

Optimizing SOD2D for LUMI

Mohammad Umair[†] and Panagiotis-Eleftherios Eleftherakis[§]

⁺FLOW, Engineering Mechanics, KTH Royal Institute of Technology, Sweden [§] Microprocessors and Digital Systems Laboratory, National Technical University of Athens, Greece

Hackathon: Optimizing for AMD GPUs 2024 14-18 October 2024, Brussels (Belgium)

SOD2D: Spectral high-Order coDe **2** solve partial Differential equations

A new Continuous Galerkin High-Order Spectral Element Method (CG-SEM) code designed to perform numerical simulations of both turbulent compressible and incompressible flows.

Developed with the aim to target large scale Computational Fluid Dynamics simulations for engineering applications by exploiting the capabilities of the leading-edge extreme-scale HPC architectures.

Developed at

VETENSKAP OCH KONST

Barcelona

Center

Supercomputing

Oriol | FHMKUHI Leading Researcher

Iordi MUELA CASTRO **Recognized Researcher**

Lucas GASPARINO First Stage Researcher

Users & Developers at KTH

Mohammad UMAIR Postdoctoral Researcher

Ricardo VINUESA Principal Investigator

Fran, ALCÁNTARA-ÁVILA Postdoctoral Researcher

Pol SUÁREZ PhD Student

Sotirios Xydis Assistant Professor

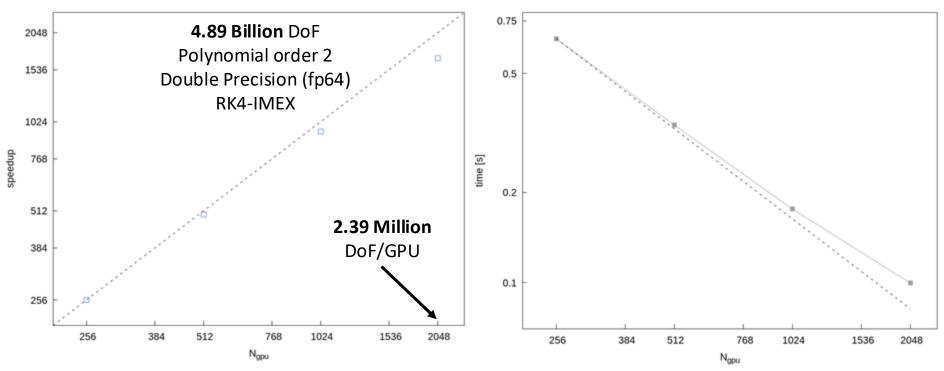
G. Anagnostopoulos PhD Student

K. Iliakis

Postdoc Researcher

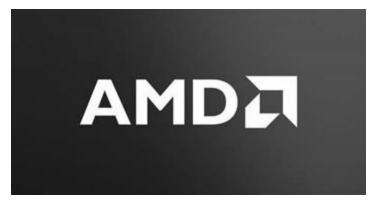
P.-E. Eleftherakis PhD Student

Marcial SANCHIS PhD Student



© MIT license

Carried out in MareNostrum 5 ACC (Accelerated Partition) NVIDIA Hopper H100 64GB HBM2


