
Optimizing SOD2D for LUMI
Mohammad Umair† and Panagiotis-Eleftherios Eleftherakis§

†FLOW, Engineering Mechanics, KTH Royal Institute of Technology, Sweden
§ Microprocessors and Digital Systems Laboratory, National Technical University of Athens, Greece

Hackathon: Optimizing for AMD GPUs 2024
14-18 October 2024, Brussels (Belgium)

SOD2D: Spectral high-Order coDe 2 solve partial Differential equations
A new Continuous Galerkin High-Order Spectral Element Method (CG-SEM) code designed to perform
numerical simulations of both turbulent compressible and incompressible flows.

Developed with the aim to target large scale Computational Fluid Dynamics simulations for engineering
applications by exploiting the capabilities of the leading-edge extreme-scale HPC architectures.

Git repository: https://gitlab.com/bsc_sod2d/sod2d_gitlab/ © MIT license

https://gitlab.com/bsc_sod2d/sod2d_gitlab/

A new Continuous Galerkin High-Order Spectral Element Method (CG-SEM) code designed to perform
numerical simulations of both turbulent compressible and incompressible flows.

Git repository: https://gitlab.com/bsc_sod2d/sod2d_gitlab/

Developed with the aim to target large scale Computational Fluid Dynamics simulations for engineering
applications by exploiting the capabilities of the leading-edge extreme-scale HPC architectures.

Developed at

© MIT license

Oriol LEHMKUHL
Leading Researcher

Jordi MUELA CASTRO
Recognized Researcher

Lucas GASPARINO
First Stage Researcher

Users & Developers at KTH

Mohammad UMAIR
Postdoctoral Researcher

Ricardo VINUESA
Principal Investigator

Fran. ALCÁNTARA-ÁVILA
Postdoctoral Researcher

Marcial SANCHIS
PhD Student

Cristiano PIMENTA
PhD Student (Volvo & KTH)

Pol SUÁREZ
PhD Student

Optimization Team at NTUA

Sotirios Xydis
Assistant Professor

G. Anagnostopoulos
PhD Student

K. Iliakis
Postdoc Researcher

P.-E. Eleftherakis
PhD Student

SOD2D: Spectral high-Order coDe 2 solve partial Differential equations

https://gitlab.com/bsc_sod2d/sod2d_gitlab/

SOD2D Scaling

Source: Development team at

4.89 Billion DoF
Polynomial order 2

Double Precision (fp64)
RK4-IMEX

NASA High-Lift Common Research Model (CRM-HL)

2.39 Million
DoF/GPU

Carried out in MareNostrum 5 ACC (Accelerated Partition)

NVIDIA Hopper H100 64GB HBM2

SOD2D LUMI Porting and Optimization Project

SOD2D LUMI Porting and Optimization Project

Mohammad UMAIR
Postdoctoral Researcher

Ricardo VINUESA
Principal Investigator

Sotirios Xydis
Assistant Professor

G. Anagnostopoulos
PhD Student

K. Iliakis
Postdoc Researcher

P.-E. Eleftherakis
PhD Student

KTH

With help from Jing Gong and Jonathan Vincent from PDC Center for High Performance Computing, and
Jean-Yves Vet from Hewlett Packard Enterprise (HPE).

Fran. ALCÁNTARA-ÁVILA
Postdoctoral Researcher

NTUA

SOD2D LUMI Porting and Optimization Project

Mohammad UMAIR
Postdoctoral Researcher

Ricardo VINUESA
Principal Investigator

Sotirios Xydis
Assistant Professor

G. Anagnostopoulos
PhD Student

K. Iliakis
Postdoc Researcher

P.-E. Eleftherakis
PhD Student

KTH NTUA

With help from Jing Gong and Jonathan Vincent from PDC Center for High Performance Computing, and
Jean-Yves Vet from Hewlett Packard Enterprise (HPE).

