
9-11 May 2022
https://klust.github.io/easybuild-tutorial/2022-CSC_and_LO

EasyBuild tutorial
CSC’22

Kurt Lust (Univ. of Antwerp)

https://klust.github.io/easybuild-tutorial/isc2

8

Introduction to EasyBuild

What is EasyBuild?

https://easybuilders.github.io/easybuild-tutorial/2022-CSC_and_LO/1_Intro/1_01_what_is_easybuild/

https://easybuilders.github.io/easybuild-tutorial/2022-CSC_and_LO/1_Intro/1_01_what_is_easybuild/

● EasyBuild is a software build and installation framework

● Strong focus on scientific software, performance, and HPC systems

● Open source (GPLv2), implemented in Python (2.7, 3.5+)

● Brief history:

○ Created in-house at HPC-UGent in 2008 as a tool for the
interuniversity VSC project

○ First released publicly in Apr’11

○ EasyBuild 1.0 released in Nov’11 (during SC11)

○ Worldwide community has grown around it since then!

https://easybuild.io

https://docs.easybuild.io

https://github.com/easybuilders

https://easybuild.slack.com
(https://easybuild.io/join-slack)

Twitter: @easy_build

What is EasyBuild?

9https://easybuilders.github.io/easybuild-tutorial/2022-CSC_and_LO/1_Intro/1_01_what_is_easybuild/

https://easybuild.io
https://docs.easybuild.io
https://github.com/easybuilders
https://easybuild.slack.com
https://easybuild.io/join-slack
https://twitter.com/easy_build
https://easybuilders.github.io/easybuild-tutorial/2022-CSC_and_LO/1_Intro/1_01_what_is_easybuild/

● Tool to provide a consistent and well performing scientific software stack

● Uniform interface for installing scientific software on HPC systems

● Saves time by automating tedious, boring and repetitive tasks

● Can empower scientific researchers to self-manage their software stack

● A platform for collaboration among HPC sites worldwide

● Has become an “expert system” for installing scientific software

EasyBuild in a nutshell

10https://easybuilders.github.io/easybuild-tutorial/2022-CSC_and_LO/1_Intro/1_01_what_is_easybuild/

https://easybuilders.github.io/easybuild-tutorial/2022-CSC_and_LO/1_Intro/1_01_what_is_easybuild/

● Supports fully autonomously installing (scientific) software,

including dependencies, generating environment module files, …

● No admin privileges are required (only write permission to install path)

● Highly configurable, easy to extend, support for hooks, easy customisation

● Detailed logging, fully transparent via support for “dry runs” and trace mode

● Support for using custom module naming schemes (incl. hierarchical)

Key features of EasyBuild (1/2)

11https://easybuilders.github.io/easybuild-tutorial/2022-CSC_and_LO/1_Intro/1_01_what_is_easybuild/

https://easybuilders.github.io/easybuild-tutorial/2022-CSC_and_LO/1_Intro/1_01_what_is_easybuild/

● Integrates with various other tools (Lmod, Singularity, Slurm, …)

● Actively developed and supported by worldwide community

● Frequent stable releases since 2011 (every 6 - 8 weeks)

● Comprehensive testing: unit tests, testing contributions, regression testing

○ But no Cray test systems

● Various support channels (mailing list, Slack, conf calls) + yearly user meetings

Key features of EasyBuild (2/2)

12https://easybuilders.github.io/easybuild-tutorial/2022-CSC_and_LO/1_Intro/1_01_what_is_easybuild/

https://easybuilders.github.io/easybuild-tutorial/2022-CSC_and_LO/1_Intro/1_01_what_is_easybuild/

Performance

● Strong preference for building software from source

● Software is optimized for the processor architecture of build host (by default)

Reproducibility

● Compiler, libraries, and required dependencies are mostly controlled by EasyBuild
○ Cray systems are an exception as EasyBuild interfaces with the Cray PE modules

● Fixed software versions for compiler, libraries, (build) dependencies, ...

Community effort

● Development is highly driven by EasyBuild community

● Lots of active contributors, integration with GitHub to facilitate contributions

Focus points in EasyBuild

13https://easybuilders.github.io/easybuild-tutorial/2022-CSC_and_LO/1_Intro/1_01_what_is_easybuild/

https://easybuilders.github.io/easybuild-tutorial/2022-CSC_and_LO/1_Intro/1_01_what_is_easybuild/

● EasyBuild is not YABT (Yet Another Build Tool)
○ It does not try to replace CMake, make, pip, etc.

○ It wraps around those tools and automates installation procedures

● EasyBuild does not replace traditional Linux package managers (yum, dnf, apt, …)

○ You should still install some software via OS package manager: OpenSSL, Slurm,

etc.

● EasyBuild is not a magic solution to all your (software installation) problems

○ You will still run into compiler errors (unless somebody worked around it already)

What EasyBuild is not

14https://easybuilders.github.io/easybuild-tutorial/2022-CSC_and_LO/1_Intro/1_01_what_is_easybuild/

https://easybuilders.github.io/easybuild-tutorial/2022-CSC_and_LO/1_Intro/1_01_what_is_easybuild/

15

Introduction to EasyBuild

The Lmod module system

https://easybuilders.github.io/easybuild-tutorial/2022-CSC_and_LO/1_Intro/1_02_Lmod/

https://easybuilders.github.io/easybuild-tutorial/2022-CSC_and_LO/1_Intro/1_02_Lmod/

● Choices
○ Environment modules 3: C implementation, Tcl modules, supported by Cray
○ Environment modules 4 or 5: Tcl implementation + modules, NOT supported by

Cray
○ Lmod: LUA implementation + modules, supported by Cray (with some delay)

● Hierarchical module scheme
○ Unconventional hierarchy used in the Cray PE
○ Partly used to organise the software stacks on LUMI (versions and specific

hardware)

Lmod: LUA environment modules

16https://easybuilders.github.io/easybuild-tutorial/2022-CSC_and_LO/1_Intro/1_02_Lmod/

https://easybuilders.github.io/easybuild-tutorial/2022-CSC_and_LO/1_Intro/1_02_Lmod/

● Model hierarchy: 3 levels

○ Core level: compilers

○ Compiler level: provides
libraries that only need the
compiler, and MPI modules

○ MPI level: Software that is
compiled with MPI support

Lmod hierarchy

17https://easybuilders.github.io/easybuild-tutorial/2022-CSC_and_LO/1_Intro/1_02_Lmod/

https://easybuilders.github.io/easybuild-tutorial/2022-CSC_and_LO/1_Intro/1_02_Lmod/

● Distinction between
○ Installed modules: All modules that can be loaded one way or another, sometimes

by first loading other modules
=> module spider and module keyword

○ Available modules: The modules that can be loaded right away
=> module avail

● Examples in the HPE Cray PE:
○ cray-mpich can only be loaded if a compiler module and network target module

are loaded
○ Many of the performance monitoring tools only become available after loading

perftools-base
○ cray-fftw only becomes avialable when a processor target module is loaded

Lmod hierarchy

18https://easybuilders.github.io/easybuild-tutorial/2022-CSC_and_LO/1_Intro/1_02_Lmod/

https://easybuilders.github.io/easybuild-tutorial/2022-CSC_and_LO/1_Intro/1_02_Lmod/

● MODULEPATH determines which modules are available
○ Some modules change the MODULEPATH to add a new level of

available modules
● “One name rule”
● “Family” concept: extension of the “one name rule”

○ No two modules of the same family can be loaded
○ Example on LUMI: The PrgEnv modules belong to the “PrgEnv”

family
○ Example on mahti: Compiler modules aocc/3.2.0, gcc/9.4.0,

gcc/11.2.0 belong to the “compiler” family
● Be careful with module naming to exploit this!

