Decoupled Torch Network-Aware
Training on Interlinked Online Nodes
DeToNATION

Communication-efficient training on - and between HPC
Infrastructures

Mogens Henrik From, Jacob Nielsen and Gianluca Bermina SDU PA
Supervised by Peter Schneider-Kamp and Lukas Galke Qs

W) ordbogen a/s

Training Neural Networks

Communication takes time

Distributed Data Parallel (DDP)

{ Dataloader }

I
\

@9

GPU 3

®

GPU 2

@

GPU 1

o

GPUO

Forward/
Backward pass

Forward/
Backward pass

—

Forward/
Backward pass

Forward/
Backward pass

Synchronize

1

Synchronize
gradients

|

Update
Model

Dataloader J

Update
Model

Update
Model

Update
Model

|

Get
weights

‘ Forward

pass

Forward
pass

1
\C.
-

. Forward

pass

1

. Forward

pass

Get
weights

Fully Sharded Data Parallel (FSDP)

-

‘ Backward

pass

-

Backward
pass

|
\
~

. Backward

pass

| Backward

pass

J

|

Synchronize

gradients

Update

" model
" J

! Update
model

] /| Update
model

. Update
model

The Problem

Communication takes time

 Communicating between distributed training processes is expensive

* Distributed training generally scales bad on HPCs

* Using significant amount of time communicating /instead of computing!

e Bottlenecks:
e |nterconnect speed

 Network congestion both internally and externally.

A Solution - Decoupled Momentum - DeMo

Communication takes time

 Decoupled Momentum’

* Only exchange fast moving
components in the gradients

* Only supports DDP

* Does not scale to large models

1: DeMo: Decoupled Momentum Optimization, Bowen Peng, Jeffrey Quesnelle,

qt " ."‘ '-'::-t- t
¥haa.. et Taa. | LW TR TR, Levals
% o -
~, it.. w .
.....
Ya, 000,
............
...........
..............
N L R Y T AR A Y e?® ",
..... ‘. g 1 » s * ...
‘‘‘‘‘‘

& Lausel) AT AT P \
“““““““

""""""
.......

& et et e, e, T) N
......
.........
.............

& " ey

DeMo Communication DeMo Communication

Distributed Data Parallel

Diederik P. Kingma, https://arxiv.org/abs/2411.19870

https://arxiv.org/abs/2411.19870

Our Solution
Extending from DDP to FSDP - and beyond

* Introducing FSDP into the DeMo-

GPUQ - GPU 1 GPUQ - GPU 1
Scheme
‘9t“,. . 91‘ . .
+ FlexDeMo I | i
9; 4L . A th 4L Tt A
* |Introducing different optimisers al. g ol . g
* Introducing new parameter replicator P P N
S't rateg |eS FlexDeMo Communication N FlexDeMo Communication

Fully Sharded Data Parallel

Preliminary Result

Communication takes time

* |Introducing FSDP into the
DeMo-Scheme

 FlexDeMo
* Replicators

e DeMo

0.096
0.095
0.094
0.093
0.092
0.091
0.09
0.089
0.088
0.087
0.086
0.085
0.084
0.083
0.082
0.081
0.08
0.079
0.078
0.077
0.076
0.075
0.074
0.073
0.072
0.071
1 2 3 4 5 6

Average bandwidth for different replicators

2000

e Random

1500
2]
Q
2
=
= 1000
g
3
E 500
(a8
0

Random 1/16 Full sync

1/16

DCT 4/64 Random 2/16 Full sync 1/1

7

8

9

10

1

12

13

14

15

16

"Random 2/16 (same
"Random 1/16"

"Full sync 1/1 step”
"Full sync 1/16 step"
"DCT 4/64"

17

18

Steps

19 =

0

What we are working on

Communication takes time

e Scale up experiments
* Number of Nodes

e Model Sizes

e Problems and domains.

* |nvestigating behaviour of decoupled optimisers (SGD, AdamW)

» Different methods for selecting which data to synchronise across training-
processes.

» fast moving components are not necessarily optimal.

What we are working on

Communication takes time

 Benchmarked on NVIDIA platforms
 Small local computer clusters
 SDU UCloud

e Tested on LUMI (for AMD support)
* A large scale run on LUMI remains

 Code available at: https://github.com/schneiderkamplab/DeToNATION

https://github.com/schneiderkamplab/DeToNATION

Hackathon goals

Our plan for the week

* Detailed benchmarks

 Performance of Random vs. DeMo replicator (with a few accelerators)
* Scaling to many (1287?) accelerators

« How does performance of the two methods scale?

 How is the network impacted and/or bottlenecking the training?

» |dentifying bottlenecks in the implementation / improving performance

