace-sample

• For easy usage of Omnitrace there is also the omnitrace-sample that does sampling with less overhead.

• It provides less overhead but you need to be sure that you do not miss information

• Not all the declarations of a cfg file apply, for example to use hardware counters, ou need to execute the

following command:

srun -n 1 omnitrace-sample -TPHD -G
"GPUBusy:device=0,Wavefronts:device=0,VALUBusy:device=0,L2CacheHit:device=0,MemUnitBusy:device=0” -- ./binary

See omnitrace-sample -h for more information

Introduction to LUMI-G hardware and programming

environment - 11 January 2023

115 |

[Public]

Tips & Tricks

• My Perfetto timeline seems weird how can I check the clock skew?
• OMNITRACE_VERBOSE equal to 1 or higher for verbose mode and it will print the timestamp skew

• Omnitrace takes too long time in the finalization, how to check which part takes a lot of time?
• Use OMNITRACE_VERBOSE equal to 1 or higher for verbose mode

• It takes too long time to map rocm-smi samples to the kernels
• Use temporarily OMNITRACE_USE_ROCM_SMI=OFF

• If you are doing binary rewriting and you do not get information about kernels, declare:
• HSA_TOOLS_LIB=libomnitrace.so in the environment and be sure that OMNITRACE_USE_ROCTRACER=ON in

the cfg file

• My HIP application hangs in different points, what to do?
• Try to set HSA_ENABLE_INTERRUPT=0 in the environment, this handles different how HIP is notified that GPU

kernels completed

• It is preferred to use binary rewriting for MPI applications, in order to write one file per MPI process, and
not aggregated, use: OMNITRACE_USE_PID=ON

• My Perfetto trace is too big, can I decrease it?
• Yes, with v1.7.3 and later declare OMNITRACE_PERFETTO_ANNOTATIONS to false.

• Full documentation: https://amdresearch.github.io/omnitrace/

Introduction to LUMI-G hardware and programming

environment - 11 January 2023

https://amdresearch.github.io/omnitrace/

Omniperf

117 |

[Public]

Omniperf

• The Omniperf executes the code as many times required based on the job submission

• Without specific option the application will be executed many times with various hardware counters (more than

100), so this can take long time. It does not mean that all the counters will provide useful data for a specific

code.

• There are various options for filtering (kernel, metric) even to execute mainly for roofline analysis, roofline is

supported only for MI200 GPU series.

• There are many data per metric/HW and we will show a few, Omniperf provides tables for every metric

• With Omniperf first we profile, then we analyze and then we can import to database or visualize with

standalone GUI

• The Omniperf targets MI100 and MI200 and later future generation AMD GPUs

• For problems, create an issue here: https://github.com/AMDResearch/omniperf/issues

Introduction to LUMI-G hardware and programming

environment - 11 January 2023

118 |

[Public]

Overview - AMD Instinct™ MI200 Architecture

HBM Memory HBM Memory

Memory Controller

L2 Cache (L2)

Graphics Compute Die (GCD)

Data Fabric

SIMD0
Scalar

Unit

SGPR

Local Data Share (LDS)

VGPR

Vector L1 Data Cache (vL1D)

Compute Unit

SIMD1 SIMD2 SIMD3

VGPR VGPR VGPR

SIMD0
Scalar

Unit

SGPR

Local Data Share (LDS)

VGPR

Vector L1 Data Cache (vL1D)

Compute Unit

SIMD1 SIMD2 SIMD3

VGPR VGPR VGPR

SIMD0
Scalar

Unit

SGPR

Local Data Share (LDS)

VGPR

Vector L1 Data Cache (vL1D)

Compute Unit

SIMD1 SIMD2 SIMD3

VGPR VGPR VGPR

… …

(Peer GCD)

Remote
Socket
(CPU, GPU)

(GCD1) (GCD2)

Introduction to LUMI-G hardware and programming

environment - 11 January 2023

119 |

[Public]

Performance Analysis on MI200 GPUs - Omniperf
• Opensource github repos

• https://github.com/AMDResearch/omniperf

• Built on top of ROC Profiler

• Integrated Performance Analyzer for
AMD GPUs
• Roofline Analyzer

• Mem Chart Analyzer

• Speed-of-Light

• Baseline Comparison

• Shared Workload Database

• Flexible Filtering and Normalization

• Comprehensive Profiling
• Wavefront Dispatching

• Shader Compute

• Local Data Share (LDS) Accesses

• L1/L2 Cache Accesses

• HBM Accesses

• User Interfaces
• Grafana™ Based GUI

• Standalone GUI

GCD0 GCD1

ROC Profiler

CSV suite

DB Importer

DB

Backend

Workload

1

Workload

n

GUI Analyzer

Standalone

Analyzer

Perfmon

Counters
Microbench

GUI CLI

MI200 GCD0 GCD1MI200

Omniperf
client

Omniperf
server

Introduction to LUMI-G hardware and programming

environment - 11 January 2023

120 |

[Public]

v_rcp_f64_e32 v[4:5], v[2:3]
v_sin_f32_e32 v2, v2
v_cos_f32_e32 v2, v2
v_rsq_f64_e32 v[6:7], v[2:3]
v_sqrt_f32_e32 v3, v2
v_log_f32_e32 v2, v2
v_exp_f32_e32 v2, v2