Lmod hierarchy: Building blocks

19https://easybuilders.github.io/easybuild-tutorial/2022-CSC_and_LO/1_Intro/1_02_Lmod/

https://easybuilders.github.io/easybuild-tutorial/2022-CSC_and_LO/1_Intro/1_02_Lmod/

● module spider : Long list of all installed software with short description
○ Will also look into modules for “extensions” and show those also,

marked with an “E”
● module spider gnuplot : Shows all versions of gnuplot on the system

module spider CMake
● module spider gnuplot/5.4.3-cpeGNU-21.12 : Shows help information for

the specific module, including what should be done to make the module
available

○ But this does not completely work with the Cray PE modules
● module spider CMake/3.22.2 : Will tell you which module contains CMake

and how to load it

module spider

20https://easybuilders.github.io/easybuild-tutorial/2022-CSC_and_LO/1_Intro/1_02_Lmod/

https://easybuilders.github.io/easybuild-tutorial/2022-CSC_and_LO/1_Intro/1_02_Lmod/

● Currently not yet very useful due to a bug in Cray Lmod
● It searches in the module short description and help for the keyword.

○ E.g., try
module keyword https

● We do try to put enough information in the modules to make this a
suitable additional way to discover software that is already installed on
the system

○ Thinking of proposing an extension to EasyBuild to make this a bit
easier without getting ugly looking module help and whatis
information

module keyword

21https://easybuilders.github.io/easybuild-tutorial/2022-CSC_and_LO/1_Intro/1_02_Lmod/

https://easybuilders.github.io/easybuild-tutorial/2022-CSC_and_LO/1_Intro/1_02_Lmod/

● On some systems, you will be taught to avoid module purge (which
unloads all modules)

● Sticky modules are modules that are not unloaded by module purge,
but reloaded.

○ They can be force-unloaded with module –-force purge and module –-force
unload

● Used on LUMI for the software stacks and modules that set the
display style of the modules

○ But keep in mind that the modules are reloaded, which implies that the target
modules and partition module will be switched (back) to those for the current
node.

Sticky modules and module purge

22https://easybuilders.github.io/easybuild-tutorial/2022-CSC_and_LO/1_Intro/1_02_Lmod/

https://easybuilders.github.io/easybuild-tutorial/2022-CSC_and_LO/1_Intro/1_02_Lmod/

● You may have noticed that you don’t see directories in the module
view but descriptive texts

● This can be changed by loading a module
○ ModuleLabel/label : The default view
○ ModuleLabel/PEhierarchy : Descriptive texts, but the PE hierarchy is unfolded
○ ModuleLabel/system : Module directories

● Turn colour on or off using ModuleColour/on or ModuleColour/off
● Show some hidden modules with ModulePowerUser/LUMI

○ This will also show undocumented/unsupported modules!

Changing how the module list is displayed

23https://easybuilders.github.io/easybuild-tutorial/2022-CSC_and_LO/1_Intro/1_02_Lmod/

https://easybuilders.github.io/easybuild-tutorial/2022-CSC_and_LO/1_Intro/1_02_Lmod/

24

Introduction to EasyBuild

The HPE Cray PE

https://easybuilders.github.io/easybuild-tutorial/2022-CSC_and_LO/1_Intro/1_03_CPE/

https://easybuilders.github.io/easybuild-tutorial/2022-CSC_and_LO/1_Intro/1_03_CPE/

● Cray compiler environments
○ Compilers preferably used through universal compiler wrappers
○ cc, CC, ftn commands
○ Behaviour depends on the loaded compiler module and target modules

● On LUMI:
○ Cray Compiling Environment (CCE): Clang/LLVM C/C++ and Cray Fortran

front-end with LLVM-based backend
○ 3rd party: GNU
○ 3rd party: AMD Optimizing C/C++ and Fortran Compilers (AOCC)
○ 3rd party: AMD ROCm compilers

HPE Cray PE components

25https://easybuilders.github.io/easybuild-tutorial/2022-CSC_and_LO/1_Intro/1_03_CPE/

https://easybuilders.github.io/easybuild-tutorial/2022-CSC_and_LO/1_Intro/1_03_CPE/

● Cray Scientific and Math Library
○ LibSci with BLAS, LAPACK, ScaLAPACK, IRT
○ FFTW
○ HDF5 and NetCDF
○ Wrappers take care of adding the right compiler/linker flags based on loaded

modules

● Cray Message Passing Toolkit
○ Libfabric-based with Cassini provider for SlingShot 11
○ UCX will no longer work after the late May LUMI upgrade

● DSMML, Cray Performance Analysis Tools, Cray Debugging
Support Tools

HPE Cray PE components (2)

26https://easybuilders.github.io/easybuild-tutorial/2022-CSC_and_LO/1_Intro/1_03_CPE/

https://easybuilders.github.io/easybuild-tutorial/2022-CSC_and_LO/1_Intro/1_03_CPE/

● What they do is determined by a single configuration file
● When interfacing with EasyBuild replaced by an EasyBuild-

controlled module

Programming Environment Modules

27https://easybuilders.github.io/easybuild-tutorial/2022-CSC_and_LO/1_Intro/1_03_CPE/

HPE Cray PE Compiler module LUMI stack

PrgEnv-cray cce cpeCray

PrgEnv-gnu gcc cpeGNU

PrgEnv-aocc aocc cpeAOCC

PrgEnv-amd rocm cpeAMD

https://easybuilders.github.io/easybuild-tutorial/2022-CSC_and_LO/1_Intro/1_03_CPE/

● Loading cpe/yy.mm
○ Sets the default versions of the Cray PE modules to the versions that come

with the particular HPE Cray PE release
○ Reloads already loaded PE modules to switch to the default version

● But buggy due to Cray bugs and Lmod limitations
○ Never load with other modules in a single module command
○ May need to load twice to switch all modules to the new version

● In the LUMI software stacks, the LUMI module takes part of this role
over

○ needs to be improved
○ cpeCray/cpeGNU etc. modules always (re)load the right versions

Choosing versions through the cpe module

28https://easybuilders.github.io/easybuild-tutorial/2022-CSC_and_LO/1_Intro/1_03_CPE/

https://easybuilders.github.io/easybuild-tutorial/2022-CSC_and_LO/1_Intro/1_03_CPE/

● craype-x86-* set the target architecture for CPU optimisation
● craype-accel-* set the target architecture for OpenMP offload

○ And dummy craype-accel-host

● craype-network-* set the communication library to be used by
Cray MPICH.

● craype-hugepages* modules for Cray Huge Pages support
(cce and gcc only)

● EasyBuild currently also uses the target modules rather than
command line switches to set optimisation target architectures

Target modules

29https://easybuilders.github.io/easybuild-tutorial/2022-CSC_and_LO/1_Intro/1_03_CPE/

https://easybuilders.github.io/easybuild-tutorial/2022-CSC_and_LO/1_Intro/1_03_CPE/

● Dynamic linking needed for system libraries and Cray PE
libraries.

