
ASTERIX

Adaptive Strategies
Towards Expedient
Recovery In eXascale

FAISER
Fast AI-based Space
Environment Prediction

Team

Participating here at Brussels:
• Kostis Papadakis [ASTERIX]
• Ioanna Bouri [FAISER]

• Juhani Kataja [ASTERIX] present at Brussels (but hacking away with the Elmer team).
• Markku Alho [ASTERIX] available remotely.

PIs:
• ASTERIX & Vlasiator & FAISER PI Minna Palmroth
• FAISER Co-I & CosCo PI Teemu Roos
• CSC ASTERIX Co-I Jussi Heikonen

Vlasiator
• 6D Global Hybrid Vlasov model that

simulates the near-Earth space.
• 3D Velocity Distribution Functions

(VDF) at every simulation cell.
• Massive resources for 6D simulations.

Current runs are performed on 500 LUMI
nodes.

• ~15-20 MCPUh or more for productions
runs.

• Checkpoint mechanism for resilient
restarting.

• Checkpoint files are 5-7 TiB for 3D
production runs.

• Cannot have frequent restart files lying
on disk.

• Fewer checkpoint files leads to wasted
computational effort.

Vlasiator source code & details

• Vlasiator is written in modern C++.
• Parallelized over ~all available levels

• MPI (domain decomposition, Zoltan)
• OpenMP
• Vectorization

• Currently our GPU branch with support for NVIDIA/AMD hardware is under
development.

• Source code is hosted on GitHub at https://github.com/fmihpc/vlasiator.

• Solves the Vlasov equation of ion species:
• 6D distribution (3D space, 3D velocity) propagated in time by shear transformations
• Spatial AMR
• Sparse representation of velocity space per spatial cell for memory efficiency (95% reduced

memory footprint)

https://github.com/fmihpc/vlasiator

Goals of Projects

ASTERIX
Compression of Vlasiator VDF data (with ML/AI methods, on GPUs) so that:

1) Compression is physically sensible (recovery from lossy restart)
2) Compression is fast enough (so that we can store lossy restarts often)

FAISER
1) 6D compressed/latent-space presentation of VDFs

2) Offloading Vlasov eq. propagation to happen solely in the latent space to obtain a fast solver

3) Bootstrap an AI "forecast model" with training data from fast simulations via 2)

Status
ASTERIX
Prototyping resulted in using Multilayer Perceptrons (MLPs) with Fourier features with Octree compression as
a fallback; inconclusive results for vector-quantized variational autoencoder (VQ-VAE)

• MLP compression implemented in Vlasiator.

• GPU version of MLP under development.

• Octree method to be implemented.

• VQ-VAE inference model under development.

FAISER
Goals align with using autoencoders such as VQ-VAE, but see above
• RCF project online from 1st of September 2024
• Building on ASTERIX

Using Neural Networks to compress VDFs
[ASTERIX MLP]
• We are developing a Multilayer Perceptron to train on our VDFs during runtime.
• Fourier features encoding of input space.
• Network weights are stored instead of the original VDF voxel mesh.
• Network weights are updated at regular simulation intervals.
• MLP is trained on a subsampled version of the VDF to speed up training.
• VDF is recovered via inference.

Original

VDF
Reconstructed

VDF

Training Inference

Fourier Features

Using VQ-VAEs to compress VDFs [ASTERIX,
FAISER]
• Objective: scaling a 3D VQ-VAE to train

on existing restart files.

• Objective: extend the 3D VQ-VAE for
time-dependent 6D data

• VQ-VAEs learn a discrete latent space
representation of the input by
incorporating a vector quantization (VQ)
module at the bottleneck.

• Motivation: We developed a 3D VQ-VAE
that can provide effective compressed
state representations leveraging the
sparsity of the input VDFs.

• The 3D VQ-VAE is a PyTorch DDP
implementation.

Adapted from: Neural Discrete Representation Learning [van den Oord et al.]

Multi-res Octree-Tucker Approximation of Gridded
Data

… in case ML/AI methods don’t work…

• Efficient compression and
approximation of large 3D gridded
data.