Empirical Hierarchical Roofline on MI200 - Perfmon Counters

ID HW Counter Category

1 SQ_INSTS_VALU_ADD_F16 FLOP counter

2 SQ_INSTS_VALU_MUL_F16 FLOP counter

3 SQ_INSTS_VALU_FMA_F16 FLOP counter

4 SQ_INSTS_VALU_TRANS_F16 FLOP counter

5 SQ_INSTS_VALU_ADD_F32 FLOP counter

6 SQ_INSTS_VALU_MUL_F32 FLOP counter

7 SQ_INSTS_VALU_FMA_F32 FLOP counter

8 SQ_INSTS_VALU_TRANS_F32 FLOP counter

9 SQ_INSTS_VALU_ADD_F64 FLOP counter

10 SQ_INSTS_VALU_MUL_F64 FLOP counter

11 SQ_INSTS_VALU_FMA_F64 FLOP counter

12 SQ_INSTS_VALU_TRANS_F64 FLOP counter

13 SQ_INSTS_VALU_INT32 IOP counter

14 SQ_INSTS_VALU_INT64 IOP counter

15 SQ_INSTS_VALU_MFMA_MOP

S_I8

IOP counter

ID HW Counter Category

16 SQ_INSTS_VALU_MFMA_MOPS_F16 FLOP counter

17 SQ_INSTS_VALU_MFMA_MOPS_BF16 FLOP counter

18 SQ_INSTS_VALU_MFMA_MOPS_F32 FLOP counter

19 SQ_INSTS_VALU_MFMA_MOPS_F64 FLOP counter

20 SQ_LDS_IDX_ACTIVE LDS

Bandwidth

21 SQ_LDS_BANK_CONFLICT LDS

Bandwidth

22 TCP_TOTAL_CACHE_ACCESSES_sum vL1D

Bandwidth

23 TCP_TCC_WRITE_REQ_sum L2 Bandwidth

24 TCP_TCC_ATOMIC_WITH_RET_REQ_su

m

L2 Bandwidth

25 TCP_TCC_ATOMIC_WITHOUT_RET_REQ

_sum

L2 Bandwidth

26 TCP_TCC_READ_REQ_sum L2 Bandwidth

27 TCC_EA_RDREQ_sum HBM

Bandwidth

28 TCC_EA_RDREQ_32B_sum HBM

Bandwidth

29 TCC_EA_WRREQ_sum HBM

Bandwidth

30 TCC_EA_WRREQ_64B_sum HBM

Bandwidth

▪ Weight
⁃ ADD: 1
⁃ MUL: 1
⁃ FMA: 2
⁃ Transcendental: 1

▪ FLOP Count
⁃ VALU: derived from VALU math instructions (assuming

64 active threads)
⁃ MFMA: count FLOP directly, in unit of 512

▪ Transcendental Instructions (7 in total)
⁃ 𝑒𝑥 , log 𝑥 : F16, F32

⁃
1

𝑥
, 𝑥,

1

𝑥
: F16, F32, F64

⁃ sin 𝑥 , cos 𝑥 : F16, F32

▪ Profiling Overhead
⁃ Require 3 application replays

Introduction to LUMI-G hardware and programming

environment - 11 January 2023

121 |

[Public]

Empirical Hierarchical Roofline on MI200 - Arithmetic

Total_FLOP = 64 ∗ (SQ_INSTS_VALU_ADD_F16 + SQ_INSTS_VALU_MUL_F16 + SQ_INSTS_VALU_TRANS_F16+ 2 ∗ SQ_INSTS_VALU_FMA_F16)
+ 64 ∗ (SQ_INSTS_VALU_ADD_F32 + SQ_INSTS_VALU_MUL_F32 + SQ_INSTS_VALU_TRANS_F32 + 2 ∗ SQ_INSTS_VALU_FMA_F32)
+ 64 ∗ (SQ_INSTS_VALU_ADD_F64 + SQ_INSTS_VALU_MUL_F64 + SQ_INSTS_VALU_TRANS_F64 + 2 ∗ SQ_INSTS_VALU_FMA_F64)
+ 512 * SQ_INSTS_VALU_MFMA_MOPS_F16