● But not all modules set LD_LIBRARY_PATH. Some set
CRAY_LD_LIBRARY_PATH instead and will use by default
fallback libraries in /opt/cray/pe/lib64

○ And these correspond to the default version of the Cray PE as set in the
system

○ So the behaviour of a program may change after a change of default
version of the PE

Unexpected behaviour

30https://easybuilders.github.io/easybuild-tutorial/2022-CSC_and_LO/1_Intro/1_03_CPE/

https://easybuilders.github.io/easybuild-tutorial/2022-CSC_and_LO/1_Intro/1_03_CPE/

31

Introduction to EasyBuild

LUMI software stacks

https://easybuilders.github.io/easybuild-tutorial/2022-CSC_and_LO/1_Intro/1_04_LUMI_software_stack/

https://easybuilders.github.io/easybuild-tutorial/2022-CSC_and_LO/1_Intro/1_04_LUMI_software_stack/

● Software organised in extensible software stacks based on a particular release of
the PE

○ Many base libraries and some packages already pre-installed
○ Easy way to install additional packages in project space

● Modules managed by Lmod
○ More powerful than the (old) Modules Environment which is also supported by

HPE Cray
○ Powerful features to search for modules

● EasyBuild is our primary tool for software installations
○ But uses HPE Cray specific toolchains
○ Offer a library of installation recipes
○ User installations integrate seamlessly with the central stack
○ We can help you with setting up Spack also, but this is not yet automated

Software stacks: LUMI solution

32https://easybuilders.github.io/easybuild-tutorial/2022-CSC_and_LO/1_Intro/1_04_LUMI_software_stack/

https://easybuilders.github.io/easybuild-tutorial/2022-CSC_and_LO/1_Intro/1_04_LUMI_software_stack/

● CrayEnv: Cray environment with some additional tools pushed in through
EasyBuild

● LUMI stacks, each one corresponding to a particular release of the PE
○ Work with the Cray PE modules, but accessed through a replacement for the

PrgEnv-* modules
○ Tuned versions for the 4 types of hardware: zen2 (login, large memory

nodes), zen3 (LUMI-C compute nodes), zen2 + NVIDIA GPU (visualisation
partition), zen3 + MI250X (LUMI-G GPU partition)

○ Some software may be installed outside those stacks
● Far future: Stack based on common EB toolchains as-is

○ MPI may be the problem

LUMI software stacks

33https://easybuilders.github.io/easybuild-tutorial/2022-CSC_and_LO/1_Intro/1_04_LUMI_software_stack/

https://easybuilders.github.io/easybuild-tutorial/2022-CSC_and_LO/1_Intro/1_04_LUMI_software_stack/

● Very bare environment available directly after login
○ What you can expect on a typical Cray system
○ Few tools as only the base OS image is available
○ User fully responsible for managing the target modules

● CrayEnv
○ “Enriched” Cray PE environment
○ Takes care of managing the target modules: (re)loading CrayEnv will

reload an optimal set for the node you’re on
○ Some additional tools, e.g., newer build tools (offered here and not in

the bare environment as we need to avoid conflicts with other
software stacks)

○ Otherwise used in the way discussed in this course

3 ways to access the Cray PE on LUMI

34https://easybuilders.github.io/easybuild-tutorial/2022-CSC_and_LO/1_Intro/1_04_LUMI_software_stack/

https://easybuilders.github.io/easybuild-tutorial/2022-CSC_and_LO/1_Intro/1_04_LUMI_software_stack/

● LUMI software stack
○ Each stack based on a particular release of the HPE Cray PE
○ Other modules are accessible but hidden from the default view
○ Better not to use the PrgEnv modules but the LUMI toolchains

○ cpeXXX modules also load the MPI libraries and LibSci just as the PrgEnv-*
modules

○ Environment in which we install most software

3 ways to access the Cray PE on LUMI

35https://easybuilders.github.io/easybuild-tutorial/2022-CSC_and_LO/1_Intro/1_04_LUMI_software_stack/

HPE Cray PE LUMI toolchain What?

PrgEnv-cray cpeCray Cray Compiling Environment

PrgEnv-gnu cpeGNU GNU C/C++ and Fortran

PrgEnv-aocc cpeAOCC AMD CPU compilers

PrgEnv-amd cpeAMD AMD ROCm GPU compilers (LUMI-G only)

https://easybuilders.github.io/easybuild-tutorial/2022-CSC_and_LO/1_Intro/1_04_LUMI_software_stack/

● The LUMI software stack uses two levels of modules
○ LUMI/21.08, LUMI/21.12: Versions of the LUMI stack
○ partition/L, partition/C, partition/EAP (and future partition/D, partition/G): To select

software optimised for the respective LUMI partition
■ partition/L is for both the login nodes and the large memory nodes (4TB)
■ partition/EAP doesn’t really have any software preinstalled (except for tools that

we have everywhere)
○ Hidden partition/common for software that is available everywhere, but be careful

using it for your own installs
○ When (re)loaded, the LUMI module will load the best matching partition module.
○ Hence be careful in job scripts: When your job starts, the environment will be that of

the login nodes, but if you trigger a reload of the LUMI module it will be that of the
compute node!

3 ways to access the Cray PE on LUMI

36https://easybuilders.github.io/easybuild-tutorial/2022-CSC_and_LO/1_Intro/1_04_LUMI_software_stack/

https://easybuilders.github.io/easybuild-tutorial/2022-CSC_and_LO/1_Intro/1_04_LUMI_software_stack/

● Targets for the partition modules:

Partition module

37https://easybuilders.github.io/easybuild-tutorial/2022-CSC_and_LO/1_Intro/1_04_LUMI_software_stack/

Partition CPU target GPU target

partition/L craype-x86-rome craype-accel-host

partition/C craype-x86-milan craype-accel-host

partition/G craype-x86-trento craype-accel-amd-gfx90a

partition/D craype-x86-rome craype-accel-nvidia80

partition/EAP craype-x86-rome craype-accel-amd-gfx908

https://easybuilders.github.io/easybuild-tutorial/2022-CSC_and_LO/1_Intro/1_04_LUMI_software_stack/

38

Introduction to EasyBuild

Terminology

https://easybuilders.github.io/easybuild-tutorial/2022-CSC_and_LO/1_Intro/1_05_terminology/

https://easybuilders.github.io/easybuild-tutorial/2022-CSC_and_LO/1_Intro/1_05_terminology/

● It is important to briefly explain some terminology often used in
EasyBuild

● Some concepts are specific to EasyBuild: easyblocks,
easyconfigs, …

● Overloaded terms are clarified: modules, extensions, toolchains,
…

EasyBuild terminology

39https://easybuilders.github.io/easybuild-tutorial/2022-CSC_and_LO/1_Intro/1_05_terminology/

https://easybuilders.github.io/easybuild-tutorial/2022-CSC_and_LO/1_Intro/1_05_terminology/

EasyBuild terminology: toolchains

40

● Compiler toolchain: set of compilers + libraries for MPI, BLAS/LAPACK, FFT, …
● Toolchain component: a part of a toolchain (compiler component, etc.)
● Full toolchain: C/C++/Fortran compilers + libraries for MPI, BLAS/LAPACK, FFT
● Subtoolchain (partial toolchain): compiler-only, only compiler + MPI, etc.
● System toolchain: use compilers (+ libraries) provided by the operating system
● Common toolchains: widely used toolchain in EasyBuild community:

○ foss: GCC + OpenMPI + (FlexiBLAS +) OpenBLAS + FFTW
○ intel: Intel compilers + Intel MPI + Intel MKL

https://easybuilders.github.io/easybuild-tutorial/2022-CSC_and_LO/1_Intro/1_05_terminology/

https://easybuilders.github.io/easybuild-tutorial/2022-CSC_and_LO/1_Intro/1_05_terminology/

EasyBuild terminology: toolchains

41

● Organised in a hierarchy

https://easybuilders.github.io/easybuild-tutorial/2022-CSC_and_LO/1_Intro/1_05_terminology/

https://easybuilders.github.io/easybuild-tutorial/2022-CSC_and_LO/1_Intro/1_05_terminology/

● The EasyBuild framework is the core of EasyBuild

● Collection of Python modules, organised in packages

● Implements common functionality for building and installing software

● Support for applying patches, running commands, generating module files, ...

