Laplace Approximations for Bayesian Deep Learning

True Posterior of the Neural Network

Bayesian Deep learning

$$p(y|x, heta) \ = \ \prod_{i=1}^N p(y_i|f_ heta(x)) \ : \ Likelihood$$

 $p(\theta)$: Prior

$$egin{aligned} & egin{aligned} & p(y|x) = \int_{ heta\in\Theta} p(y|x, heta) p(heta) d heta \,:\, Evidence/Marginal\,Likelihood \ & p(heta|x,y) \,:\, Posterior \end{aligned}$$

Local Approximation of the True Posterior

Laplace Approximation

$$\mathcal{L}(heta|x,y) \;=\; - \log p(\mathbf{y}|f_{ heta}(\mathbf{x})) \;-\; \log p_{A}(heta)$$

$$\mathcal{L}(heta|x,y) \,pprox\,\mathcal{L}(heta_{\mathcal{MAP}}|x,y) \,\,+\,rac{1}{2}(heta- heta_{\mathcal{MAP}})^T
abla_{ heta}^2\mathcal{L}igg|_{ heta_{\mathcal{MAP}}}(heta- heta_{\mathcal{MAP}})$$

 $p(y|x, heta)p_{\Lambda}(heta) pprox \exp\left(-\mathcal{L}(heta_{\mathcal{MAP}}|x,y)
ight) \exp\left(-rac{1}{2}(heta- heta_{\mathcal{MAP}})^T
abla_{ heta}^2 \mathcal{L}\Big|_{ heta_{\mathcal{MAP}}}(heta- heta_{\mathcal{MAP}})
ight)$

Laplace Approximation

• With this approximation the evidence becomes a Gaussian Integral which is tractable

$$\int_{\theta\in\Theta} p(y|x,\theta)p(\theta)d\theta \approx \int_{\theta\in\Theta} \exp\left(-\mathcal{L}(\theta_{\mathcal{MAP}}|x,y)\right) \exp\left(-\frac{1}{2}(\theta-\theta_{\mathcal{MAP}})^T \nabla_{\theta}^2 \mathcal{L}\Big|_{\theta_{\mathcal{MAP}}}(\theta-\theta_{\mathcal{MAP}})\right) d\theta$$

$$= \ \exp\left(-\mathcal{L}(heta_{\mathcal{MAP}}|x,y)
ight) \int_{ heta\in\Theta} \exp\left(-rac{1}{2}(heta- heta_{\mathcal{MAP}})^T
abla_{ heta}^2 \mathcal{L} \Big|_{ heta_{\mathcal{MAP}}} (heta- heta_{\mathcal{MAP}})
ight) d heta$$

Laplace Approximation

• Under the laplace approximation the True Posterior is approximated by the following Gaussian:

Why would we want to do this?

• Bayesian Model Averaging: Marginalize over the posterior for better calibrated predictions

• Principled Uncertainty Quantification

• Marginal Likelihood Optimization: Model Selection without Cross-Validation

Linear Algebra

Size of the Jacobian Matrix

Sampling is hard!

- Too big to instantiate
- Direct Solvers are impractical

But Matrix-Vector Products are cheap

- Matrix Vector Products only require Jacobian Vector Products and Vector Jacobian Products (Autodiff)
- We can use Iterative Solvers!

Thank You!