+ 512 * SQ_INSTS_VALU_MFMA_MOPS_BF16

+ 512 * SQ_INSTS_VALU_MFMA_MOPS_F32

+ 512 * SQ_INSTS_VALU_MFMA_MOPS_F64

Total_IOP = 64 ∗ (SQ_INSTS_VALU_INT32 + SQ_INSTS_VALU_INT64)

𝐿𝐷𝑆𝐵𝑊 = 32 ∗ 4 ∗ (SQ_LDS_IDX_ACTIVE – SQ_LDS_BANK_CONFLICT)

𝑣𝐿1𝐷𝐵𝑊 = 64 ∗ TCP_TOTAL_CACHE_ACCESSES_sum

𝐿2𝐵𝑊 = 64 ∗ TCP_TCC_READ_REQ_sum

+ 64 * TCP_TCC_WRITE_REQ_sum

+ 64 * (TCP_TCC_ATOMIC_WITH_RET_REQ_sum + TCP_TCC_ATOMIC_WITHOUT_RET_REQ_sum)

𝐻𝐵𝑀𝐵𝑊 = 32 * TCC_EA_RDREQ_32B_sum + 64 * (TCC_EA_RDREQ_sum - TCC_EA_RDREQ_32B_sum)

+ 32 * (TCC_EA_WRREQ_sum – TCC_EA_WRREQ_64B_sum) + 64 * TCC_EA_WRREQ_64B_sum
𝐴𝐼𝐻𝐵𝑀 =

𝑇𝑂𝑇𝐴𝐿_𝐹𝐿𝑂𝑃

𝐻𝐵𝑀𝐵𝑊

𝐴𝐼𝐿2
𝑇𝑂𝑇𝐴𝐿_𝐹𝐿𝑂𝑃

𝐿2𝐵𝑊

𝐴𝐼𝑣𝐿1𝐷
𝑇𝑂𝑇𝐴𝐿_𝐹𝐿𝑂𝑃

𝑣𝐿1𝐷𝐵𝑊

𝐴𝐼𝐿𝐷𝑆
𝑇𝑂𝑇𝐴𝐿_𝐹𝐿𝑂𝑃

𝐿𝐷𝑆𝐵𝑊

* All calculations are subject to change without notice

Introduction to LUMI-G hardware and programming

environment - 11 January 2023

122 |

[Public]

Omniperf features

Omniperf Features

MI200 support Roofline Analysis Panel (Supported

on MI200 only, SLES 15 SP3 or

RHEL8)

MI100 support Command Processor (CP) Panel

Standalone GUI Analyzer Shader Processing Input (SPI) Panel

Grafana/MongoDB GUI Analyzer Wavefront Launch Panel

Dispatch Filtering Compute Unit - Instruction Mix Panel

Kernel Filtering Compute Unit - Pipeline Panel

GPU ID Filtering Local Data Share (LDS) Panel

Baseline Comparison Instruction Cache Panel

Multi-Normalizations Scalar L1D Cache Panel

System Info Panel Texture Addresser and Data Panel

System Speed-of-Light Panel Vector L1D Cache Panel

Kernel Statistic Panel L2 Cache Panel

Memory Chart Analysis Panel L2 Cache (per-Channel) Panel
Introduction to LUMI-G hardware and programming

environment - 11 January 2023

123 |

[Public]

Client-side installation (if required)

• Download the latest version from here: https://github.com/AMDResearch/omniperf/releases

wget https://github.com/AMDResearch/omniperf/releases/download/v1.0.4/omniperf-

1.0.4.tar.gz

tar zxvf omniperf-1.0.4.tar.gz

cd omniperf-1.0.4/

python3 -m pip install -t ${INSTALL_DIR}/python-libs -r requirements.txt

mkdir build

cd build

export PYTHONPATH=$INSTALL_DIR/python-libs:$PYTHONPATH

cmake -DCMAKE_INSTALL_PREFIX=${INSTALL_DIR}/1.0.4 \

-DPYTHON_DEPS=${INSTALL_DIR}/python-libs \

-DMOD_INSTALL_PATH=${INSTALL_DIR}/modulefiles ..

make install

export PATH=$INSTALL_DIR/1.0.4/bin:$PATH

Introduction to LUMI-G hardware and programming

environment - 11 January 2023

https://github.com/AMDResearch/omniperf/releases

124 |

[Public]

Omniperf modes

• Profiling

omniperf profile -n workload_name [profile options] [roofline options] --

<profile_cmd>

• Analysis

omniperf analyze -p workloads/workload_name/mi200/

• GUI import

omniperf database --import [CONNECTION OPTIONS]

• GUI standalone

omniperf analyze -p workloads/workload_name/mi200/ --gui

Then follow the instructions to open the web page for the GUI

Introduction to LUMI-G hardware and programming

environment - 11 January 2023

125 |

[Public]

Omniperf Profiling

• We use the example sample/vcopy.cpp from the Omniperf installation folder (cp

omniperf/1.0.4/share/sample/vcopy.cpp .)

