exciting: porting a full
all-electron full-potential DFT
code to GPU

M. Raya-Moreno, M. Hossain, B. M. Maurer
Institut fiir Physik und CSMB Adlershof, Humboldt-Universitat zu Berlin
14.0ct.2024, Hackathon: Optimizing for AMD GPUs (Brussels)

ex@iing




exciting in a nutshell

exciting is an open-source
all-electron, full-potential
package for first-principles
electronic-structure calculations,
using variants of the LAPW-+lo
method to achieve pHa precision,
with a special emphasis on excited-state properties such as GogWy,
BSE, XAS, XES, TD-DFT, and RTD-DFT.

Get the code at


https://exciting-code.org

exciting in a nutshell (technical details)

v

Licensing provisions: GPL2, some components are provided
under Apache 2.0.

Programming language: Fortran 2018
Parallelization: MPI+OpenMP

Dependencies: FFTW3, LAPACK+BLAS
(OpenBLAS/IntelMKL /LibSci/...), libXC, FoX, MPI,
ScaLAPACK, HDF5, SIRIUS.

Build system: make and CMake (WIP).

Compiler support: GNU, Intel LLVM, Cray (WIP).
Testing: Regression tests cover a significant portion of the

code, and unit tests are used for more recent parts. Both are
integrated continuously (Cl) in our development process.



exciting and GyWy

exciting has a very large source with 286,139 lines of code in
more than 1,356 files with lots of functionalities. We choose
GoWoas a starting point for porting the code to GPU.

What is GoW,?

GoW)y is the state of the art approach for calculating precise
quasi-particle band structures for crystals and molecules based on
the many-body perturbation theory approach. GoWjis very costly
to calculate, with a scaling of O(N*). Here we see the largest
potential for acceleration by porting to GPUs.



exciting-GoWy: workflow, scaling, and parallelization

Ground-State _

ual(ra‘ El)‘ ei(k+G)<r

€nk 'I’nk (r)

(ot )

)

Flowchart of exciting's GogWgpimplementation.

Computational cost: high due
to many matrix-matrix
products, diagonalizations,...
Scaling: O(N*) where N is the
system size.

MPI parallelization:
q/k-points are scattered with
low communication.

OpenMP parallelization:
linear algebra and intensive
do-loops.



Where to start porting?

» Dielectric matrix: Ca.
30-50% of the runtime is
spent here.

» Expansion coefficients:
Ca. 10% of the runtime is
spent here. Can be up to
40% if full band set
correction is required.

- BZ integration weights
Dielectric function

- calcmicm

- caleminc
- caleminm

Timings of an exciting-GgWgrun for ZrOy on a 2x2x2
g-mesh, with 800 empty bands, and corrected for 22
bands. The runs were performed on LUMI-G using 8 MPI
processes, each with 7 threads. Note that this calculation
is not converged with respect to the g-mesh.



Status of the GPU porting: Strategy

GPU offload prototype:

| 2

| 2

Each MPI rank is associated with one GPU, and has the
queues (streams) initialized.

Data transfer and GPU memory control are implemented with
OpenMP.

Partial porting of simple loops is implemented with OpenMP.
Expensive matrix-matrix products call MAGMA or (offloaded)
Intel MKL routines.

Code compiles with GNU compilers (NVIDIA and AMD
GPUs) and ifx (Intel GPUs). Ongoing efforts are directed
towards Cray compiler support.



Status of the GPU porting: initial results

Initial benchmark for the ported parts: ZrO» on a 2x2x2 g-mesh,
with 800 empty bands, and corrected for 22 bands:

» Intel@ifx — 2 Intel(R) Xeon(R) Platinum 8480L + 4 Intel
Data Center GPU Max 1550 MI250X GPUs:
a) 8 MPI processes with 28 threads and 1 GPU each: 17%

» AMDG@gfortran — AMD EPYC "Trento” CPU with 8 AMD
MI250X GPUs, i.e. LUMI-G:
a) 1 MPI process with 7 OpenMP threads and 1 GPU: 20%

b) 8 MPI processes with 7 threads and 1 GPU each: 36% in the
master process, degradation in the others.



Objectives in this Hackathon

» Enable the compilation with offloading to GPUs with Cray
compilers.

» Port the complex loop that computes the expansion
coefficients (currently implemented using OpenMP for CPU
execution).

» Analyze data transfers and identify areas for future
optimization.

P Investigate why we see no acceleration in the slave processes,
but we do in the master process, during multi-rank MPI runs
when the code is compiled with GNU compilers.



Thanks for your attention



