
Institute of Aerodynamics and Gas Dynamics

LUMI Hackathon:
Porting GALÆXI To AMD Accelerators

2

• Member of the code framework with growing feature set

• Developed by the Numerics Research Group
IAG, University of Stuttgart, Germany

• OpenSource HPC solver for unsteady compressible Navier–Stokes eq.

• High Order Discontinuous Galerkin Spectral Element Method

https://numericsresearchgroup.org https://github.com/flexi-
framework/galaexi

3

• Member of the code framework with growing feature set

• Developed by the Numerics Research Group
IAG, University of Stuttgart, Germany

• OpenSource HPC solver for unsteady compressible Navier–Stokes eq.

• High Order Discontinuous Galerkin Spectral Element Method

• Current feature set

• Supported: NVIDIA (CUDA Fortran)
• Running CI/CD pipeline
• Gauss / Gauss-Lobatto points
• Variable polynomial degree
• Several Riemann solv. (comp. flag)
• Split DG (several types, comp. flag)

• Boundary conditions
• MPI parallelized
• Shock capturing
• Sponge zones
• Testcases (TGV, channel, …)
• …

GALÆXI: DGSEM
• Semi-discrete formulation of the DGSEM (weak form):

4

GALÆXI v1.0: Implementation

5

• CUDA Fortran

• Design principles

1. Retain the general data structure and parallelization strategy of
FLEXI for unstructured meshes

2. Retain the majority of the codebase and the associated features
of the original Implementation

3. All routines called during the time-stepping are executed on the
accelerator without the need of data transfers

• Inter-GPU parallelization: Distributed memory approach using GPU-
aware MPI and systematic hiding of communication latency

• Intra-GPU parallelization: Launch multiple kernels concurrently and
asynchronously to maximize the occupancy using e.g. streams

• Kernel implementation: Maximize the utilization of the available
parallel resources, individual parallelization strategies for pointwise and
volume surface operations

GALÆXI v1.0: Performance Evaluation

• Performance index:

• PID describes the walltime required by a single rank to advance a single DOF for one stage of the
explicit Runge–Kutta time-stepping

6

GALÆXI v2.0

GALÆXI v2.0
• Retain design principles from GALÆXI v1.0

• Allow computation on ALL architectures (including CPU)

● Rewrite all CUDA Fortran kernels in C.

• Governing philosophy of multi-backend approach

● Fortran = host code

● C = device code

• Host code (Fortran) calls device code (C) through interfaces

● Interfaces wrap CUDA/HIP API calls and Kernels

● Hides GPU code for those who don’t want/need to interact
with it

● Easily extendable to multiple backends/vendors

8

GALÆXI v2.0: Development Plan
• Phase 0 (Finished)

● Updates to supporting function surrounding code (CI/CD, unit testing, build, etc.)

● Incorporated device memory management methods

• Phase 1 (In Progress - Due 13.12.2024)

● Port core kernels from CUDA Fortran to CUDA/HIP C++.

● Code able to run inviscid, incompressible test problem on a single GPU (all architectures)

• Current Status

● Core kernels rewritten in C

● Computation of inviscid test problem is possible on a single NVIDIA GPU with new kernels

● No support for AMD

• Phase 2 and Phase 3 (Planned)

● Reintroduce multi-GPU support

● Support for more physics and features (viscous flow, shock capturing, WMLES, etc.)

Goals For Hackathon

LUMI Hackathon Goals
• Easy

● Extend device support code (memory management, kernel launches, etc) to support HIP

● Build with HIP compiler

● Familiarize with AMD profiling tools

• Better

● Complete adjustments to kernels (if needed)

● Code can run test problem on LUMI-G nodes

• Best

● Tuning and optimization

● Start looking at hybrid architectures

Institute of Aerodynamics and Gas Dynamics

THANK YOU!

	
	Slide 2
	Slide 3
	GALÆXI: DGSEM (2)
	GALÆXI: Implementation
	Performance Evaluation: Scaling
	Slide 7
	Device Code Interfaces
	Device Code Interfaces (2)
	Slide 10
	Slide 11
	Slide 12

