
LUMI Hackathon -- GENE-X Summary Report
Jordy Trilaksono
Max Planck Institute for Plasma Physics

Dr. Mou Lin
Max Planck Compute and Data Facility

Date: May 16, 2025
Place: Oslo

Goals for Hackathon

PARALLAX/PAccX with ROCalution

GENE-X
1. Build GENE-X on LUMI with OpenMP offload
2. Build GENE-X (OpenMP offload) and PAccX (HIP)
3. Test GENE-X on LUMI-G with OpenMP offload
4. Do a benchmark: 4-node or 8-node
5. Debug and profile to identify coupling issue with PAccX
6. Debug and profile to identify load imbalance
7. Do a benchmark again: 4-node or 8-node

PARALLAX/PAccX
1. Improve the matrix update of the helmholtz solver, which is taking place on CPU when using rocalution.
2. Further improve the solve part of the helmholtz solver using rocalution library.
3. Parallelize the helmholtz solver with rocalution.

Final goal: couple them together and do final benchmark

Solving Helmhotlz equations on the 2D cross section of ITER Tokamak.
A problem of Ax = b, A is a sparse matrix in CSR format (n_row = 11437831, nnz = 56789255).
Solve it with rocALUTION in parallel.

Build customised rocALUTION with MPI support on LUMI (native one within ROCM does not support multi-GPU).

cmake .. -DSUPPORT_HIP=ON \

-DSUPPORT_MPI=ON \

-DROCM_PATH=${ROCM_PATH} \

-DAMDGPU_TARGETS="gfx90a:xnack-;gfx90a:xnack+" \

-DCMAKE_CXX_COMPILER=CC \

-DCMAKE_C_COMPILER=cc \

-DCMAKE_INSTALL_PREFIX=${INSTALL_PATH}

Option 2: use the existing ones on LUMI (credit to Samuel)
Add the MPI-enabled rocalution lib folder to the CMAKE_PREFIX_PATH to use the right rocALUTION.

module use /pfs/lustrep3/scratch/project_462000394/amd-sw/modules

module load rocalution/3.2.2-rocm-6.0.3

export CMAKE_PREFIX_PATH=/pfs/lustrep3/scratch/project_462000394/amd-sw/rocalution/rocalution-3.2.2-

for-rocm-6.0.3/lib/cmake/rocalution:$CMAKE_PREFIX_PATH

Version matters!: in our mini-benchmark, rocm 6.0.3 yields the best result (as warned by LUMI).
Using rocm 6.2.4 makes GPU-aware MPI ineffective (10% slower than rocm 6.0.3).

Application Side: GENE-X
Mixed-Compiler Toolchains and Build Attempts

Toolchain C C++ Fortran Build Run

GNU cc CC ftn O O

GNU-AMD amdclang amdclang++ ftn O Details below

CCE cc CC ftn O X

GENE-X run with CCE toolchain on CPU fails very early on at a very trivial point in the code without giving so much useful
error output. We came up with a set of compiler flags but perhaps we need to re-evaluate it.

We further investigated GENE-X with GNU-AMD toolchains. In short, the combanitation of PrgEnv-gnu/8.5.0 and
rocm/6.2.2 seems to work with the addition of

Method matters!: before we are using smooth aggregated algebric multigrid (SAAMG) for single GPU. To parallelise it,
we need to use Ruge-Stüben AMG and other setup

p.SetCoarseningStrategy(CoarseningStrategy::PMIS);

p.SetInterpolationType(InterpolationType::ExtPI);

p.SetCoarsestLevel(20);

p.SetInterpolationFF1Limit(false);

Runtime vs GPU No.

The scaling is not ideal, at least it is there.
Further profiling with rocprof and omniprof and omnitrace to further improve it.

export LIBRARY_PATH=$ROCM_PATH/llvm/lib:$LIBRARY_PATH

Note: Unfortunately, mesh generation in PARALLAX, in the equilibrium geometry relevant to production runs, is known
to be not working with gfortran/13 although it works with gfortran/12 and gfortran/14. Therefor here we're using different
run case to test the code.

Here are the runtime status with different combination of GENE-X and PARALLAX backend.

GENE-X PARALLAX Run

CPU: OMP CPU O

CPU: OMP GPU: HIP Fails during solver matrix generation

GPU: OMPX CPU O

GPU: OMPX GPU: HIP Fails during solver matrix generation

Operators Speedup

Vlasov static 8.5X

Vlasov dynamic 11.8X

BGK collision 16.2X

These results were simply on 1 GPU. We didn't have enough time to try multiple GPUs but the full node run (8 MPI
process) with OMP-CPU seems to be fine but at the end we got:

Also in all runs that we have, at the end we got the following warning:

Back with 1 GPU run, we encounter that Vlasov static operator, the largest and most complicated kernel in GENE-X fails in
debug mode (-O0) but runs perfectly in release mode (-O3). Intrumenting the source code with the following allows us to
have pinpoint verbose diagnostic of the OpenMP offload kernel:

The metrics are as follow:

Metrics Debug mode Release mode

#teams 660 660

#threads 256 256

OMP: OpenMP on CPU and OMPX: OpenMP offload on GPU
HIP issue: The spot where the runtime fails typically doesn't fail like that, especially when it runs on CPU.
For OMPX-CPU run, the total time per timestep is still lower than that with OMP-CPU but we observe some speedups
for the main 3 operators or compute kernels.

BLAS : Bad memory unallocation! : 50 0x14f828e3a000

BLAS : Bad memory unallocation! : 50 0x14a1ece3a000

BLAS : Bad memory unallocation! : 50 0x14bd6ce3a000

BLAS : Bad memory unallocation! : 50 0x145d98e3a000

[CRAYBLAS_WARNING] Application linked against multiple cray-libsci libraries

extern "C" void __tgt_set_info_flag(uint32_t);

...

__tgt_set_info_flag(-1);

... kernel needs to be debugged ...

__tgt_set_info_flag(0);

Metrics Debug mode Release mode

ConstWGSize 256 256

lds_usage 9976B 8432B

#sgpr 108 106

#vgpr 118 338

#sgpr spill 2 50

#vgpr spill 0 0

#trip 133592960 133592960

GENE-X/PARALLAX ROCalution Integration Efforts
The integration here only allows ROCalution to use 1 GPU / MPI process, the same as GENE-X.

GENE-X PARALLAX Run

CPU: OMP GPU: ROCalution OK but slow

GPU: OMPX GPU: ROCalution Fails during solver matrix generation

The solver are faster but somehow rocalution affect the OpenMP runtime of GENE-X native kernels and significantly slow
them down. Setting the following still results the same slowdown:

// Disable OpenMP thread affinity

rocalution::set_omp_affinity_rocalution(false);

// Disable OpenMP threading

rocalution::set_omp_threads_rocalution(1);