● Examples: easybuild.toolchains, easybuild.tools, …

● Provides eb command, but can also be leveraged as a Python library

● GitHub repository: https://github.com/easybuilders/easybuild-framework

EasyBuild terminology: framework

42https://easybuilders.github.io/easybuild-tutorial/2022-CSC_and_LO/1_Intro/1_05_terminology/

https://github.com/easybuilders/easybuild-framework
https://easybuilders.github.io/easybuild-tutorial/2022-CSC_and_LO/1_Intro/1_05_terminology/

● A Python module that implements a specific software installation procedure
○ Can be viewed as a “plugin” to the EasyBuild framework

● Generic easyblocks for “standard” stuff: cmake + make + make install, Python packages,
etc.

● Software-specific easyblocks for complex software (OpenFOAM, TensorFlow, WRF, …)
● Installation procedure can be controlled via easyconfig parameters

○ Additional configure options, commands to run before/after build or install command, ...
○ Generic easyblock + handful of defined easyconfig parameters is sufficient to install a lot of

software

● GitHub repository: https://github.com/easybuilders/easybuild-easyblocks
● Easyblocks do not need to be part of the EasyBuild installation (see --include-easyblocks)

EasyBuild terminology: easyblock

43https://easybuilders.github.io/easybuild-tutorial/2022-CSC_and_LO/1_Intro/1_05_terminology/

https://github.com/easybuilders/easybuild-easyblocks
https://easybuilders.github.io/easybuild-tutorial/2022-CSC_and_LO/1_Intro/1_05_terminology/

● Text file that specifies what EasyBuild should install (in Python syntax)

● Collection of values for easyconfig parameters (key-value definitions)

● Filename typically ends in ‘.eb’

● Specific filename is expected in some contexts (when resolving dependencies)

○ Should match with values for name, version, toolchain, versionsuffix

○ <name>-<version>-<toolchain><versionsuffix>.eb

● GitHub repository: https://github.com/easybuilders/easybuild-easyconfigs

EasyBuild terminology: easyconfig file

44https://easybuilders.github.io/easybuild-tutorial/2022-CSC_and_LO/1_Intro/1_05_terminology/

https://github.com/easybuilders/easybuild-easyconfigs
https://easybuilders.github.io/easybuild-tutorial/2022-CSC_and_LO/1_Intro/1_05_terminology/

EasyBuild terminology: easystack file

45

● New concept since EasyBuild v4.3.2 (Dec’20), experimental feature
● Concise description for software stack to be installed (in YAML syntax)

● Basically specifies a set of easyconfig files (+ associated info)

● Still a work-in-progress, only basic functionality currently

● More Info: https://docs.easybuild.io/en/latest/Easystack-files.html

● My personal experience: Still a bit buggy, but a promising way to organise (re-

)installation of a software stack

https://easybuilders.github.io/easybuild-tutorial/2022-CSC_and_LO/1_Intro/1_05_terminology/

https://docs.easybuild.io/en/latest/Easystack-files.html
https://easybuilders.github.io/easybuild-tutorial/2022-CSC_and_LO/1_Intro/1_05_terminology/

EasyBuild terminology: extensions

46

● Additional software that can be installed on top of other software

● Common examples: Python packages, Perl modules, R libraries, …

● Extensions is the general term we use for this type of software packages

● Can be installed in different ways:

○ As a stand-alone software packages (separate module)

○ In a bundle together with other extensions

○ As an actual extension, to provide a “batteries included” installation

● Feature can work together with Lmod to be able to find extensions included in a module

easily but turned off at the moment because of problems with Cray Lmod 8.3.1

https://easybuilders.github.io/easybuild-tutorial/2022-CSC_and_LO/1_Intro/1_05_terminology/

https://easybuilders.github.io/easybuild-tutorial/2022-CSC_and_LO/1_Intro/1_05_terminology/

● Software that is required to build/install or run other software

● Build dependencies: only required when building/installing software (not to use it)

○ Examples: CMake, pip, pkg-config, ...

● Run-time dependencies: (also) required to use the installed software

○ Examples: Python, Perl, R, ...

● Link-time dependencies: libraries that are required by software to link to, when linked

statically or using RPATH

○ Examples: glibc, OpenBLAS, FFTW, ...

● Currently in EasyBuild: no distinction between link-time and run-time dependencies

EasyBuild terminology: dependencies

47https://easybuilders.github.io/easybuild-tutorial/2022-CSC_and_LO/1_Intro/1_05_terminology/

https://easybuilders.github.io/easybuild-tutorial/2022-CSC_and_LO/1_Intro/1_05_terminology/

EasyBuild terminology: modules

48

● Very overloaded term: kernel modules, Python modules, Perl modules …
● In EasyBuild context: “module” usually refers to an environment module file

○ Shell-agnostic specification of how to “activate” a software installation
○ Expressed in Tcl or Lua syntax (scripting languages)
○ Consumed by a modules tool (Lmod, Environment Modules, …)

● Other types of modules will be qualified explicitly (Python modules, etc.)
● EasyBuild automatically generates a module file for each installation

https://easybuilders.github.io/easybuild-tutorial/2022-CSC_and_LO/1_Intro/1_05_terminology/

https://easybuilders.github.io/easybuild-tutorial/2022-CSC_and_LO/1_Intro/1_05_terminology/

Bringing all EasyBuild terminology together

49

The EasyBuild framework leverages easyblocks to automatically build and install
(scientific) software, potentially including additional extensions, using a particular
compiler toolchain, as specified in easyconfig files which each define a set of
easyconfig parameters.

EasyBuild ensures that the specified (build) dependencies are in place, and automatically
generates a set of (environment) modules that facilitate access to the installed software.

An easystack file can be used to specify a collection of software to install with EasyBuild.

https://easybuilders.github.io/easybuild-tutorial/2022-CSC_and_LO/1_Intro/1_05_terminology/

https://easybuilders.github.io/easybuild-tutorial/2022-CSC_and_LO/1_Intro/1_05_terminology/

50

Introduction to EasyBuild

Installation

https://easybuilders.github.io/easybuild-tutorial/2022-CSC_and_LO/1_Intro/1_06_installation/

https://easybuilders.github.io/easybuild-tutorial/2022-CSC_and_LO/1_Intro/1_06_installation/

● Linux as operating system (CentOS, RHEL, Ubuntu, Debian, SLES, …)

○ EasyBuild also works on macOS, but support is very basic

● Python 2.7 or 3.5+

○ Only Python standard library is required for core functionality of EasyBuild

○ Using Python 3 is highly recommended!

● An environment modules tool (module command)

○ Default is Lua-based Lmod implementation, highly recommended!

○ Tcl-based implementations are also supported

Installing EasyBuild: requirements

51https://easybuilders.github.io/easybuild-tutorial/2022-CSC_and_LO/1_Intro/1_06_installation/

https://easybuilders.github.io/easybuild-tutorial/2022-CSC_and_LO/1_Intro/1_06_installation/

Installing EasyBuild: different options

● Installing EasyBuild using a standard Python installation tool

○ pip install easybuild

○ … or a variant thereof (pip3 install --user, using virtualenv, etc.)

○ May require additional commands, for example to update environment

● Installing EasyBuild as a module, with EasyBuild (recommended!)

