
ASTERIX

Adaptive Strategies 
Towards Expedient 
Recovery In eXascale

FAISER
Fast AI-based Space 
Environment Prediction 



Team

Participating here at Brussels:
• Kostis Papadakis [ASTERIX]
• Ioanna Bouri [FAISER]

• Juhani Kataja [ASTERIX] present at Brussels (but hacking away with the Elmer team).
• Markku Alho [ASTERIX] available remotely.

PIs:
• ASTERIX & Vlasiator & FAISER PI Minna Palmroth
• FAISER Co-I & CosCo PI Teemu Roos
• CSC ASTERIX Co-I Jussi Heikonen



Vlasiator
• 6D Global Hybrid Vlasov model that 

simulates the near-Earth space.
• 3D Velocity Distribution Functions   

(VDF)  at every simulation cell.
• Massive resources for 6D simulations. 

Current runs are performed on 500 LUMI 
nodes.  

• ~15-20 MCPUh or more for productions 
runs.

• Checkpoint mechanism for resilient 
restarting.

• Checkpoint files are 5-7 TiB for 3D 
production runs. 

• Cannot have frequent restart files lying 
on disk.

• Fewer checkpoint files leads to wasted 
computational effort.



Vlasiator source code & details

• Vlasiator is written in modern C++.
• Parallelized over ~all available levels

• MPI (domain decomposition, Zoltan)
• OpenMP
• Vectorization

• Currently our GPU branch with support for NVIDIA/AMD hardware is under 
development.

• Source code is hosted on GitHub at https://github.com/fmihpc/vlasiator.

• Solves the Vlasov equation of ion species:
• 6D distribution (3D space, 3D velocity) propagated in time by shear transformations
• Spatial AMR
• Sparse representation of velocity space per spatial cell for memory efficiency (95% reduced  

memory footprint)

https://github.com/fmihpc/vlasiator


Goals of Projects

ASTERIX
Compression of Vlasiator VDF data (with ML/AI methods, on GPUs) so that:

1) Compression is physically sensible (recovery from lossy restart)
2) Compression is fast enough (so that we can store lossy restarts often)

FAISER 
1) 6D compressed/latent-space presentation of VDFs

2) Offloading Vlasov eq. propagation to happen solely in the latent space to obtain a fast solver

3) Bootstrap an AI "forecast model" with training data from fast simulations via 2)



Status
ASTERIX
Prototyping resulted in using Multilayer Perceptrons (MLPs) with Fourier features with Octree compression as 
a fallback; inconclusive results for vector-quantized variational autoencoder (VQ-VAE)

• MLP compression implemented in Vlasiator.

• GPU version of MLP under development.

• Octree method to be implemented. 

• VQ-VAE inference model under development.

FAISER
Goals align with using autoencoders such as VQ-VAE, but see above
• RCF project online from 1st of September 2024
• Building on ASTERIX



Using Neural Networks to compress VDFs 
[ASTERIX MLP]
• We are developing a Multilayer Perceptron to train on our VDFs during runtime.
• Fourier features encoding of input space.
• Network weights are stored instead of the original VDF voxel mesh.
• Network weights are updated at regular simulation intervals.
• MLP is trained on a subsampled version of the VDF to speed up training. 
• VDF is recovered via inference.
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Using VQ-VAEs to compress VDFs [ASTERIX, 
FAISER]
• Objective: scaling a 3D VQ-VAE to train 

on existing restart files.

• Objective: extend the 3D VQ-VAE for 
time-dependent 6D data

• VQ-VAEs learn a discrete latent space 
representation of the input by 
incorporating a vector quantization (VQ) 
module at the bottleneck.

• Motivation: We developed a 3D VQ-VAE 
that can provide effective compressed 
state representations leveraging the 
sparsity of the input VDFs.

• The 3D VQ-VAE is a PyTorch DDP 
implementation.

Adapted from: Neural Discrete Representation Learning [van den Oord et al.]



Multi-res Octree-Tucker Approximation of Gridded 
Data

… in case ML/AI methods don’t work…

• Efficient compression and 
approximation of large 3D gridded 
data.

• Adaptive subdivision of the data into 
smaller cubical regions (leaf).

• Tensor factorization within cube with 
biggest residual using Tucker 
decomposition.

• Store factorizations and 
corresponding cube information.



Restarting Vlasiator from a compressed state
- proof of concept Single VDF from the shock run compressed 83 times

1D shock tube simulation as a test case:
- develops nontrivial VDFs
- Dynamics dependent on reconstruction quality

Evolution of temperature anisotropy in a shock test run.
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Hackathon goals

• Task 1: Scaling, tuning and training the 3D VQ-VAE prototype 
(ASTERIX)

• Task 2: Vlasiator restart data compression to GPUs (ASTERIX)
• Task 3: Scaling, tuning and training of the 6D VQ-VAE with 

temporal propagation (FAISER)
• Task 4: Vlasiator runtime hooks / online training of 6D VQ-VAE 

(FAISER)



Task 1) 3D VQ-VAE training at scale

• Problematic scaling so far. Implemented on PyTorch DDP.
• Not able to run on more than 10 LUMI-G nodes. Situation post LUMI-update?

• Goal: Training run on Vlasiator restart file(s), á 5 TiB

• Current implementation:
• Custom dataloader w/ cached disk reads
• https://github.com/kstppd/asterix/tree/vdf_replace/src/assessment/vqvae
• PyTorch support on AMD hardware & over MPI?
• Dataloader optimizations? Dep. on analysator  for reading in data

https://github.com/kstppd/asterix/tree/vdf_replace/src/assessment/vqvae
https://github.com/fmihpc/analysator


Task 2) Enable GPU training for MLP 

• Use GPU partition to train the MLP during Vlasiator runtime. 
• Use stream events to synchronize training.
• Evaluate performance against CPU training, test scaling.

Currently:
• Prototype running on CUDA, HIP-supported. 
• Written in modern C++.
• Custom implementation using a Matrix class that supports 

CUblas/HIPblas operations.



Task 3) 6D VQ-VAE

• Toy-model dataset to be produced for hackathon
• Prototype autoencoder to be produced for hackathon

• Task: Expand Task 1 to enable training on the 6D dataset and with 
6D autoencoders – at least at “small scale” without online 
training

• Will require more involved dataloaders, optimization, tuning...



Task 4) Runtime hooks in Vlasiator

• Interface to expose VDF data from Vlasiator runtime to training 
process. Below are the current ideas for approaching the topic

• Potentially implement a client server interface in Vlasiator.
• Split communicator probably using MPDP.
• Use MPI's dynamic process management.
• Create a synchronization scheme between communicators.
• Query VDFs and send them to parent communicator for online 

training?

• To be worked/discussed on as time allows during the hackathon.



Restarting Vlasiator from a compressed state
extra example
Growth Rate of a 2D Kelvin Helmholtz Instability in Vlasiator.
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