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DeToNATION

Communication-efficient training on - and between HPC
Infrastructures
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Training Neural Networks

Communication takes time

Distributed Data Parallel (DDP)
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Fully Sharded Data Parallel (FSDP)
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The Problem

Communication takes time

 Communicating between distributed training processes is expensive

* Distributed training generally scales bad on HPCs

* Using significant amount of time communicating /instead of computing!

e Bottlenecks:
e |nterconnect speed

 Network congestion both internally and externally.



A Solution - Decoupled Momentum - DeMo

Communication takes time

 Decoupled Momentum’

* Only exchange fast moving
components in the gradients

* Only supports DDP

* Does not scale to large models

1: DeMo: Decoupled Momentum Optimization, Bowen Peng, Jeffrey Quesnelle,

qt " ."‘ '-'::-t- t
¥haa.. et Taa. | LW TR TR, Levals
% o -
~, it.. w .
.....
Ya, 000,
............
...........
..............
N L R Y T AR A Y e?® ",
..... ‘. g 1 » s * ...
‘‘‘‘‘‘

& Lausel) AT AT P \
“““““““
----
""""""
.......

& et et e, e, T ) N
......
.........
.............

& " ey
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Distributed Data Parallel

Diederik P. Kingma, https://arxiv.org/abs/2411.19870


https://arxiv.org/abs/2411.19870

Our Solution
Extending from DDP to FSDP - and beyond

* Introducing FSDP into the DeMo-
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Preliminary Result

Communication takes time

* |Introducing FSDP into the
DeMo-Scheme

 FlexDeMo
* Replicators

e DeMo
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What we are working on

Communication takes time

e Scale up experiments
* Number of Nodes

e Model Sizes

e Problems and domains.

* |nvestigating behaviour of decoupled optimisers (SGD, AdamW)

» Different methods for selecting which data to synchronise across training-
processes.

» fast moving components are not necessarily optimal.



What we are working on

Communication takes time

 Benchmarked on NVIDIA platforms
 Small local computer clusters
 SDU UCloud

e Tested on LUMI (for AMD support)
* A large scale run on LUMI remains

 Code available at: https://github.com/schneiderkamplab/DeToNATION



https://github.com/schneiderkamplab/DeToNATION

Hackathon goals

Our plan for the week

* Detailed benchmarks

 Performance of Random vs. DeMo replicator (with a few accelerators)
* Scaling to many (1287?) accelerators

« How does performance of the two methods scale?

 How is the network impacted and/or bottlenecking the training?

» |dentifying bottlenecks in the implementation / improving performance



