
DeToNATION
LUMI Hackathon

12-16th May, 2025

Mogens Henrik From & Jacob Nielsen
University of Southern Denmark (SDU) · Ordbogen A/S

Inter-node
communication

Forward pass
(intra-node)

autograd

530 ms

760 ms

2880 ms

Communication bound

Communication bound: Latency bound?

Sign before vs after communication

● Sign parameters gives us a ternary system: { -1, 0, 1 }
○ can be represented in 2 bits → packing 4 (5) values into an int8 structure.

● This reduces the communication requirements in all_reduce or all_gather
● However, the training behaviour is different, yielding worse performance.

Sign after communication:
0: Epoch 1 training loss : 0.5599
0: Epoch 1 validation Loss: 0.4720
0: Epoch 2 training loss : 0.4575
0: Epoch 2 validation Loss: 0.4283
0: Epoch 3 training loss : 0.4237
0: Epoch 3 validation Loss: 0.4010

Sign before communication:
0: Epoch 1 training loss : 1.0179
0: Epoch 1 validation Loss: 0.7328
0: Epoch 2 training loss : 0.7114
0: Epoch 2 validation Loss: 0.6753
0: Epoch 3 training loss : 0.6736
0: Epoch 3 validation Loss: 0.6508

The memory issue

Sharding to 2 GPUs Sharding to 8 GPUs

torch.cuda.memory._record_memory_history()
step()
torch.cuda.memory._dump_snapshot()

The memory issue

● We noticed that the memory reduction on each GPU was not as expected
when sharding

● In short: PyTorch's CUDA Caching Allocator

FSDP peak memory Peak memory: 0.242 GB
FSDP peak memory Peak max memory: 0.484 GB

FSDP peak memory Peak memory: 0.122 GB
FSDP peak memory Peak max memory: 0.606 GB2 GPUs:

1 GPU:

NCCL Variables

● The small details, with the big consequences.
● Small scale experiments, Nodes 2x8, Batch size 64.
● NCCL_MIN_NCHANNELS / NCCL_MAX_NCHANNELS

○ Default NCCL Auto: 1.86 s/it
○ min. 16, max. 32 1.30 s/it
○ min. 32, max. 32 1.03 - ~1.20 s/it

● NCCL_NET_GDR_LEVEL=PHB
○ Use GPU Direct RDMA when GPU and NIC are on the same NUMA node.
○ No direct change, probably already used automatically

● NCCL_ALGO
○ Still pending
○ Here we want to test on larger set of nodes

Tooling

● Helping us doing sanity checks on the allocated nodes and their connections
with HPC Affinity Tracker (HPCAT)

● RCCL Tests making sanity checks together with HPCAT results.

● Using NCCL Debug outputs in trying to analyse the actual communication

Thanks for all guidance!

