
exciting: porting a full
all-electron full-potential DFT

code to GPU
M. Raya-Moreno, M. Hossain, B. M. Maurer

Institut für Physik und CSMB Adlershof, Humboldt-Universität zu Berlin

14.Oct.2024, Hackathon: Optimizing for AMD GPUs (Brussels)



exciting in a nutshell

exciting is an open-source
all-electron, full-potential
package for first-principles
electronic-structure calculations,
using variants of the LAPW+lo
method to achieve µHa precision,
with a special emphasis on excited-state properties such as G0W0,
BSE, XAS, XES, TD-DFT, and RTD-DFT.

Get the code at https://exciting-code.org

https://exciting-code.org


exciting in a nutshell (technical details)

▶ Licensing provisions: GPL2, some components are provided
under Apache 2.0.

▶ Programming language: Fortran 2018

▶ Parallelization: MPI+OpenMP

▶ Dependencies: FFTW3, LAPACK+BLAS
(OpenBLAS/IntelMKL/LibSci/...), libXC, FoX, MPI,
ScaLAPACK, HDF5, SIRIUS.

▶ Build system: make and CMake (WIP).

▶ Compiler support: GNU, Intel LLVM, Cray (WIP).

▶ Testing: Regression tests cover a significant portion of the
code, and unit tests are used for more recent parts. Both are
integrated continuously (CI) in our development process.



exciting and G0W0

exciting has a very large source with 286,139 lines of code in
more than 1,356 files with lots of functionalities. We choose
G0W0as a starting point for porting the code to GPU.

What is G0W0?
G0W0 is the state of the art approach for calculating precise
quasi-particle band structures for crystals and molecules based on
the many-body perturbation theory approach. G0W0is very costly
to calculate, with a scaling of O(N4). Here we see the largest
potential for acceleration by porting to GPUs.



exciting-G0W0: workflow, scaling, and parallelization

Σ𝐧𝐤
𝑥

𝜒𝑖
𝐪
(𝐫)

Ground-State 𝑮𝟎𝑾𝟎

𝑢𝛼𝑙 𝑟
𝛼 , 𝐸𝑙 , 𝑒

𝑖 𝐤+𝐆 ·𝐫

𝜖𝑛𝐤, 𝜓𝑛𝐤(𝐫)

𝜐𝑖𝑗 (𝐪)𝑀𝑛𝑚
𝑖 (𝐪)

෩𝑀𝑛𝑚
𝑖 (𝐪)

𝜀(𝐪)

𝜀−1(𝐪)

𝑾𝑖𝑗
𝑐 (𝐪)

Σ𝐧𝐤
𝑐 (𝜔)𝑉𝑛𝐤

𝑥𝑐

𝜖𝑛𝐤
𝑄𝑃

Flowchart of exciting’s G0W0 implementation.

▶ Computational cost: high due
to many matrix-matrix
products, diagonalizations,...

▶ Scaling: O(N4) where N is the
system size.

▶ MPI parallelization:
q/k-points are scattered with
low communication.

▶ OpenMP parallelization:
linear algebra and intensive
do-loops.



Where to start porting?

▶ Dielectric matrix: Ca.
30-50% of the runtime is
spent here.

▶ Expansion coefficients:
Ca. 10% of the runtime is
spent here. Can be up to
40% if full band set
correction is required.

Timings of an exciting-G0W0run for ZrO2 on a 2x2x2
q-mesh, with 800 empty bands, and corrected for 22

bands. The runs were performed on LUMI-G using 8 MPI
processes, each with 7 threads. Note that this calculation

is not converged with respect to the q-mesh.



Status of the GPU porting: Strategy

GPU offload prototype:

▶ Each MPI rank is associated with one GPU, and has the
queues (streams) initialized.

▶ Data transfer and GPU memory control are implemented with
OpenMP.

▶ Partial porting of simple loops is implemented with OpenMP.

▶ Expensive matrix-matrix products call MAGMA or (offloaded)
Intel MKL routines.

▶ Code compiles with GNU compilers (NVIDIA and AMD
GPUs) and ifx (Intel GPUs). Ongoing efforts are directed
towards Cray compiler support.



Status of the GPU porting: initial results

Initial benchmark for the ported parts: ZrO2 on a 2x2x2 q-mesh,
with 800 empty bands, and corrected for 22 bands:

▶ Intel@ifx – 2 Intel(R) Xeon(R) Platinum 8480L + 4 Intel
Data Center GPU Max 1550 MI250X GPUs:

a) 8 MPI processes with 28 threads and 1 GPU each: 17%

▶ AMD@gfortran – AMD EPYC ”Trento” CPU with 8 AMD
MI250X GPUs, i.e. LUMI-G :

a) 1 MPI process with 7 OpenMP threads and 1 GPU: 20%

b) 8 MPI processes with 7 threads and 1 GPU each: 36% in the
master process, degradation in the others.



Objectives in this Hackathon

▶ Enable the compilation with offloading to GPUs with Cray
compilers.

▶ Port the complex loop that computes the expansion
coefficients (currently implemented using OpenMP for CPU
execution).

▶ Analyze data transfers and identify areas for future
optimization.

▶ Investigate why we see no acceleration in the slave processes,
but we do in the master process, during multi-rank MPI runs
when the code is compiled with GNU compilers.



Thanks for your attention


