LUMI Hackathon -- GENE-X Summary Report

Jordy Trilaksono
Max Planck Institute for Plasma Physics

Dr. Mou Lin
Max Planck Compute and Data Facility

Date: May 16, 2025
Place: Oslo

Goals for Hackathon

GENE-X
Build GENE-X on LUMI with OpenMP offload
Build GENE-X (OpenMP offload) and PAccX (HIP)
Test GENE-X on LUMI-G with OpenMP offload
Do a benchmark: 4-node or 8-node
Debug and profile to identify coupling issue with PAccX
Debug and profile to identify load imbalance
Do a benchmark again: 4-node or 8-node
PARALLAX/PAccX
Improve the matrix update of the helmholtz solver, which is taking place on CPU when using rocalution.
Further improve the solve part of the helmholtz solver using rocalution library.
Parallelize the helmholtz solver with rocalution.
Final goal: couple them together and do final benchmark

PARALLAX/PAccX with ROCalution

Solving Helmhotlz equations on the 2D cross section of ITER Tokamak.
A problem of Az = b, A is a sparse matrix in CSR format (n_row = 11437831, nnz = 56789255).
Solve it with rocALUTION in parallel.

Sparsity Pattern of the Matrix

Column Index

a0 0.z 4 G a8 1.0
Aow Indox 1e?

Original matrix

Build customised rocALUTION with MPI support on LUMI (native one within ROCM does not support multi-GPU).

cmake .. —-DSUPPORT_HIP=ON \
-DSUPPORT_MPI=ON \
—-DROCM_PATH=${ROCM_PATH} \
-DAMDGPU_TARGETS="gfx90a:xnack-;gfx90a:xnack+" \
—-DCMAKE_CXX_COMPILER=CC \
—-DCMAKE_C_COMPILER=cc \
—DCMAKE _INSTALL_PREFIX=${INSTALL_PATH}

Option 2: use the existing ones on LUMI (credit to Samuel)
Add the MPI-enabled rocalution lib folder to the CMAKE_PREFIX_PATH to use the right rocALUTION.

module use /pfs/lustrep3/scratch/project_462000394/amd-sw/modules

module load rocalution/3.2.2-rocm-6.0.3

export CMAKE_PREFIX_PATH=/pfs/lustrep3/scratch/project_u62000394/amd-sw/rocalution/rocalution-3.2.2-
for-rocm-6.0.3/1ib/cmake/rocalution: $CMAKE_PREFIX_PATH

Version matters!: in our mini-benchmark, rocm 6.0.3 yields the best result (as warned by LUMI).
Using rocm 6.2.4 makes GPU-aware MPI ineffective (10% slower than rocm 6.0.3).

Method matters!: before we are using smooth aggregated algebric multigrid (SAAMG) for single GPU. To parallelise it,
we need to use Ruge-Stiiben AMG and other setup

p.SetCoarseningStrategy(CoarseningStrategy: :PMIS);
p.SetInterpolationType(InterpolationType: :ExtPI);
p.SetCoarsestLevel(20);
p.SetInterpolationFFlLimit(false);

Runtime vs GPU No.

Runtime vs. Number of GPUs

035

0.30

Time (seconds)
o
N
(9]

0.20

0.15E

1 2 3 4 5 6 7 8
Number of GPUs

The scaling is not ideal, at least it is there.

Further profiling with rocprof and omniprof and omnitrace to further improve it.

Application Side: GENE-X

Mixed-Compiler Toolchains and Build Attempts

Toolchain Cc C++ Fortran Build Run
GNU cc cC ftn 0] O

GNU-AMD amdclang amdclang++ ftn 0] Details below
CCE cc cC ftn] X

GENE-X run with CCE toolchain on CPU fails very early on at a very trivial point in the code without giving so much useful
error output. We came up with a set of compiler flags but perhaps we need to re-evaluate it.

We further investigated GENE-X with GNU-AMD toolchains. In short, the combanitation of PrgEnv-gnu/8.5.0 and
rocm/6.2.2 seems to work with the addition of

export LIBRARY_PATH=$ROCM_PATH/1lvm/1lib:$LIBRARY_PATH

Note: Unfortunately, mesh generation in PARALLAX, in the equilibrium geometry relevant to production runs, is known

to be not working with gfortran/13 although it works with gfortran/12 and gfortran/14. Therefor here we're using different

run case to test the code.

Here are the runtime status with different combination of GENE-X and PARALLAX backend.

GENE-X PARALLAX Run
CPU: OMP CPU O
CPU: OMP GPU: HIP Fails during solver matrix generation
GPU: OMPX CPU O
GPU: OMPX GPU: HIP Fails during solver matrix generation

OMP: OpenMP on CPU and OMPX: OpenMP offload on GPU
HIP issue: The spot where the runtime fails typically doesn't fail like that, especially when it runs on CPU.

For OMPX-CPU run, the total time per timestep is still lower than that with OMP-CPU but we observe some speedups
for the main 3 operators or compute kernels.

Operators Speedup
Vlasov static 8.5X
Vlasov dynamic 11.8X
BGK collision 16.2X

These results were simply on 1 GPU. We didn't have enough time to try multiple GPUs but the full node run (8 MPI
process) with OMP-CPU seems to be fine but at the end we got:

BLAS : Bad memory unallocation! : 50 0x14f828e3a000
BLAS : Bad memory unallocation! : 50 Oxldalece3a000
BLAS : Bad memory unallocation! : 50 0Ox1dbd6ce3a000
BLAS : Bad memory unallocation! : 50 0x145d98e3a000

Also in all runs that we have, at the end we got the following warning:

[CRAYBLAS_WARNING] Application linked against multiple cray-libsci libraries

Back with 1 GPU run, we encounter that Vlasov static operator, the largest and most complicated kernel in GENE-X fails in
debug mode (-O0) but runs perfectly in release mode (-O3). Intrumenting the source code with the following allows us to
have pinpoint verbose diagnostic of the OpenMP offload kernel:

extern "C" void __tgt_set_info_flag(uint32_t);
__tgt_set_info_flag(-1);
. kernel needs to be debugged ...

__tgt_set_info_flag(0);

The metrics are as follow:

Metrics Debug mode Release mode
#teams 660 660
#threads 256 256

Metrics Debug mode Release mode

ConstWGSize 256 256
Ids_usage 9976B 8432B
#sgpr 108 106
#vgpr 118 338
#sgpr spill 2 50
#vgpr spill 0 0
#trip 133592960 133592960

GENE-X/PARALLAX ROCalution Integration Efforts

The integration here only allows ROCalution to use 1 GPU / MPI process, the same as GENE-X.

GENE-X PARALLAX Run
CPU: OMP GPU: ROCalution OK but slow
GPU: OMPX GPU: ROCalution Fails during solver matrix generation

The solver are faster but somehow rocalution affect the OpenMP runtime of GENE-X native kernels and significantly slow
them down. Setting the following still results the same slowdown:

// Disable OpenMP thread affinity
rocalution: :set_omp_affinity_rocalution(false);

// Disable OpenMP threading
rocalution: :set_omp_threads_rocalution(1l);