Source: Development team at

SOD2D LUMI Porting and Optimization Project

<u>KTH</u>

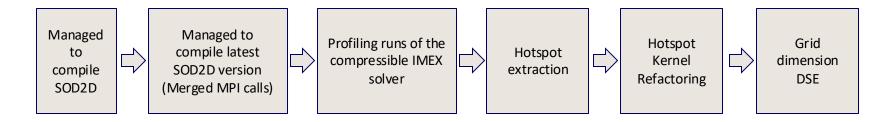
Mohammad UMAIR Postdoctoral Researcher

Ricardo VINUESA Principal Investigator

Fran. ALCÁNTARA-ÁVILA Postdoctoral Researcher

Sotirios Xydis Assistant Professor

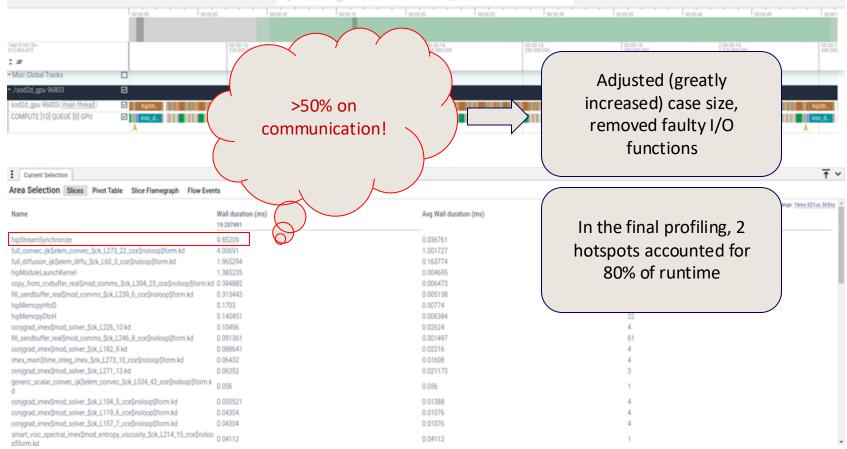
G. An agnostopoulos PhD Student


K. Iliakis P.-E. Eleftherakis Postdoc Researcher PhD Student

With help from Jing Gong and Jonathan Vincent from PDC Center for High Performance Computing, and Jean-Yves Vet from Hewlett Packard Enterprise (HPE).

<u>NTUA</u>

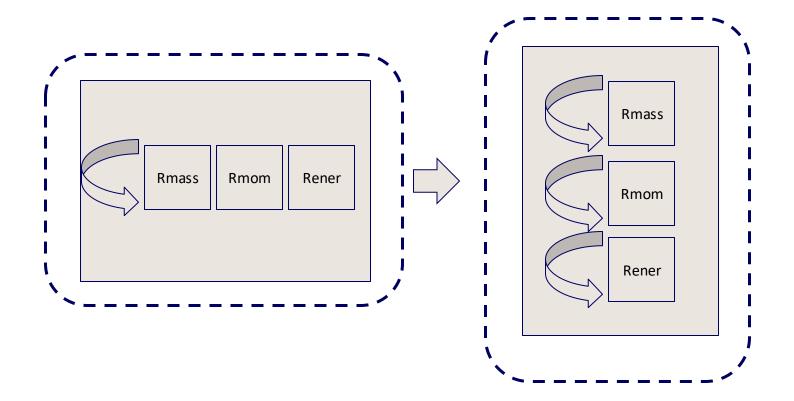
Accomplished goals



Indicative Specification	AMD MI250X (LUMI)	NVIDIA H100	NVIDIA DGX A100 (per GPU)
Peak FP64 FLOPS	47.9 TFLOPS	30 TFLOPS	19.5 TFLOPS
Peak FP32 FLOPS	47.9 TFLOPS	60 TFLOPS	39 TFLOPS
Memory Bandwidth	3.28 TB/s	2.0 TB/s	1.6 TB/s
Peak Power	500W (LUMI)	700W	500W
SOD2D norm SLOWDOWN	~6x	1x	2x
SOD2D PPW deterioration	~4.3x	1x	~1.4x