○ 3-step “bootstrap” procedure, via temporary EasyBuild installation using pip

● Development setup

○ Clone GitHub repositories: easybuilders/easybuild-

{framework,easyblocks,easyconfigs}

○ Update $PATH and $PYTHONPATH environment variables
52https://easybuilders.github.io/easybuild-tutorial/2022-CSC_and_LO/1_Intro/1_06_installation/

https://easybuilders.github.io/easybuild-tutorial/2022-CSC_and_LO/1_Intro/1_06_installation/

3-step bootstrap procedure

● Step 1: Use pip to obtain a temporary installation of EasyBuild

export TMPDIR=/tmp/$USER/easybuild
pip3 install --prefix $TMPDIR easybuild
update environment to use this temporary EasyBuild installation
export PATH=$TMPDIR/bin:$PATH
export PYTHONPATH=$TMPDIR/lib/python3.6/site-packages:$PYTHONPATH
instruct EasyBuild to use python3 command
export EB_PYTHON=python3

53

Installing EasyBuild as a module (recommended)

https://easybuilders.github.io/easybuild-tutorial/2022-CSC_and_LO/1_Intro/1_06_installation/

https://easybuilders.github.io/easybuild-tutorial/2022-CSC_and_LO/1_Intro/1_06_installation/

3-step bootstrap procedure

● Step 2: Use EasyBuild to install EasyBuild (as a module) in home directory

eb --install-latest-eb-release --prefix $HOME/easybuild
and then clean up the temporary EasyBuild installation
rm -r $TMPDIR

● Step 3: Load EasyBuild module to use final installation

module use $HOME/easybuild/modules/all
module load EasyBuild

54

Installing EasyBuild as a module (recommended)

https://easybuilders.github.io/easybuild-tutorial/2022-CSC_and_LO/1_Intro/1_06_installation/

https://easybuilders.github.io/easybuild-tutorial/2022-CSC_and_LO/1_Intro/1_06_installation/

Approach on LUMI

● Each version of the LUMI software stack is bootstrapped to ensure that it can be

rebuild on an “empty” system

● Tend to fix the version of EasyBuild for each LUMI stack to ensure that a rebuild of

the already installed software is possible

● Use the bootstrapping process
○ There is no pip in the system Python so we call the setup.py script through

Python
○ Then use that version to do a proper install in partition/common, using the

configuration modules

55https://easybuilders.github.io/easybuild-tutorial/2022-CSC_and_LO/1_Intro/1_06_installation/

https://easybuilders.github.io/easybuild-tutorial/2022-CSC_and_LO/1_Intro/1_06_installation/

Verifying the EasyBuild installation

● Check EasyBuild version:

eb --version

● Show help output (incl. long list of supported configuration settings)

eb --help

● Show the current (default) EasyBuild configuration:

eb --show-config

● Show system information:

eb --show-system-info

56https://easybuilders.github.io/easybuild-tutorial/2022-CSC_and_LO/1_Intro/1_06_installation/

https://easybuilders.github.io/easybuild-tutorial/2022-CSC_and_LO/1_Intro/1_06_installation/

Updating EasyBuild

● Updating EasyBuild (in-place) that was installed with pip:

pip install --upgrade easybuild

(+ additional options like --user, or using pip3, depending on your setup)

● Use current EasyBuild to install latest EasyBuild release as a module:

eb --install-latest-eb-release

○ This is not an in-place update, but a new EasyBuild installation!

○ You need to load (or swap to) the corresponding module afterwards:

module load EasyBuild/4.5.4

57https://easybuilders.github.io/easybuild-tutorial/2022-CSC_and_LO/1_Intro/1_06_installation/

https://easybuilders.github.io/easybuild-tutorial/2022-CSC_and_LO/1_Intro/1_06_installation/

58

Introduction to EasyBuild

Configuring EasyBuild

https://easybuilders.github.io/easybuild-tutorial/2022-CSC_and_LO/1_Intro/1_07_configuration/

https://easybuilders.github.io/easybuild-tutorial/2022-CSC_and_LO/1_Intro/1_07_configuration/

● EasyBuild should work fine out-of-the-box if you are using Lmod as modules tool

● … but it will (ab)use $HOME/.local/easybuild to install software into, etc.

● It is strongly recommended to configure EasyBuild properly!

● Main questions you should ask yourself:

○ Where should EasyBuild install software (incl. module files)?

○ Where should auto-downloaded sources be stored?

○ Which filesystem is best suited for software build directories (I/O-intensive)?

Configuring EasyBuild

59https://easybuilders.github.io/easybuild-tutorial/2022-CSC_and_LO/1_Intro/1_07_configuration/

https://easybuilders.github.io/easybuild-tutorial/2022-CSC_and_LO/1_Intro/1_07_configuration/

● Most important configuration settings: (strongly recommended to specify the ones in bold!)
○ Modules tool + syntax (modules-tool + module-syntax)
○ Software + modules installation path (installpath)*

○ Location of software sources “cache” (sourcepath)*

○ Parent directory for software build (work) directories (buildpath)*

○ Location of easyconfig files archive (repositorypath)*

○ Search path for easyconfig files (robot-paths + robot)
○ Module naming scheme (module-naming-scheme)

● Several locations* (+ others) can be controlled at once via prefix configuration setting
● Defaults are as if --prefix=$HOME/.local/easybuild

● Full list of EasyBuild configuration settings (~250) is available via eb --help

Primary configuration settings

60https://easybuilders.github.io/easybuild-tutorial/2022-CSC_and_LO/1_Intro/1_07_configuration/

https://easybuilders.github.io/easybuild-tutorial/2022-CSC_and_LO/1_Intro/1_07_configuration/

Configuration levels

● There are 3 different configuration levels in EasyBuild:

○ Configuration files

○ Environment variables

○ Command line options to the eb command

● Each configuration setting can be specified via each “level” (no exceptions!)

● Hierarchical configuration:

○ Configuration files override default settings

○ Environment variables override configuration files

○ eb command line options override environment variables

61https://easybuilders.github.io/easybuild-tutorial/2022-CSC_and_LO/1_Intro/1_07_configuration/

https://easybuilders.github.io/easybuild-tutorial/2022-CSC_and_LO/1_Intro/1_07_configuration/

● EasyBuild configuration files are in standard INI format (key=value)

● EasyBuild considers multiple locations for configuration files:

○ User-level: $HOME/.config/easybuild/config.cfg (or via $XDG_CONFIG_HOME)

○ System-level: /etc/easybuild.d/*.cfg (or via $XDG_CONFIG_DIRS)

○ See output of eb --show-default-configfiles

● Output produced by eb --confighelp is a good starting point

● Typically for “do once and forget” static configuration (like modules tool to use, ...)

● EasyBuild configuration files and easyconfig files are very different things!

EasyBuild configuration files

62https://easybuilders.github.io/easybuild-tutorial/2022-CSC_and_LO/1_Intro/1_07_configuration/

https://easybuilders.github.io/easybuild-tutorial/2022-CSC_and_LO/1_Intro/1_07_configuration/

● Very convenient way to configure EasyBuild

● There is an $EASYBUILD_* environment variable for each configuration setting
○ Use all capital letters
○ Replace every dash (-) character with an underscore (_)
○ Prefix with EASYBUILD_
○ Example: module-syntax → $EASYBUILD_MODULE_SYNTAX

● Common approach: using a shell script or module file to (dynamically) configure
EasyBuild

○ Which is what we do on LUMI with EasyBuild-user, EasyBuild-production and
EasyBuild-infrastructure

$EASYBUILD_* environment variables

63https://easybuilders.github.io/easybuild-tutorial/2022-CSC_and_LO/1_Intro/1_07_configuration/

https://easybuilders.github.io/easybuild-tutorial/2022-CSC_and_LO/1_Intro/1_07_configuration/

Command line options for eb command

● Configuration settings specified as command line option always “win”

● Use double-dash + name of configuration setting, like --module-syntax

● Some options have a corresponding shorthand (eb --robot == eb -r)

● In some cases, only command line option really makes sense (like eb --version)

● Typically used to control configuration settings for current EasyBuild session;

for example: eb --installpath /tmp/$USER

64https://easybuilders.github.io/easybuild-tutorial/2022-CSC_and_LO/1_Intro/1_07_configuration/

https://easybuilders.github.io/easybuild-tutorial/2022-CSC_and_LO/1_Intro/1_07_configuration/

Inspecting the current configuration

● It can be difficult to remember how EasyBuild was configured

● Output produced by eb --show-config is useful to remind you

○ Shows configuration settings that are different from default
○ Always shows a couple of key configuration settings
○ Also shows on which level each configuration setting was specified

