Laplace Approximations for
Bayesian Deep Learning
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Bayesian Deep learning
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Laplace Approximation

L(O|z,y) = —logp(y|fe(x)) — logpa(6)
1
L(O|z,y) = L(Opmap|z,y) + 5(9— Opiap)’ VAL , (0 — Ortap)
MAP
1
p(y|z,0)pa(0) = exp(— L(Omar|z,y) )exp (—5(9— Opiap)’ VAL , (6 — 9MAP))
MAP




Laplace Approximation

e \With this approximation the evidence becomes a Gaussian Integral which
is tractable
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Laplace Approximation

e Under the laplace approximation the True Posterior is approximated by the
following Gaussian:

¢a(0|D) = N (9 | Oiap, (aI[—I—GGNeMAP)—l)
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Why would we want to do this?

e Bayesian Model Averaging: Marginalize over the posterior for
better calibrated predictions

e Principled Uncertainty Quantification

e Marginal Likelihood Optimization: Model Selection without
Cross-Validation
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Sampling is hard!




Big Matrices
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Too big to instantiate

Direct Solvers are
impractical



But Matrix-Vector Products are cheap
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Matrix Vector Products only
require Jacobian Vector
Products and Vector
Jacobian Products(Autodiff)

We can use lterative
Solvers!



Thank You!