Fran. ALCÁNTARA-ÁVILA
Postdoctoral Researcher

SOD2D Auto-Tuning Acceleration Methodology

Blackbox exploration

SOD2D

Profiling

Hotspots

Define
space
Hotspot

#openacc
pragmas

Step 1 Step 2

SOD2D

Hyperparameter
Search

Variant 1 (Coupled Configurations)

Variant 2 (Decoupled Configurations)

HotspotsConfiguration

Hotspot 1

Configuration 1

Hotspot 2 Hotspot 3 Hotspot 4

Configuration
2

Configuration
3

Configuration
4

https://zenodo.org/records/13834895

https://zenodo.org/records/13834895

Whitebox Exploration

OpenTuner
search

• Orthogonal optimization searches
• Avoid end-to-end SOD2D simulation

• Reduced simulation time per config
• Explore more configurations

SOD2D

Hotspot
1

OpenTuner
search

Hotspot
2

OpenTuner
search

Hotspot
3

Combine
Configurations

Whitebox Blackbox

https://zenodo.org/records/13834895

SOD2D Auto-Tuning Acceleration Methodology

https://zenodo.org/records/13834895

Case Performance Gain % No. GPUs

KTH
Provided
Example

10% 1

15% 2

~600% 4

65% 8

Taylor Green Vortex Tuning Results

Case Performance Gain % No. GPUs

4m Nodes
7.3% 1

18.9% 2

8m Nodes
8.4% 1

19.4% 2

Channel Flow Tuning Results

The work regarding TGV has been a collaboration with KTH and has been accepted as a paper in 2024 Date Conference
https://www.refmap.eu/post/refmap-s-scientific-paper-at-the-date-2024-conference
https://zenodo.org/records/13834895

Speedup on 4
GPUs

Outperforms
SOD2D on 8 GPUs

Less Resources
More

Performance

Speedup Obtained by
Multi-GPU System

depends on Example
Case

~4M Elements
Optimal Example Size

per GPU

SOD2D Auto-Tuning Acceleration Results

https://www.refmap.eu/post/refmap-s-scientific-paper-at-the-date-2024-conference
https://zenodo.org/records/13834895
https://www.nsc.liu.se/systems/berzelius/
https://www.nsc.liu.se/systems/berzelius/

• 7 CPU cores correspond to 1 GPU (GCD) on
LUMI

• Non-Uniform GCD communication:
• Intra-package: 4 links
• Inter-package: Either 2 or 1 link

• Up to 5 different inter-GCD bandwidths.
• GCD-to-GCD communication

microbenchmark to quantify the above

AMD CDNA2 Whitepaper

Reference
GCD

BW_0 BW_4

BW_3

BW_1

BW_2

BW_4

BW_3

Stage 1: Target Topology Microbenchmarking

Stage 0: AMD GPU Optimization

• Performance comparison with NVIDIA GPUs
• OpenACC usage modifications
• Miscellaneous code modifications
• Scale-out performance profiling

Input Partitioning and Placement Optimization

https://www.amd.com/content/dam/amd/en/documents/instinct-business-docs/white-papers/amd-cdna2-white-paper.pdf

Input Partitioning and Placement Optimization
Stage 2: Homogeneous Partitioning

Auto-tuning framework

Threads Per
Block

Thread Blocks

New tunable parameters

Number of
visible GPUs

MPI Rank

GeMPa-based
partitioning is
homogeneous

across MPI
processes

Stage 3: Optimal Heterogeneous Partitioning

Maximum parameter values
should be optimal, but this
is input-dependent

subroutine read_gmsh_h5_file_and_do_partitioning_in_parallel

subroutine distribute_ranks2Part_in_mpiRank

!---- Adjust workload for MPI rank i
vecRanksMpiRank(i) = allocatedWork(i)

SOD2D

Static GCD job placement

Distr_0 (BW) Distr_1 (BW)

GCD-to-GCD Bandwidths provided by the microbenchmarking stage

Per-GCD Work distributions
as a function of the BW array

Autotuning

Per-GCD work
distributions are
auto-tuning
knobs

Stage 4: Optimal Heterogeneous Placement

subroutine read_gmsh_h5_file_and_do_partitioning_in_parallel

subroutine distribute_ranks2Part_in_mpiRank

!---- Adjust workload for MPI rank i
vecRanksMpiRank(i) = allocatedWork(i)

SOD2D

8!/(2!*2!) = 10080 GCD placement permutations

Distr_0 (BW) Distr_1 (BW)

GCD-to-GCD Bandwidths provided by the microbenchmarking stage

Autotuning

Optimal Per-GCD work
distribution is found

Miscellaneous code optimizations

• Performing GPU-memory to GPU-
memory MPI operations directly

• Identification of platform-specific
shared memory bottlenecks and
shared memory tuning