• Compile with hipcc, let’s call the binary vcopy

• Load Omniperf module

• Profiling with the default set pf data for all kernels, execute:
srun -n 1 --gpus 1 omniperf profile -n vcopy_all -- ./vcopy 1048576 256

…

Profile only

omniperf ver: 1.0.4

Path: /pfs/lustrep4/scratch/project_462000075/markoman/omniperf-1.0.4/build/workloads

Target: mi200

Command: ./vcopy 1048576 256

Kernel Selection: None

Dispatch Selection: None

IP Blocks: All

In this case we call the workload name “vcopy_all” and after the “--” everything is about the application

we execute. In this case, the application will be executed many times for collecting different metrics, if

the application takes significant time to run once, then this could b not the optimum approach.

At the end of the execution, we have a folder workloads/vcopy_all/mi200/
You can see all the options with the command omniperf profile --help

Introduction to LUMI-G hardware and programming

environment - 11 January 2023

126 |

[Public]

Omniperf workflows

Introduction to LUMI-G hardware and programming

environment - 11 January 2023

127 |

[Public]

Omniperf Analyze

• We use the example sample/vcopy.cpp from the Omniperf installation folder

srun -n 1 --gpus 1 omniperf analyze -p workloads/vcopy_all/mi200/ &>

vcopy_analyze.txt

Introduction to LUMI-G hardware and programming

environment - 11 January 2023

128 |

[Public]

Omniperf Analyze (II)

• Execute omniperf analyze –h to see various options

• Use specific IP block (-b)

• Top kernel:
srun -n 1 --gpus 1 omniperf analyze -p workloads/vcopy_all/mi200/ -b 0

• IP Block of wavefronts: srun -n 1 --gpus 1 omniperf analyze -p

workloads/vcopy_all/mi200/ -b 7.1.2

Introduction to LUMI-G hardware and programming

environment - 11 January 2023

129 |

[Public]

Omniperf Analyze (III)

omniperf analyze -h

Introduction to LUMI-G hardware and programming

environment - 11 January 2023

130 |

[Public]

Omniperf Analyze with standalone GUI

• Download the data on your computer (workloads/vcopy_all/), install Omniperf without ROCm, and

execute:

omniperf analyze -p workloads/vcopy_all/mi200/ --gui

Open web page http://IP:8050/

Introduction to LUMI-G hardware and programming

environment - 11 January 2023

131 |

[Public]

Omniperf Analyze with standalone GUI (II)

Introduction to LUMI-G hardware and programming

environment - 11 January 2023

132 |

[Public]

Omniperf Analyze with standalone GUI (III)

Introduction to LUMI-G hardware and programming

environment - 11 January 2023

133 |

[Public]

Roofline Analysis

• Profile with roofline:

srun -n 1 --gpus 1 omniperf profile -n roofline_case_app --roof-only -- ./app

• Prepare GUI:

Copy the workload to your computer

Execute: omniperf analyze -p workloads/roofline_case_app/mi200/ --gui

Open the web page http://IP:8050/

Introduction to LUMI-G hardware and programming

environment - 11 January 2023

134 |

[Public]

Roofline Analysis – Kokkos code

• Roofline: the first-step characterization of workload
performance
• Workload characterization

• Compute bound
• Memory bound
• Performance margin
• L1/L2 cache accesses

• Thorough SoC perf analysis for each subsystem to
identify bottlenecks
• HBM
• L1/L2
• LDS
• Shader compute
• Wavefront dispatch

• Omniperf tooling support
• Roofline plot (float, integer)
• Baseline roofline comparison
• Kernel statistics

Introduction to LUMI-G hardware and programming

environment - 11 January 2023

135 |

[Public]

SPI Resource Allocation

• Dispatch Bound

• Wavefront dispatching failure due to resources limitation

• Wavefront slots

• VGPR

• SGPR

• LDS allocation

• Barriers

• Etc.

• Omniperf tooling support

• Shader Processor Input (SPI) metrics

Introduction to LUMI-G hardware and programming

environment - 11 January 2023

136 |

[Public]

Grafana – System Info

Introduction to LUMI-G hardware and programming

environment - 11 January 2023

137 |

[Public]

Grafana – System Speed-of-Light
$omniperf database --import -H pavii1 -u amd -t asw -w

workloads/vcopy_demo/mi200/

ROC Profiler: /usr/bin/rocprof

Import Profiling Results

Pulling data from /root/test/workloads/vcopy_demo/mi200

The directory exists

Found sysinfo file

KernelName shortening enabled

Kernel name verbose level: 2

Password:

Password recieved

-- Conversion & Upload in Progress –

… …

9 collections added.