● Full current configuration: eb --show-full-config

65https://easybuilders.github.io/easybuild-tutorial/2022-CSC_and_LO/1_Intro/1_07_configuration/

https://easybuilders.github.io/easybuild-tutorial/2022-CSC_and_LO/1_Intro/1_07_configuration/

$ cat $HOME/.config/easybuild/config.cfg
[config]
prefix=/apps

$ export EASYBUILD_BUILDPATH=/tmp/$USER/build

$ eb --installpath=/tmp/$USER --show-config
Current EasyBuild configuration
(C: command line argument, D: default value,
E: environment variable, F: configuration file)
buildpath (E) = /tmp/example/build
containerpath (F) = /apps/containers
installpath (C) = /tmp/example
packagepath (F) = /apps/packages
prefix (F) = /apps
repositorypath (F) = /apps/ebfiles_repo
robot-paths (D) = /home/example/.local/easybuild/easyconfigs
sourcepath (F) = /apps/sources

Inspecting the current configuration:
fictitious example

66https://easybuilders.github.io/easybuild-tutorial/2022-CSC_and_LO/1_Intro/1_07_configuration/

https://easybuilders.github.io/easybuild-tutorial/2022-CSC_and_LO/1_Intro/1_07_configuration/

68

Introduction to EasyBuild

Basic usage

https://easybuilders.github.io/easybuild-tutorial/2022-CSC_and_LO/1_Intro/1_08_basic_usage/

https://easybuilders.github.io/easybuild-tutorial/2022-CSC_and_LO/1_Intro/1_08_basic_usage/

Basic usage of EasyBuild
● Use eb command to run EasyBuild
● Software to install is usually specified via name(s) of easyconfig file(s), or easystack

file
● --robot (-r) option is required to also install missing dependencies (and toolchain)
● Typical workflow:

○ Find or create easyconfig files to install desired software
○ Inspect easyconfigs, check missing dependencies + planned installation

procedure
○ Double check current EasyBuild configuration
○ Instruct EasyBuild to install software (while you enjoy a coffee… or two)

69https://easybuilders.github.io/easybuild-tutorial/2022-CSC_and_LO/1_Intro/1_08_basic_usage/

https://easybuilders.github.io/easybuild-tutorial/2022-CSC_and_LO/1_Intro/1_08_basic_usage/

● There a different ways to specify to the eb command which easyconfigs to use

○ Specific relative/absolute paths to (directory with) easyconfig files

○ Names of easyconfig files (triggers EasyBuild to search for them)

○ Easystack file to specify a whole stack of software to install (via eb --easystack)

● Easyconfig filenames only matter when missing dependencies need to be installed

○ “Robot” mechanism searches based on dependency specs + easyconfig filename

● eb --search can be used to quickly search through available easyconfig files

Specifying easyconfigs to use

70https://easybuilders.github.io/easybuild-tutorial/2022-CSC_and_LO/1_Intro/1_08_basic_usage/

https://easybuilders.github.io/easybuild-tutorial/2022-CSC_and_LO/1_Intro/1_08_basic_usage/

● EasyBuild has 2 options to search for an easyconfig

● eb --search : Output with full paths

● eb -S : Output grouped per repository, common part of the path replaced with a

variable

$ eb --search openfoam-9
* /appl/lumi/LUMI-EasyBuild-contrib/easybuild/easyconfigs/o/OpenFOAM/OpenFOAM-9-cpeGNU-21.08.eb
* /appl/lumi/LUMI-EasyBuild-contrib/easybuild/easyconfigs/o/OpenFOAM/OpenFOAM-9-cpeGNU-21.12.eb
$ eb -S openfoam-9
CFGS1=/appl/lumi/LUMI-EasyBuild-contrib/easybuild/easyconfigs/o/OpenFOAM
* $CFGS1/OpenFOAM-9-cpeGNU-21.08.eb
* $CFGS1/OpenFOAM-9-cpeGNU-21.12.eb

Searching for easyconfigs

71https://easybuilders.github.io/easybuild-tutorial/2022-CSC_and_LO/1_Intro/1_08_basic_usage/

https://easybuilders.github.io/easybuild-tutorial/2022-CSC_and_LO/1_Intro/1_08_basic_usage/

● Search can also use regular expressions

● But be careful that bash does not expand special characters!

$ eb -S '^gromacs-2021.*cpeGNU.*'
CFGS1=/appl/lumi/LUMI-EasyBuild-contrib/easybuild/easyconfigs/g/GROMACS
* $CFGS1/GROMACS-2021-cpeGNU-21.08-PLUMED-2.7.2-CPU.eb
* $CFGS1/GROMACS-2021.3-cpeGNU-21.08-CPU.eb
* $CFGS1/GROMACS-2021.4-cpeGNU-21.12-PLUMED-2.7.4-CPU.eb
* $CFGS1/GROMACS-2021.4-cpeGNU-21.12-PLUMED-2.8.0-CPU.eb
* $CFGS1/GROMACS-2021.5-cpeGNU-21.12-CPU.eb

● Note that the easyconfigs that come with EasyBuild are not included in the path used

for search and dependency resolution.

Searching for easyconfigs

72https://easybuilders.github.io/easybuild-tutorial/2022-CSC_and_LO/1_Intro/1_08_basic_usage/

https://easybuilders.github.io/easybuild-tutorial/2022-CSC_and_LO/1_Intro/1_08_basic_usage/

● To see the contents of an easyconfig file, you can use eb --show-ec

● No need to know where it is located, EasyBuild will do that for you!
$ eb --show-ec bzip2-1.0.8-cpeCray-21.12.e
…
name = 'bzip2'
version = ‘1.0.8’

homepage = 'https://www.sourceware.org/bzip2/’
…
toolchain = {'name': 'cpeCray', 'version': '21.12'}
toolchainopts = {'pic': True}

source_urls = ['https://sourceware.org/pub/%(name)s/']
sources = [SOURCE_TAR_GZ]
patches = ['bzip2-%(version)s-pkgconfig-manpath.patch']
…

Inspecting easyconfigs via eb --show-ec

73https://easybuilders.github.io/easybuild-tutorial/2022-CSC_and_LO/1_Intro/1_08_basic_usage/

https://easybuilders.github.io/easybuild-tutorial/2022-CSC_and_LO/1_Intro/1_08_basic_usage/

To check which dependencies are required, you can use eb --dry-run (or eb -D):

● Provides overview of all dependencies (both installed and missing)

● Including compiler toolchain and build dependencies

$ eb SAMtools-1.14-cpeGNU-21.12.eb -D
…
CFGS=/appl/lumi
* [x] $CFGS/mgmt/ebrepo_files/LUMI-21.12/LUMI-common/buildtools/buildtools-21.12.eb (module: buildtools/21.12)
* [x] $CFGS/mgmt/ebrepo_files/LUMI-21.12/LUMI-L/cpeGNU/cpeGNU-21.12.eb (module: cpeGNU/21.12)
* [x] $CFGS/mgmt/ebrepo_files/LUMI-21.12/LUMI-L/ncurses/ncurses-6.2-cpeGNU-21.12.eb (module: ncurses/6.2-cpeGNU-21.12)

…
* [x] $CFGS/mgmt/ebrepo_files/LUMI-21.12/LUMI-L/Brotli/Brotli-1.0.9-cpeGNU-21.12.eb (module: Brotli/1.0.9-cpeGNU-21.12)
* [x] $CFGS/mgmt/ebrepo_files/LUMI-21.12/LUMI-L/cURL/cURL-7.78.0-cpeGNU-21.12.eb (module: cURL/7.78.0-cpeGNU-21.12)
* [] $CFGS/LUMI-EasyBuild-contrib/easybuild/easyconfigs/h/HTSlib/HTSlib-1.14-cpeGNU-21.12.eb (module: HTSlib/1.14-

cpeGNU-21.12)
* [] $CFGS/LUMI-EasyBuild-contrib/easybuild/easyconfigs/s/SAMtools/SAMtools-1.14-cpeGNU-21.12.eb (module:

