ICT Solutions for Brilliant Minds

CSC

TurboGAP Porting to GPUs

LUMI-G Hacktahon– April 17 2023

Background

CSC

TurboGAP (MD with Kernel Based Machine Learning model)

CSC

Scalability Tests

Running on Mahti

- 1404 CPU nodes: 2x AMD Rome 7H12 CPUs (64 cores each)
- 24 GPU nodes: + 4X A100 & NVME
- Required modules: Fortran + Openmpi, openblas
- undersubscribe & spread
- wall time vs # of nodes
- time measurements: mpi_wtime()
- eliminate serial part: $t_{20 \text{ steps}}$ - $t_{10 \text{ steps}}$

*	Read input	. 0.474787	seconds	I.
	Read XV7 files	2 112545	seconds	ł.
Ť	Reau AIZ IILes	. 3.112343	Seconda	1
*	Neighbor lists	0.756136	seconds	
*	GAP desc/pred	:262.099182	seconds	
	– soap_turbo	:135.830049	seconds	
	– linturbo	: 20.739567	seconds	I
	– 2b	: 2.305878	seconds	Ì
	– 3b	:120.177111	seconds	Ì
	 core_pot 	. 0.000000	seconds	I
	– vdw	: 0.000000	seconds	Ì
*	MD algorithms	: 10.922272	seconds	Ì
*	MPI comms.	: 8.570891	seconds	İ
	– pos & vel	: 2.144792	seconds	Ì
	– E & F brc.	: 6.418340	seconds	Í
	 MPI misc. 	: 0.007758	seconds	1
*	Miscellaneous	: -0.315245	seconds	Ì
*	Total time	:285.620567	seconds	I

Overall performance

Total time vs. # of nodes for different undersubscribing.

Total time vs. # of processes per node for different # of CPUs per process

150

70

60

50

40 30

20

10

0

50

-1 node

2 nodes

-4 nodes

-8 nodes

100

1200

1000

Wall time [s] 000 008

400

200

0

0

50

Number of processes per node

Efficiency: t_{1 node}/[t x (# of nodes)]

150

32 nodes

100

Number of processes per node

64 nodes

128 nodes

CSC

Efficiency vs. # of nodes for different undersubscribing.

csc

Computation vs. Communication

Time spent in MPI operations vs. # of nodes for different undersubscribing.

Optimizations

- Node & core level optimizations
- Improve Communications:
 - o Optimize the MPI
 - Optimize the partition (load balance between MPI tasks & Domain Decomposition)
 - \circ parallel IO, neighbors search, MD step update
 - Reduce the number of MPI tasks.
 - Add OpenMP support
 - o Use GPUs to increase the amount operations per process

Porting to GPU

Porting Strategy

- TurboGAP is a FORTRAN code:
 - $_{\odot}$ Keep most of the code
 - $\circ \operatorname{\mathsf{As}}$ portable as possible
- OpenMP offloading to GPU
- Initial port done on Mahti (on nvidia A100 GPUs)
- FORTRAN + CUDA (HIP via hipify)

Interoperability done via iso_c_binding
 GPU objects and pointers are of type c_ptr in Fortran
 loop-by-loop approach
 othe rest of the code untouched
 error checking per variable and loop

First Target

*	Read input:	0.474787	seconds
*	Read XYZ files:	3.112545	seconds
*	Neighbor lists:	0.756136	seconds
*	GAP desc/pred:	262.099182	seconds
<	- soap_turbo:	135.830049	seconds
	- lin_turbo:	20.739567	seconds
	– 2b:	2.305878	seconds
	– 3b:	120.177111	seconds
	– core_pot:	0.00000	seconds
	– vdw:	0.00000	seconds
*	MD algorithms:	10.922272	seconds
*	MPI comms. :	8.570891	seconds
	– pos & vel:	2.144792	seconds
	– E & F brc.:	6.418340	seconds
	– MPI misc.:	0.007758	seconds
*	Miscellaneous:	-0.315245	seconds
*	Total time:	285.620567	seconds

Descriptors calculations

CSC

Energy & Forces prediction (linear algebra)

call get_soap(n_sites, n_neigh, n_species, species, species_multiplicity, n_atom_pairs, mask, rjs, &
 thetas, phis, alpha_max, l_max, rcut_hard, rcut_soft, nf, global_scaling, &
 atom_sigma_r, atom_sigma_r_scaling, atom_sigma_t, atom_sigma_t_scaling, &
 amplitude_scaling, radial_enhancement, central_weight, basis, scaling_mode, do_timing, &
 do_derivatives, compress_soap, compress_soap_indices, soap, soap_cart_der)

Energy & Forces prediction

Aknowledgements

- Academy of Finland for granting the funds
- ExaFF consortium members who prepared the applications
- Technical slides from Miguel Caro

Cristian Achim

CSC – IT Center for Science Ltd. Application Scientist cristian-vasile.achim@csc.fi

facebook.com/CSCfi

twitter.com/CSCfi

linkedin.com/company/csc---it-center-for-science

github.com/CSCfi

Kuvat CSC:n arkisto, Adobe Stock ja Thinkstock