Workload name uploaded

-- Complete! --

Introduction to LUMI-G hardware and programming

environment - 11 January 2023

138 |

[Public]

Grafana- Kernel Statistics

Introduction to LUMI-G hardware and programming

environment - 11 January 2023

139 |

[Public]

Grafana – Memory Chart Analysis

Introduction to LUMI-G hardware and programming

environment - 11 January 2023

140 |

[Public]

Grafana - Roofline

Introduction to LUMI-G hardware and programming

environment - 11 January 2023

141 |

[Public]

Grafana – Wavefront & Compute Unit

Introduction to LUMI-G hardware and programming

environment - 11 January 2023

142 |

[Public]

Grafana – Instruction Cache & Scalar L1 Data Cache

Introduction to LUMI-G hardware and programming

environment - 11 January 2023

143 |

[Public]

Grafana – Vector L1 Data Cache

Introduction to LUMI-G hardware and programming

environment - 11 January 2023

144 |

[Public]

Grafana – L2 Cache

Introduction to LUMI-G hardware and programming

environment - 11 January 2023

145 |

[Public]

Grafana – L2 Cache (per Channel)

Introduction to LUMI-G hardware and programming

environment - 11 January 2023

146 |

[Public]

NDA NOT REQUIRED | AMD PUBLIC

USE

ROCgdb

Debugging

147 |

[Public]

Rocgdb

• AMD ROCm source-level debugger for Linux

• based on the GNU Debugger (GDB)

• tracks upstream GDB master

• standard GDB commands for both CPU and GPU debugging

• considered a prototype

• focus on source line debugging

• no symbolic variable debugging yet

Introduction to LUMI-G hardware and programming

environment - 11 January 2023

148 |

[Public]

Simple saxpy kernel

classic saxpy operation
one array index = one work-item

size of arrays = 256

two groups
each 128 work-items

0 work-items 63 0 work-items 63 0 work-items 63 0 work-items 63

group 0 group 1

wave 0 wave 1 wave 2 wave 3
Introduction to LUMI-G hardware and programming

environment - 11 January 2023

149 |

[Public]

Cause a page fault

Break it by commenting out the allocations.

(better to initialize the pointers to nullptr)

It’s important to synchronize before exit.

Otherwise, the CPU thread may quit before the GPU gets a chance to

report the error.
Introduction to LUMI-G hardware and programming

environment - 11 January 2023

150 |

[Public]

Compilation with hipcc

Need be, set the target
• gfx906 – MI50, MI60, Radeon 7

• gfx908 – MI100

• gfx90a – MI200

Introduction to LUMI-G hardware and programming

environment - 11 January 2023

151 |

[Public]

Execution

• In this example we have already allocated a GPU with salloc

Introduction to LUMI-G hardware and programming

environment - 11 January 2023

152 |

[Public]

Get a page fault

Introduction to LUMI-G hardware and programming

environment - 11 January 2023

153 |

[Public]

Execution with rocgdb

Introduction to LUMI-G hardware and programming

environment - 11 January 2023

154 |

[Public]

Get more information

Reports segmentation fault in the saxpy kernel.

Introduction to LUMI-G hardware and programming

environment - 11 January 2023

155 |

[Public]

Compile with -ggdb

Introduction to LUMI-G hardware and programming

environment - 11 January 2023

156 |

[Public]

Get more details

more details
• what kernel

• what file:line

But where’s my stack trace?

To get exceptions reported precisely: set amdgpu precise-memory onIntroduction to LUMI-G hardware and programming

environment - 11 January 2023

157 |

[Public]

List threads

What segfaulted is a GPU wave.

It does not have your CPU stack.

List threads to see what’s going on.

Introduction to LUMI-G hardware and programming

environment - 11 January 2023

158 |

[Public]

Switch to the CPU thread

t 1

(thread 1)

It’s in the HSA runtime.

But how did it get there?

Introduction to LUMI-G hardware and programming

environment - 11 January 2023

159 |

[Public]

See the stack trace of the CPU thread

HSA runtime

HIP runtime

where

Introduction to LUMI-G hardware and programming

environment - 11 January 2023

160 |

[Public]

Quick tip

• Frontier and LUMI CPUs have 64 cores / 128 threads.

• If you’re debugging an app with OpenMP threading and OMP_NUM_THREADS is not set

you will see 128 CPU threads in rocgdb.

• Set OMP_NUM_THREADS=1 when debugging GPU codes.