• Adaptive subdivision of the data into
smaller cubical regions (leaf).

• Tensor factorization within cube with
biggest residual using Tucker
decomposition.

• Store factorizations and
corresponding cube information.

Restarting Vlasiator from a compressed state
- proof of concept Single VDF from the shock run compressed 83 times

1D shock tube simulation as a test case:
- develops nontrivial VDFs
- Dynamics dependent on reconstruction quality

Evolution of temperature anisotropy in a shock test run.
Control Lossy Restart

Vx

Vy

Vy

Vz

Vy Vy

Vz

Vx Vx

Branching via lossy
reconstructions at 400s

Hackathon goals

• Task 1: Scaling, tuning and training the 3D VQ-VAE prototype
(ASTERIX)

• Task 2: Vlasiator restart data compression to GPUs (ASTERIX)
• Task 3: Scaling, tuning and training of the 6D VQ-VAE with

temporal propagation (FAISER)
• Task 4: Vlasiator runtime hooks / online training of 6D VQ-VAE

(FAISER)

Task 1) 3D VQ-VAE training at scale

• Problematic scaling so far. Implemented on PyTorch DDP.
• Not able to run on more than 10 LUMI-G nodes. Situation post LUMI-update?

• Goal: Training run on Vlasiator restart file(s), á 5 TiB

• Current implementation:
• Custom dataloader w/ cached disk reads
• https://github.com/kstppd/asterix/tree/vdf_replace/src/assessment/vqvae
• PyTorch support on AMD hardware & over MPI?
• Dataloader optimizations? Dep. on analysator for reading in data

https://github.com/kstppd/asterix/tree/vdf_replace/src/assessment/vqvae
https://github.com/fmihpc/analysator

Task 2) Enable GPU training for MLP

• Use GPU partition to train the MLP during Vlasiator runtime.
• Use stream events to synchronize training.
• Evaluate performance against CPU training, test scaling.

Currently:
• Prototype running on CUDA, HIP-supported.
• Written in modern C++.
• Custom implementation using a Matrix class that supports

CUblas/HIPblas operations.

Task 3) 6D VQ-VAE

• Toy-model dataset to be produced for hackathon
• Prototype autoencoder to be produced for hackathon

• Task: Expand Task 1 to enable training on the 6D dataset and with
6D autoencoders – at least at “small scale” without online
training

• Will require more involved dataloaders, optimization, tuning...

Task 4) Runtime hooks in Vlasiator

• Interface to expose VDF data from Vlasiator runtime to training
process. Below are the current ideas for approaching the topic

• Potentially implement a client server interface in Vlasiator.
• Split communicator probably using MPDP.
• Use MPI's dynamic process management.
• Create a synchronization scheme between communicators.
• Query VDFs and send them to parent communicator for online

training?

• To be worked/discussed on as time allows during the hackathon.

Restarting Vlasiator from a compressed state
extra example
Growth Rate of a 2D Kelvin Helmholtz Instability in Vlasiator.

	Slide 1: ASTERIX Adaptive Strategies Towards Expedient Recovery In eXascale FAISER Fast AI-based Space Environment Prediction
	Slide 2: Team
	Slide 3: Vlasiator
	Slide 4: Vlasiator source code & details
	Slide 5: Goals of Projects
	Slide 6: Status
	Slide 7: Using Neural Networks to compress VDFs [ASTERIX MLP]
	Slide 8: Using VQ-VAEs to compress VDFs [ASTERIX, FAISER]
	Slide 9: Multi-res Octree-Tucker Approximation of Gridded Data
	Slide 10: Restarting Vlasiator from a compressed state - proof of concept
	Slide 11: Hackathon goals
	Slide 13: Task 1) 3D VQ-VAE training at scale
	Slide 14: Task 2) Enable GPU training for MLP
	Slide 15: Task 3) 6D VQ-VAE
	Slide 16: Task 4) Runtime hooks in Vlasiator
	Slide 17: Restarting Vlasiator from a compressed state extra example

