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SOD2D: Spectral high-Order coDe 2 solve partial Differential equations
A new Continuous Galerkin High-Order Spectral Element Method (CG-SEM) code designed to perform 
numerical simulations of both turbulent compressible and incompressible flows.

Developed with the aim to target large scale Computational Fluid Dynamics simulations for engineering 
applications by exploiting the capabilities of the leading-edge extreme-scale HPC architectures.

Git repository: https://gitlab.com/bsc_sod2d/sod2d_gitlab/ © MIT license

https://gitlab.com/bsc_sod2d/sod2d_gitlab/
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SOD2D Scaling

Source: Development team at

4.89 Billion DoF
Polynomial order 2

Double Precision (fp64)
RK4-IMEX

NASA High-Lift Common Research Model (CRM-HL)

2.39 Million
DoF/GPU

Carried out in MareNostrum 5 ACC (Accelerated Partition)

NVIDIA Hopper H100 64GB HBM2



SOD2D LUMI Porting and Optimization Project
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SOD2D Auto-Tuning Acceleration Methodology

Blackbox exploration

SOD2D

Profiling

Hotspots
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https://zenodo.org/records/13834895
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Whitebox Exploration 

OpenTuner
search

• Orthogonal optimization searches
• Avoid end-to-end SOD2D simulation

• Reduced simulation time per config
• Explore more configurations

SOD2D
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Case Performance Gain % No. GPUs

KTH 
Provided 
Example

10% 1

15% 2

~600% 4

65% 8

Taylor Green Vortex Tuning Results

Case Performance Gain % No. GPUs

4m Nodes
7.3% 1

18.9% 2

8m Nodes
8.4% 1

19.4% 2

Channel Flow Tuning Results

The work regarding TGV has been a collaboration with KTH and has been accepted as a paper in 2024 Date Conference
https://www.refmap.eu/post/refmap-s-scientific-paper-at-the-date-2024-conference
https://zenodo.org/records/13834895

Speedup on 4 
GPUs 

Outperforms 
SOD2D on 8 GPUs

Less Resources
More 

Performance

Speedup Obtained by 
Multi-GPU System 

depends on Example 
Case

~4M Elements
Optimal Example Size 

per GPU

SOD2D Auto-Tuning Acceleration Results

https://www.refmap.eu/post/refmap-s-scientific-paper-at-the-date-2024-conference
https://zenodo.org/records/13834895
https://www.nsc.liu.se/systems/berzelius/
https://www.nsc.liu.se/systems/berzelius/


• 7 CPU cores correspond to 1 GPU (GCD) on 
LUMI

• Non-Uniform GCD communication:
• Intra-package: 4 links
• Inter-package: Either 2 or 1 link

• Up to 5 different inter-GCD bandwidths.
• GCD-to-GCD communication 

microbenchmark to quantify the above

AMD CDNA2 Whitepaper

Reference 
GCD

BW_0 BW_4

BW_3

BW_1

BW_2

BW_4

BW_3

Stage 1: Target Topology Microbenchmarking

Stage 0: AMD GPU Optimization

• Performance comparison with NVIDIA GPUs
• OpenACC usage modifications 
• Miscellaneous code modifications
• Scale-out performance profiling 

Input Partitioning and Placement Optimization

https://www.amd.com/content/dam/amd/en/documents/instinct-business-docs/white-papers/amd-cdna2-white-paper.pdf


Input Partitioning and Placement Optimization
Stage 2: Homogeneous Partitioning

Auto-tuning framework

Threads Per 
Block

Thread Blocks

New tunable parameters

Number of 
visible GPUs

MPI Rank

GeMPa-based 
partitioning is 
homogeneous

across MPI 
processes 

Stage 3: Optimal Heterogeneous Partitioning

Maximum parameter values 
should be optimal, but this 
is input-dependent

subroutine read_gmsh_h5_file_and_do_partitioning_in_parallel

subroutine distribute_ranks2Part_in_mpiRank

!---- Adjust workload for MPI rank i 
vecRanksMpiRank(i) = allocatedWork(i)

SOD2D

Static GCD job placement

Distr_0 (BW) Distr_1 (BW)

GCD-to-GCD Bandwidths provided by the microbenchmarking stage

Per-GCD Work distributions 
as a function of the BW array

Autotuning

Per-GCD work 
distributions are 
auto-tuning 
knobs



Stage 4: Optimal Heterogeneous Placement

subroutine read_gmsh_h5_file_and_do_partitioning_in_parallel

subroutine distribute_ranks2Part_in_mpiRank

!---- Adjust workload for MPI rank i 
vecRanksMpiRank(i) = allocatedWork(i)

SOD2D

8!/(2!*2!) = 10080 GCD placement permutations

Distr_0 (BW) Distr_1 (BW)

GCD-to-GCD Bandwidths provided by the microbenchmarking stage

Autotuning

Optimal Per-GCD work 
distribution is found

Miscellaneous code optimizations

• Performing GPU-memory to GPU-
memory MPI operations directly

• Identification of platform-specific 
shared memory bottlenecks and 
shared memory tuning

• Indirect memory access 
optimization

• Loop tiling auto-tuning
• Asynchronous data transfers and 

compute overlap
• Kernel fusion

Input Partitioning and Placement Optimization



Windsor Body
© Benet Eiximeno Franch (UPC) and Cristiano Pimenta Silva (Volvo & KTH)

𝑅𝑒 ≈ 3 × 106

𝑁 ≈ 135 × 106 (4𝑡ℎ 𝑜𝑟𝑑𝑒𝑟)

𝑊𝑀𝐿𝐸𝑆

Eiximeno B, Miró A, Rodríguez I, Lehmkuhl O. Toward the Usage of Deep Learning Surrogate Models in Ground 

Vehicle Aerodynamics. Mathematics. 2024; 12(7):998.



Font, B., Alcántara-Ávila, F., Rabault, J., Vinuesa, R., & Lehmkuhl, O. (2024). Active flow control 
of a turbulent separation bubble through deep reinforcement learning. Journal of Physics: 
Conference Series, 2753(1), 012022.

Environment

Combining CFD and Machine Learning with SOD2D
Separation Control using Deep Reinforcement Learning



Summary

SOD2D: Spectral high-Order coDe 2 solve partial Differential equations

• Able to solve compressible and incompressible flows

• Based on Continuous Galerkin Spectral Element Method

• Uses Gauss-Lobatto-Legendre nodes distribution

• RK4 (Compressible) and BDF/EXT3 (Incompressible) time integration

• Fortran90 with MPI for CPUs and OpenACC for GPUs

• HDF5 for Parallel I/O

• SMARTSIM for AI integration 

Git repository: https://gitlab.com/bsc_sod2d/sod2d_gitlab/
© MIT license

L. Gasparino, F. Spiga, O. Lehmkuhl, SOD2D: A GPU-enabled Spectral Finite Elements Method 
for compressible scale-resolving simulations, Computer Physics Communications, Volume 
297, 109067 (2024).
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