SAMtools/1.14-cpeGNU-21.12)

Checking dependencies via eb --dry-run

74https://easybuilders.github.io/easybuild-tutorial/2022-CSC_and_LO/1_Intro/1_08_basic_usage/

https://easybuilders.github.io/easybuild-tutorial/2022-CSC_and_LO/1_Intro/1_08_basic_usage/

To check which dependencies are still missing, use eb --missing (or eb -M):

● Takes into account available modules, only shows what is still missing

$ eb SAMtools-1.14-cpeGNU-21.12.eb -M
2 out of 11 required modules missing:

* HTSlib/1.14-cpeGNU-21.12 (HTSlib-1.14-cpeGNU-21.12.eb)
* SAMtools/1.14-cpeGNU-21.12 (SAMtools-1.14-cpeGNU-21.12.eb)

Checking missing dependencies via eb --missing

75https://easybuilders.github.io/easybuild-tutorial/2022-CSC_and_LO/1_Intro/1_08_basic_usage/

https://easybuilders.github.io/easybuild-tutorial/2022-CSC_and_LO/1_Intro/1_08_basic_usage/

● EasyBuild can quickly unveil how exactly it would install an easyconfig file

● Via eb --extended-dry-run (or eb -x)

● Produces detailed output in a matter of seconds

● Software is not actually installed, all shell commands and file operations are

skipped!

● Some guesses and assumptions are made, so it may not be 100% accurate…

● Any errors produced by the easyblock are reported as being ignored

● Very useful to evaluate changes to an easyconfig file or easyblock!

Inspecting software install procedures

76https://easybuilders.github.io/easybuild-tutorial/2022-CSC_and_LO/1_Intro/1_08_basic_usage/

https://easybuilders.github.io/easybuild-tutorial/2022-CSC_and_LO/1_Intro/1_08_basic_usage/

$ eb HTSlib-1.14-cpeGNU-21.12.eb –x
...
[prepare_step method]
Defining build environment, based on toolchain (options) and specified dependencies...

Loading toolchain module...

module load cpeGNU/21.12

Loading modules for dependencies...

module load buildtools/21.12
module load zlib/1.2.11-cpeGNU-21.12
module load bzip2/1.0.8-cpeGNU-21.12
...

77

Inspecting software install procedures: example

https://easybuilders.github.io/easybuild-tutorial/2022-CSC_and_LO/1_Intro/1_08_basic_usage/

https://easybuilders.github.io/easybuild-tutorial/2022-CSC_and_LO/1_Intro/1_08_basic_usage/

$ eb HTSlib-1.14-cpeGNU-21.12.eb –x

...

Defining build environment...

...

export CC='cc'

export CFLAGS='-O2 -ftree-vectorize -fno-math-errno’

...

configuring... [DRY RUN]

[configure_step method]

running command "./configure --prefix=/users/kurtlust/LUMI-user-appl/SW/LUMI-

21.12/L/HTSlib/1.14-cpeGNU-21.12"

(in /run/user/10012026/easybuild/build/HTSlib/1.14/cpeGNU-21.12/HTSlib-1.14)

78

Inspecting software install procedures: example

https://easybuilders.github.io/easybuild-tutorial/2022-CSC_and_LO/1_Intro/1_08_basic_usage/

https://easybuilders.github.io/easybuild-tutorial/2022-CSC_and_LO/1_Intro/1_08_basic_usage/

$ eb HTSlib-1.14-cpeGNU-21.12.eb –x
...

building... [DRY RUN]

[build_step method]

running command "make -j 256"

(in /run/user/10012026/easybuild/build/HTSlib/1.14/cpeGNU-21.12/HTSlib-1.14)

testing... [DRY RUN]

[test_step method]

installing... [DRY RUN]

...

79

Inspecting software install procedures: example

https://easybuilders.github.io/easybuild-tutorial/2022-CSC_and_LO/1_Intro/1_08_basic_usage/

https://easybuilders.github.io/easybuild-tutorial/2022-CSC_and_LO/1_Intro/1_08_basic_usage/

$ eb HTSlib-1.14-cpeGNU-21.12.eb –x
...
Sanity check paths - file ['files']
* bin/bgzip
* bin/tabix
* lib/libhts.so

Sanity check paths - (non-empty) directory ['dirs']
* include

Sanity check commands
* bgzip --version
* htsfile --version
* tabix --version...

80

Inspecting software install procedures: example

https://easybuilders.github.io/easybuild-tutorial/2022-CSC_and_LO/1_Intro/1_08_basic_usage/

https://easybuilders.github.io/easybuild-tutorial/2022-CSC_and_LO/1_Intro/1_08_basic_usage/

Installing software with EasyBuild

● To install software with EasyBuild, just run the eb command:

○ eb SAMtools-1.14-GCC-11.2.0.eb

● If any dependencies are still missing, you will need to also use --robot:

○ eb BCFtools-1.14-GCC-11.2.0.eb --robot

● To see more details while the installation is running, enable trace mode:

○ eb BCFtools-1.14-GCC-11.2.0.eb --robot --trace

● To reinstall software, use eb --rebuild (or eb --force)

81https://easybuilders.github.io/easybuild-tutorial/2022-CSC_and_LO/1_Intro/1_08_basic_usage/

https://easybuilders.github.io/easybuild-tutorial/2022-CSC_and_LO/1_Intro/1_08_basic_usage/

● EasyBuild framework defines step-wise installation procedure, leaves some unimplemented

● Easyblock completes the implementation, override or extends installation steps where needed

Step-wise installation procedure

82https://easybuilders.github.io/easybuild-tutorial/2022-CSC_and_LO/1_Intro/1_08_basic_usage/

https://easybuilders.github.io/easybuild-tutorial/2022-CSC_and_LO/1_Intro/1_08_basic_usage/

Using software installed with EasyBuild

● On LUMI modules are readily available (at least if the Lmod cache doesn’t cause

problems)

● Regular EasyBuild installation:
inform modules tool about modules installed with EasyBuild
module use $HOME/easybuild/modules/all

● Then in both cases:

check for available modules for BCFtools

module avail BCFtools
load BCFtools module to “activate” the installation
module load BCFtools/1.14-GCC-11.2.0

83https://easybuilders.github.io/easybuild-tutorial/2022-CSC_and_LO/1_Intro/1_08_basic_usage/

https://easybuilders.github.io/easybuild-tutorial/2022-CSC_and_LO/1_Intro/1_08_basic_usage/

● It’s easy to “stack” software installed in different locations

● EasyBuild doesn’t care much where software is installed

● As long as the required modules are available to load, it can pick them up

● End users can easily manage a software stack on top of what’s installed centrally!

module use /easybuild/modules/all

eb --installpath $HOME/easybuild my-software.eb

Stacking software installations

84https://easybuilders.github.io/easybuild-tutorial/2022-CSC_and_LO/1_Intro/1_08_basic_usage/

https://easybuilders.github.io/easybuild-tutorial/2022-CSC_and_LO/1_Intro/1_08_basic_usage/

85

Using Easybuild

Troubleshooting

https://easybuilders.github.io/easybuild-tutorial/2022-CSC_and_LO/2_Using/2_01_troubleshooting/

https://easybuilders.github.io/easybuild-tutorial/2022-CSC_and_LO/2_Using/2_01_troubleshooting/

Troubleshooting failing installations

86

● Sometimes stuff still goes wrong…

● Being able to troubleshoot a failing installation is a useful/necessary skill

● Problems that occur include (but are not limited to):
○ Missing source or patch files

○ Checksum errors

○ Missing dependencies (perhaps overlooked required dependencies)

○ Failing shell commands (non-zero exit status)

○ Running out of memory or storage space

○ Compiler errors (or crashes)

● EasyBuild keeps a thorough log for each installation which is very helpful

https://easybuilders.github.io/easybuild-tutorial/2022-CSC_and_LO/2_Using/2_01_troubleshooting/

https://easybuilders.github.io/easybuild-tutorial/2022-CSC_and_LO/2_Using/2_01_troubleshooting/

● When EasyBuild detects that something went wrong, it produces an error

● Very often due to a shell command that produced a non-zero exit code...