Introduction to LUMI-G hardware and programming

environment - 11 January 2023

161 |

[Public]

”GUIs”

rocgdb -tui saxpy cgdb -d rocgdb saxpy

Introduction to LUMI-G hardware and programming

environment - 11 January 2023

162 |

[Public]

Breakpoint

Declare a breakpoint

Introduction to LUMI-G hardware and programming

environment - 11 January 2023

Running with the keystroke

r and stops at the

breakpoint

163 |

[Public]

Running and architecture

More information about the

thread with the command

i th

We can see on what

device is the thread with

the show architecture

command

Introduction to LUMI-G hardware and programming

environment - 11 January 2023

164 |

[Public]

Breakpoint kernel and architecture

Breakpoint on the kernel

called saxpy with the

command b saxpy

You can continue with he

command c

We can see on what

device is the thread with

the command

show architecture

Introduction to LUMI-G hardware and programming

environment - 11 January 2023

165 |

[Public]

rocgdb + gdbgui

breakpoint in CPU code

Introduction to LUMI-G hardware and programming

environment - 11 January 2023

166 |

[Public]

Rocgdb with GUI

Execute:

rocgdb –tui saxpy

Source code

Terminal

Introduction to LUMI-G hardware and programming

environment - 11 January 2023

167 |

[Public]

amdgcn:gfx90_

scalar registers (8KB)

scalar unit

Local Data Share (64KB)

scheduler

L1 cache (16KB)

typically described as
• a 16-way SIMD unit
• with 64KB of registers

CU
compute unit

Introduction to LUMI-G hardware and programming

environment - 11 January 2023

168 |

[Public]

amdgcn:gfx90_

scalar registers (8KB)

scalar unit

Local Data Share (64KB)

scheduler

L1 cache (16KB)

typically described as
• a 16-way SIMD unit
• with 64KB of registers

CU
compute unit

from the standpoint of rocGDB
• a core
• executing up to 10 threads
• with vector length of 64 lanes
• and containing 256 vector registers

Introduction to LUMI-G hardware and programming

environment - 11 January 2023

169 |

[Public]

List threads / waves

i th
(info threads)

some CPU threads

4 GPU “threads” (waves)

Introduction to LUMI-G hardware and programming

environment - 11 January 2023

170 |

[Public]

Wave details

agent-id:queue-id:dispatch-num:wave-id (work-group-x,work-group-y,work-group-z)/work-group-thread-index

agent (GPU) ID

(HSA) queue ID

dispatch number

wave ID

workgroup
(x, y, z)

wave ID
(within group)

Introduction to LUMI-G hardware and programming

environment - 11 January 2023

171 |

[Public]

Temporary breakpoints and Assembly

• Temporary

breakpoint for saxpy

kernel:

tbreak saxpy

• Split to see source

code and assembly:

layout split

• For this example we

have compiled with

default -O3

• Compiling with -O0 it

could give better ISA

correlation

Source code

Assembly

Terminal

Introduction to LUMI-G hardware and programming

environment - 11 January 2023

172 |

[Public]

List agents

info agents
➢ shows devices + properties

gfx90a
MI200 series

SIMDs
(CUs x 4)

max waves
(SIMDs x 8)

Introduction to LUMI-G hardware and programming

environment - 11 January 2023

173 |

[Public]

List queues

info queues
➢ shows HSA queues

agent ID queue ID (AQL) packets read (AQL) packets written

Introduction to LUMI-G hardware and programming

environment - 11 January 2023

174 |

[Public]

Dispatch details

agent ID

queue ID

dispatch ID

grid dimensions group dimensions kernel

info dispatches
➢ shows kernel dispatches

Introduction to LUMI-G hardware and programming

environment - 11 January 2023

175 |

[Public]

More resources

• /opt/rocm-5.2.0/share/doc/rocgdb/

• rocannotate.pdf

• rocgdb.pdf

• rocrefcard.pdf

• rocstabs.pdf

• For LUMI: /opt/rocm-5.0.2/share/doc/rocgdb/

Introduction to LUMI-G hardware and programming

environment - 11 January 2023

176 |

[Public]

AMD_LOG_LEVEL=3

Introduction to LUMI-G hardware and programming

environment - 11 January 2023

177 |

[Public]

Disclaimer
The information presented in this document is for informational purposes only and may contain technical inaccuracies, omissions,

and typographical errors. The information contained herein is subject to change and may be rendered inaccurate for many reasons, including

but not limited to product and roadmap changes, component and motherboard version changes, new model and/or product releases,

product differences between differing manufacturers, software changes, BIOS flashes, firmware upgrades, or the like. Any computer system has

risks of security vulnerabilities that cannot be completely prevented or mitigated. AMD assumes no obligation to update or otherwise correct

or revise this information. However, AMD reserves the right to revise this information and to make changes from time to time to the content hereof

without obligation of AMD to notify any person of such revisions or changes.

