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Team

Participating here at Brussels:
* Kostis Papadakis [ASTERIX]
* loanna Bouri [FAISER]

* Juhani Kataja [ASTERIX] present at Brussels (but hacking away with the Elmer team).
 Markku Alho [ASTERIX] available remotely.

Pls:

e ASTERIX & Vlasiator & FAISER Pl Minna Palmroth
* FAISER Co-l & CosCo Pl Teemu Roos

e CSC ASTERIX Co-l Jussi Heikonen



Vlasiator

6D Global Hybrid Vlasov model that
simulates the near-Earth space.

3D Velocity Distribution Functions
(VDF) at every simulation cell.

Massive resources for 6D simulations.
Cu(;rent runs are performed on 500 LUMI
nodes.

~15-20 MCPUh or more for productions

runs.

Checkpoint mechanism for resilient
restarting.

Checkpoint files are 5-7 TiB for 3D
production runs.

Cannot have frequent restart files lying
on disk.

Fewer checkpoint files leads to wasted
computational effort.
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Vlasiator source code & details

Vlasiator is written in modern C++.

Parallelized over ~all available levels

* MPI (domain decomposition, Zoltan)
e OpenMP
* Vectorization

Currently our GPU branch with support for NVIDIA/AMD hardware is under
development.

Source code is hosted on GitHub at https://github.com/fmihpc/vlasiator.

* Solves the Vlasov equation of ion species:

* 6D distribution (3D space, 3D velocity) propagated in time by shear transformations
* Spatial AMR

* Sparse representation of velocity space per spatial cell for memory efficiency (95% reduced
memory footprint)
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https://github.com/fmihpc/vlasiator

Goals of Projects

ASTERIX

Compression of Vlasiator VDF data (with ML/Al methods, on GPUs) so that:

1) Compression is physically sensible (recovery from lossy restart)
2) Compressionis fast enough (so that we can store lossy restarts often)

FAISER

1) 6D compressed/latent-space presentation of VDFs
2) Offloading Vlasov eq. propagation to happen solely in the latent space to obtain a fast solver

3) Bootstrap an Al "forecast model" with training data from fast simulations via 2)
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Status
ASTERIX

Prototyping resulted in using Multilayer Perceptrons (MLPs) with Fourier features with Octree compression as
a fallback; inconclusive results for vector-quantized variational autoencoder (VQ-VAE)

 MLP compression implemented in Vlasiator.

« GPU version of MLP under development.

* Octree method to be implemented.

* VQ-VAE inference model under development.

FAISER

Goals align with using autoencoders such as VQ-VAE, but see above
 RCF project online from 15t of September 2024

* Building on ASTERIX
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Using Neural Networks to compress VDFs
[ASTERIX MLP]

We are developing a Multilayer Perceptron to train on our VDFs during runtime.
* Fourier features encoding of input space.
* Network weights are stored instead of the original VDF voxel mesh.
* Network weights are updated at regular simulation intervals.
* MLP is trained on a subsampled version of the VDF to speed up training.
* VDFisrecovered viainference.
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Using VQ-VAEs to compress VDFs [ASTERIX,
FAISER]

scaling a 3D VQ-VAE to train
on existing restart files. —

extend the 3D VQ-VAE for o
time-dependent 6D data crsou

learn a discrete latent space
representation of the input by
incorporating a vector quantization (VQ)
module at the bottleneck.

q(z|x) €, CNN

z,(x)

We developed a 3D VQ-VAE 53
that can provide effective compressed
state representations leveraging the
sparsity of the input VDFs.

Encoder Decoder

Adapted from: Neural Discrete Representation Learning [van den Oord et al.]

* The 3D VQ-VAE is a PyTorch DDP
implementation.
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Multi-res Octree-Tucker Approximation of Gridded

Data

.. iIn case ML/Al methods don’t work...

* Efficient compression and
gpproximation of large 3D gridded
ata.

* Adaptive subdivision of the data into
smaller cubical regions (leaf).

e Tensor factorization within cube with
biggest residual using Tucker
decomposition.

* Store factorizations and
corresponding cube information.
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Restarting Vlasiator from a compressed state

- proof of concept

1D shock tube simulation as a test case:
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Hackathon goals

* Task 1: Scaling, tuning and training the 3D VQ-VAE prototype
(ASTERIX)

* Task 2: Vlasiator restart data compression to GPUs (ASTERIX)

* Task 3: Scaling, tuning and training of the 6D VQ-VAE with
temporal propagation (FAISER)

* Task 4: Vlasiator runtime hooks / online training of 6D VQ-VAE
(FAISER)
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Task 1) 3D VQ-VAE training at scale

Problematic scaling so far. Implemented on PyTorch DDP.
Not able to run on more than 10 LUMI-G nodes. Situation post LUMI-update?

Goal: Training run on Vlasiator restart file(s), a 5 TiB

 Currentimplementation:

* Custom dataloader w/ cached disk reads

* https://github.com/kstppd/asterix/tree/vdf replace/src/assessment/vgvae
 PyTorch support on AMD hardware & over MPI?

 Dataloader optimizations? Dep. on analysator for reading in data
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https://github.com/kstppd/asterix/tree/vdf_replace/src/assessment/vqvae
https://github.com/fmihpc/analysator

Task 2) Enable GPU training for MLP

* Use GPU partition to train the MLP during Vlasiator runtime.
* Use stream events to synchronize training.
* Evaluate performance against CPU training, test scaling.

Currently:
* Prototype running on CUDA, HIP-supported.
* Written in modern C++.

* Custom implementation using a Matrix class that supports
CUblas/HIPblas operations.
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Task 3) 6D VQ-VAE

* Toy-model datasetto be produced for hackathon
* Prototype autoencoder to be produced for hackathon

* Task: Expand Task 1 to enable training on the 6D dataset and with

6D autoencoders — at least at “small scale” without online
training

* Willrequire more involved dataloaders, optimization, tuning...

° ]
‘@INNOL WA A |
¢ ® S CALE - Research Council

@ HELSINGIN YLIOPISTO of Finland csc



Task 4) Runtime hooks in Vlasiator

* Interface to expose VDF data from Vlasiator runtime to training
process. Below are the current ideas for approaching the topic

* Potentially implement a client server interface in Vlasiator.

* Split communicator probably using MPDP.

* Use MPI's dynamic process management.

* Create a synchronization scheme between communicators.

* Query VDFs and send them to parent communicator for online
training?

* To be worked/discussed on as time allows during the hackathon.
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Restarting Vlasiator from a compressed state
extra example

Growth Rate of a 2D Kelvin Helmholtz Instability in Vlasiator.

KHI Growth Rates
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