• Indirect memory access
optimization

• Loop tiling auto-tuning
• Asynchronous data transfers and

compute overlap
• Kernel fusion

Input Partitioning and Placement Optimization

Windsor Body
© Benet Eiximeno Franch (UPC) and Cristiano Pimenta Silva (Volvo & KTH)

𝑅𝑒 ≈ 3 × 106

𝑁 ≈ 135 × 106 (4𝑡ℎ 𝑜𝑟𝑑𝑒𝑟)

𝑊𝑀𝐿𝐸𝑆

Eiximeno B, Miró A, Rodríguez I, Lehmkuhl O. Toward the Usage of Deep Learning Surrogate Models in Ground

Vehicle Aerodynamics. Mathematics. 2024; 12(7):998.

Font, B., Alcántara-Ávila, F., Rabault, J., Vinuesa, R., & Lehmkuhl, O. (2024). Active flow control
of a turbulent separation bubble through deep reinforcement learning. Journal of Physics:
Conference Series, 2753(1), 012022.

Environment

Combining CFD and Machine Learning with SOD2D
Separation Control using Deep Reinforcement Learning

Summary

SOD2D: Spectral high-Order coDe 2 solve partial Differential equations

• Able to solve compressible and incompressible flows

• Based on Continuous Galerkin Spectral Element Method

• Uses Gauss-Lobatto-Legendre nodes distribution

• RK4 (Compressible) and BDF/EXT3 (Incompressible) time integration

• Fortran90 with MPI for CPUs and OpenACC for GPUs

• HDF5 for Parallel I/O

• SMARTSIM for AI integration

Git repository: https://gitlab.com/bsc_sod2d/sod2d_gitlab/
© MIT license

L. Gasparino, F. Spiga, O. Lehmkuhl, SOD2D: A GPU-enabled Spectral Finite Elements Method
for compressible scale-resolving simulations, Computer Physics Communications, Volume
297, 109067 (2024).

https://gitlab.com/bsc_sod2d/sod2d_gitlab/

Summary

Git repository: https://gitlab.com/bsc_sod2d/sod2d_gitlab/
© MIT license

L. Gasparino, F. Spiga, O. Lehmkuhl, SOD2D: A GPU-enabled Spectral Finite Elements Method
for compressible scale-resolving simulations, Computer Physics Communications, Volume
297, 109067 (2024).

SOD2D: Spectral high-Order coDe 2 solve partial Differential equations

• Able to solve compressible and incompressible flows

• Based on Continuous Galerkin Spectral Element Method

• Uses Gauss-Lobatto-Legendre nodes distribution

• RK4 (Compressible) and BDF/EXT3 (Incompressible) time integration

• Fortran90 with MPI for CPUs and OpenACC for GPUs

• HDF5 for Parallel I/O

• SMARTSIM for AI integration

https://gitlab.com/bsc_sod2d/sod2d_gitlab/

Summary

Git repository: https://gitlab.com/bsc_sod2d/sod2d_gitlab/
© MIT license

L. Gasparino, F. Spiga, O. Lehmkuhl, SOD2D: A GPU-enabled Spectral Finite Elements Method
for compressible scale-resolving simulations, Computer Physics Communications, Volume
297, 109067 (2024).

SOD2D: Spectral high-Order coDe 2 solve partial Differential equations

• Able to solve compressible and incompressible flows

• Based on Continuous Galerkin Spectral Element Method

• Uses Gauss-Lobatto-Legendre nodes distribution

• RK4 (Compressible) and BDF/EXT3 (Incompressible) time integration

• Fortran90 with MPI for CPUs and OpenACC for GPUs

• HDF5 for Parallel I/O

• SMARTSIM for AI integration

https://gitlab.com/bsc_sod2d/sod2d_gitlab/

	Slide 1: Optimizing SOD2D for LUMI
	Slide 2
	Slide 3
	Slide 4
	Slide 6
	Slide 7
	Slide 8
	Slide 9: SOD2D Auto-Tuning Acceleration Methodology
	Slide 10: SOD2D Auto-Tuning Acceleration Methodology
	Slide 11
	Slide 12
	Slide 13: Input Partitioning and Placement Optimization
	Slide 14
	Slide 15: Windsor Body
	Slide 16: Separation Control using Deep Reinforcement Learning
	Slide 17: Summary
	Slide 18: Summary
	Slide 19: Summary