THIS INFORMATION IS PROVIDED ‘AS IS.” AMD MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE CONTENTS

HEREOF AND ASSUMES NO RESPONSIBILITY FOR ANY INACCURACIES, ERRORS, OR OMISSIONS THAT MAY APPEAR IN THIS

INFORMATION. AMD SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS

FOR ANY PARTICULAR PURPOSE. IN NO EVENT WILL AMD BE LIABLE TO ANY PERSON FOR ANY RELIANCE, DIRECT, INDIRECT,

SPECIAL, OR OTHER CONSEQUENTIAL DAMAGES ARISING FROM THE USE OF ANY INFORMATION CONTAINED HEREIN, EVEN IF AMD

IS EXPRESSLY ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Third-party content is licensed to you directly by the third party that owns the content and is not licensed to you by AMD. ALL LINKED THIRD-

PARTY CONTENT IS PROVIDED “AS IS” WITHOUT A WARRANTY OF ANY KIND. USE OF SUCH THIRD-PARTY CONTENT IS DONE AT

YOUR SOLE DISCRETION AND UNDER NO CIRCUMSTANCES WILL AMD BE LIABLE TO YOU FOR ANY THIRD-PARTY CONTENT. YOU

ASSUME ALL RISK AND ARE SOLELY RESPONSIBLE FOR ANY DAMAGES THAT MAY ARISE FROM YOUR USE OF THIRD-PARTY

CONTENT.

© 2022 Advanced Micro Devices, Inc. All rights reserved. AMD, the AMD Arrow logo, ROCm, Radeon, Radeon Instinct and combinations thereof

are trademarks of Advanced Micro Devices, Inc. in the United States and/or other jurisdictions. Other names are for informational purposes only

and may be trademarks of their respective owners.

The OpenMP name and the OpenMP logo are registered trademarks of the OpenMP Architecture Review Board.
Introduction to LUMI-G hardware and programming

environment - 11 January 2023

178 |

[Public]

Questions?