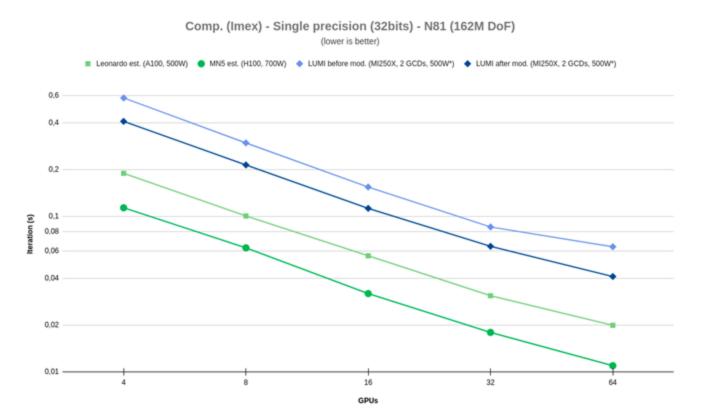
Initial Profiling

Q. Search or type '>' for commands or '.' for SQL mode

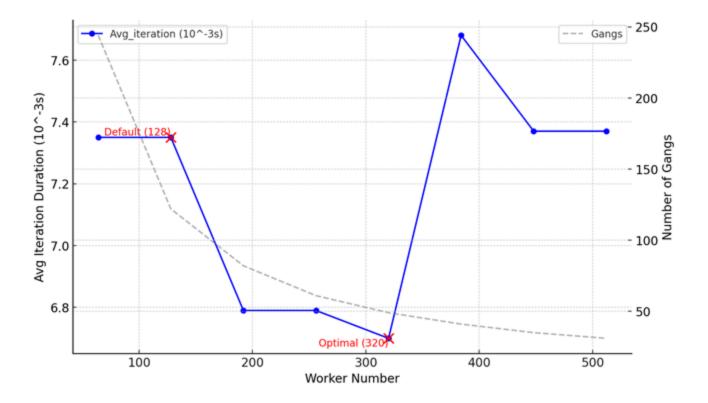


Register spilling of the hotspots

Metric_ID	Metric	Avg	Min	Max	Unit
7.1.0	Grid Size	16384000.00	16384000.00	16384000.00	Work items
7.1.1 Workgroup Size		256.00	256.00	256.00	Work items
7.1.2 Total Wavefronts		0.00	0.00	0.00	Wavefronts
7.1.3	Saved Wavefronts	0.00	0.00	0.00	 Wavefronts
7.1.4	.1.4 Restored Wavefronts		0.00	0.00	Wavefronts
7.1.5 VGPRs		128.00	128.00	128.00	Registers
7.1.6 AGPRs		0.00	0.00	0.00	Registers
7.1.7	SGPRs	96.00	96.00	96.00	 Registers
7.1.8	LDS Allocation	4608.00	4608.00	4608.00	Bytes
7.1.9	Scratch Allocation	624.00	624.00	624.00	Bytes/workitem



Kernel Code refactoring to reduce spilling



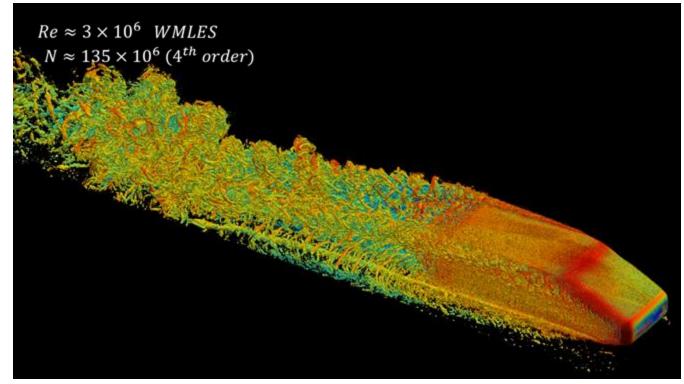
Avg Iteration Duration and Gangs vs Worker Number

- With N=86, full_convec_ijk took 53.60% of the iteration time
- Splitting the kernel in 3 sped up that kernel by deducing register spilling.
- Changing the launch bounds led to an other performance improvment on that kernel
- Now the sum of the 3 split kernels takes about ~33%. which is about the same duration as the next dominant kernel full_diffusion_ijk .Overall iteration improvment is about 30%.
- Final slowdown is ~2x compared to NVIDIA A100

We will focus more on this kernel

- The idea is to refactor this kernel and then move on to the next big kernel
- There has to be a compromise between performance and readability
- SOD2D is a continuously evolving code
- Many new features are being implemented almost every month

Autotuning


- Full integration of the autotuning framework is required:
 - Changing nvtx profiling calls
 - Scripting changes to adjust to slurm and interface with AMD profilers
- More autotuning runs should be included:
 - Different solvers
 - o At scale
 - Different examples

The effort here will reflect in better future

VETENSKAP

© Benet Eiximeno Franch (UPC) and Cristiano Pimenta Silva (Volvo & KTH)

Eiximeno B, Miró A, Rodríguez I, Lehmkuhl O. Toward the Usage of Deep Learning Surrogate Models in Ground Vehicle Aerodynamics. *Mathematics*. 2024; 12(7):998.