Introduction to LUMI-G hardware and programming

environment - 11 January 2023

	Slide 1: Introduction to AMD ROCm™ Ecosystem
	Slide 2: Agenda
	Slide 3: Introduction/Expectations
	Slide 4: Introduction to the Architecture
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11: From AMD MI100 to AMD MI250X
	Slide 12: LUMI – MI250X
	Slide 13: AMD GCN GPU Hardware Layout (MI250X one GCD)
	Slide 14: AMD GCN GPU Hardware Layout (MI250X one GCD)
	Slide 15: ROCm and HIP
	Slide 16: ROCm - Radeon Open Compute Platform
	Slide 17: What is HIP?
	Slide 18: Getting started with HIP
	Slide 19: CUDA APIs vs HIP API
	Slide 20: Launching a kernel
	Slide 21: Device Kernels: The Grid
	Slide 22: Device Kernels: The Grid
	Slide 23: The Grid: blocks of threads in 1D
	Slide 24: The Grid: blocks of threads in 2D
	Slide 25: Kernels
	Slide 26: Kernels
	Slide 27: Difference between HIP and CUDA
	Slide 28: Usage of hipcc
	Slide 29: HIP API
	Slide 30: Error Checking
	Slide 31: Streams
	Slide 32: Streams
	Slide 33: Streams
	Slide 34: SIMD operations
	Slide 35: Porting Applications to HIP
	Slide 36: HIPification Tools for faster code porting
	Slide 37: Hipify tools
	Slide 38: Hipify-perl
	Slide 39: Hipify-clang
	Slide 40: Gotchas
	Slide 41: What to look for when porting:
	Slide 42: A Tale of Host and Device
	Slide 43: Fortran
	Slide 44: CUDA Fortran -> Fortran + HIP C/C++
	Slide 45: Alternatives to HIP
	Slide 46: OpenMP Offload GPU Support
	Slide 47: Understanding the hardware options
	Slide 48: ROCm Libraries
	Slide 49: ROCm GPU Libraries
	Slide 50: AMD Math Library Equivalents: “Decoder Ring”
	Slide 51: AMD Math Library Equivalents: “Decoder Ring”
	Slide 52: Some Links to Key Libraries
	Slide 53: AMD Machine Learning Library Support
	Slide 54: Profiling
	Slide 55: Background – AMD Profilers
	Slide 56: Background – AMD Profilers
	Slide 57: Rocprof
	Slide 58: AMD GPU Profiling
	Slide 59: rocProf: Getting started + useful flags
	Slide 60: rocProf: Collecting application traces
	Slide 61: rocProf: Information about the kernels
	Slide 62: rocProf and Perfetto: Collecting and visualizing application traces
	Slide 63: Perfetto: Visualizing application traces
	Slide 64: Perfetto: Kernel and flows
	Slide 65: Perfetto: Information about kernels and flow events
	Slide 66: rocprof: Collecting application traces with markers
	Slide 67: rocprof: Collecting hardware counters
	Slide 68: rocprof: Commonly Used Counters
	Slide 69: Performance counters tips and tricks
	Slide 70: rocprof: Multiple MPI Ranks
	Slide 71: Profiling Per MPI Rank: From Another Node(1)
	Slide 72: Profiling Per MPI Rank: From Another Node(2)
	Slide 73: rocprof: Profiling Overhead
	Slide 74: Omnitrace
	Slide 75: Omnitrace: Application Profiling, Tracing, and Analysis
	Slide 76: Installation (if required)
	Slide 77: Omnitrace instrumentation modes
	Slide 78: Execution
	Slide 79: Omnitrace configuration (I)
	Slide 80: Omnitrace configuration (II)
	Slide 81: Create a configuration file
	Slide 82: Executing MatrixTranspose
	Slide 83: Identify overhead
	Slide 84: Available functions to instrument
	Slide 85: Custom including/excluding functions
	Slide 86: Decreasing profiling overhead
	Slide 87: Executing the new instrumented binary
	Slide 88: Check the list of the GPU calls instrumented
	Slide 89: Visualizing trace
	Slide 90: Visualizing trace
	Slide 91: Hardware counters (I)
	Slide 92: Commonly Used Counters
	Slide 93: Hardware counters (II)
	Slide 94: Execution with hardware counters
	Slide 95: Visualization with hardware counters
	Slide 96: Sampling call-stack (I)
	Slide 97: Sampling call-stack (II)
	Slide 98: How to see kernels timing?
	Slide 99: How to see kernels timing? (II)
	Slide 100: User API
	Slide 101: MPI
	Slide 102: MPI visualizing one Perfetto per MPI process
	Slide 103: Visualizing all the MPI processes in once
	Slide 104: OpenMP®
	Slide 105: OpenMP® (II)
	Slide 106: OpenMP® visualization
	Slide 107: Python™
	Slide 108: Python™ (II)
	Slide 109: Visualizing Python™ Perfeto tracing
	Slide 110: Kokkos (I)
	Slide 111: Kokkos (II)
	Slide 112: Kokkos – Perfetto I
	Slide 113: Kokkos – Perfetto II
	Slide 114: Omnitrace-sample
	Slide 115: Tips & Tricks
	Slide 116: Omniperf
	Slide 117: Omniperf
	Slide 118: Overview - AMD Instinct™ MI200 Architecture
	Slide 119: Performance Analysis on MI200 GPUs - Omniperf
	Slide 120: Empirical Hierarchical Roofline on MI200 - Perfmon Counters
	Slide 121: Empirical Hierarchical Roofline on MI200 - Arithmetic
	Slide 122: Omniperf features
	Slide 123: Client-side installation (if required)
	Slide 124: Omniperf modes
	Slide 125: Omniperf Profiling
	Slide 126: Omniperf workflows
	Slide 127: Omniperf Analyze
	Slide 128: Omniperf Analyze (II)
	Slide 129: Omniperf Analyze (III)
	Slide 130: Omniperf Analyze with standalone GUI
	Slide 131: Omniperf Analyze with standalone GUI (II)
	Slide 132: Omniperf Analyze with standalone GUI (III)
	Slide 133: Roofline Analysis
	Slide 134: Roofline Analysis – Kokkos code
	Slide 135: SPI Resource Allocation
	Slide 136: Grafana – System Info
	Slide 137: Grafana – System Speed-of-Light
	Slide 138: Grafana- Kernel Statistics
	Slide 139: Grafana – Memory Chart Analysis
	Slide 140: Grafana - Roofline
	Slide 141: Grafana – Wavefront & Compute Unit
	Slide 142: Grafana – Instruction Cache & Scalar L1 Data Cache
	Slide 143: Grafana – Vector L1 Data Cache
	Slide 144: Grafana – L2 Cache
	Slide 145: Grafana – L2 Cache (per Channel)
	Slide 146: ROCgdb
	Slide 147: Rocgdb
	Slide 148: Simple saxpy kernel
	Slide 149: Cause a page fault
	Slide 150: Compilation with hipcc
	Slide 151: Execution
	Slide 152: Get a page fault
	Slide 153: Execution with rocgdb
	Slide 154: Get more information
	Slide 155: Compile with -ggdb
	Slide 156: Get more details
	Slide 157: List threads
	Slide 158: Switch to the CPU thread
	Slide 159: See the stack trace of the CPU thread
	Slide 160: Quick tip
	Slide 161: ”GUIs”
	Slide 162: Breakpoint
	Slide 163: Running and architecture
	Slide 164: Breakpoint kernel and architecture
	Slide 165: rocgdb + gdbgui
	Slide 166: Rocgdb with GUI
	Slide 167: amdgcn:gfx90_
	Slide 168: amdgcn:gfx90_
	Slide 169: List threads / waves
	Slide 170: Wave details
	Slide 171: Temporary breakpoints and Assembly
	Slide 172: List agents
	Slide 173: List queues
	Slide 174: Dispatch details
	Slide 175: More resources
	Slide 176: AMD_LOG_LEVEL=3
	Slide 177: Disclaimer
	Slide 178: Questions?
	Slide 179