● Sometimes the problem is clear directly from the error message:
== building...

== FAILED: Installation ended unsuccessfully (build directory: /tmp/example/example/1.0/GCC-
11.2.0):

build failed (first 300 chars): cmd "make" exited with exit code 2 and output:
/usr/bin/g++ -O2 -ftree-vectorize -march=native -std=c++14 -c -o core.o core.cpp
g++: error: unrecognized command line option '-std=c++14' (took 1 sec)

● In some cases, the error message itself does not reveal the problem...

Troubleshooting: error messages

87https://easybuilders.github.io/easybuild-tutorial/2022-CSC_and_LO/2_Using/2_01_troubleshooting/

https://easybuilders.github.io/easybuild-tutorial/2022-CSC_and_LO/2_Using/2_01_troubleshooting/

● EasyBuild keeps track of the installation in a detailed log file

● During the installation, it is stored in a temporary directory:
$ eb example.eb

== Temporary log file in case of crash /tmp/eb-r503td0j/easybuild-17flov9v.log

...

● Includes executed shell commands and output, build environment, etc.

● More detailed log file when debug mode is enabled (debug configuration setting)

● There is a log file per EasyBuild session, and one per performed installation

● When an installation completes successfully,

the log file is copied to a subdirectory of the software installation directory

Troubleshooting: log files

88https://easybuilders.github.io/easybuild-tutorial/2022-CSC_and_LO/2_Using/2_01_troubleshooting/

https://easybuilders.github.io/easybuild-tutorial/2022-CSC_and_LO/2_Using/2_01_troubleshooting/

● EasyBuild has a nice trick to access the log file after a failed installation

● eb --last-log returns the file name (including path) of that log file

● So

vim $(eb --last-log)

Troubleshooting: last log file

89https://easybuilders.github.io/easybuild-tutorial/2022-CSC_and_LO/2_Using/2_01_troubleshooting/

https://easybuilders.github.io/easybuild-tutorial/2022-CSC_and_LO/2_Using/2_01_troubleshooting/

● EasyBuild log files are well structured, and fairly easy to search through

● Example log message, showing prefix (“== ”), timestamp, source location, log level:

== 2021-06-25 13:11:19,968 run.py:222 INFO running cmd: make -j 9

● Different steps of installation procedure are clearly marked:

== 2021-06-25 13:11:48,817 example INFO Starting sanity check step

● To find actual problem for a failing shell command, look for patterns like:
○ ERROR
○ Error 1
○ error:
○ failure
○ not found
○ No such file or directory
○ Segmentation fault

Troubleshooting: navigating log files

90https://easybuilders.github.io/easybuild-tutorial/2022-CSC_and_LO/2_Using/2_01_troubleshooting/

https://easybuilders.github.io/easybuild-tutorial/2022-CSC_and_LO/2_Using/2_01_troubleshooting/

● EasyBuild leaves the build directory in place when the installation failed
== FAILED: Installation ended unsuccessfully (build directory:

/tmp/build/example/1.0/GCC-11.2.0): build failed ...

● Can be useful to inspect the contents of the build directory for debugging

● Rooted at $EASYBUILD_BUILDPATH

● For example:

○ Check config.log when configure command failed

○ Check CMakeFiles/CMakeError.log when cmake command failed

Troubleshooting: inspecting the build directory

91https://easybuilders.github.io/easybuild-tutorial/2022-CSC_and_LO/2_Using/2_01_troubleshooting/

https://easybuilders.github.io/easybuild-tutorial/2022-CSC_and_LO/2_Using/2_01_troubleshooting/

● Highly recommended to try the exercise on tutorial website!

● Try to fix the problems you encounter with the “broken” easyconfig file…
$ eb subread.eb

...

== FAILED: Installation ended unsuccessfully (build directory:

/tmp/example/Subread/2.0.1/GCC-8.5.0): build failed (first 300 chars):

Couldn't find file subread-2.0.1-source.tar.gz anywhere, and downloading

it didn't work either...

Paths attempted (in order): ...

Troubleshooting: hands-on exercise

92https://easybuilders.github.io/easybuild-tutorial/2022-CSC_and_LO/2_Using/2_01_troubleshooting/

https://easybuilders.github.io/easybuild-tutorial/2022-CSC_and_LO/2_Using/2_01_troubleshooting/

93

Using Easybuild

Creating easyconfig files

https://easybuilders.github.io/easybuild-tutorial/2022-CSC_and_LO/2_Using/2_02_creating_easyconfig_files/

https://easybuilders.github.io/easybuild-tutorial/2022-CSC_and_LO/2_Using/2_02_creating_easyconfig_files/

Adding support for additional software

● Every installation performed by EasyBuild requires an easyconfig file

● Easyconfig files can be:

○ Included with EasyBuild itself (or obtained elsewhere)

○ Derived from an existing easyconfig (manually or automatic)

○ Created from scratch

● Most easyconfigs leverage a generic easyblock

● Sometimes using a custom software-specific easyblock makes sense...

94https://easybuilders.github.io/easybuild-tutorial/2022-CSC_and_LO/2_Using/2_02_creating_easyconfig_files/

https://easybuilders.github.io/easybuild-tutorial/2022-CSC_and_LO/2_Using/2_02_creating_easyconfig_files/

Easyblocks vs easyconfigs
● When can you get away with using an easyconfig leveraging a generic easyblock?
● When is a software-specific easyblock really required?
● Easyblocks are “implement once and forget”
● Easyconfig files leveraging a generic easyblock can become too involved (subjective)
● Reasons to consider implementing a custom easyblock:

○ 'critical' values for easyconfig parameters required to make installation
succeed

○ custom (configure) options related to toolchain or included dependencies
○ interactive commands that need to be run
○ having to create or adjust specific (configuration) files
○ 'hackish' usage of a generic easyblock
○ complex or very non-standard installation procedure

95https://easybuilders.github.io/easybuild-tutorial/2022-CSC_and_LO/2_Using/2_02_creating_easyconfig_files/

https://easybuilders.github.io/easybuild-tutorial/2022-CSC_and_LO/2_Using/2_02_creating_easyconfig_files/

Writing easyconfig files

● Collection of easyconfig parameter definitions (Python syntax),

collectively specify what to install

● Some easyconfig parameters are mandatory, and must always be defined:

name, version, homepage, description, toolchain

● Commonly used easyconfig parameters (but strictly speaking not required):

○ easyblock (by default derived from software name)
○ source_urls, sources, patches, checksums

○ dependencies, builddependencies

○ versionsuffix

○ preconfigopts, configopts, prebuildopts, buildopts, preinstallopts, installopts

○ sanity_check_paths, sanity_check_commands

96https://easybuilders.github.io/easybuild-tutorial/2022-CSC_and_LO/2_Using/2_02_creating_easyconfig_files/

https://easybuilders.github.io/easybuild-tutorial/2022-CSC_and_LO/2_Using/2_02_creating_easyconfig_files/

Generating tweaked easyconfig files

● Trivial changes to existing easyconfig files can be done automatically

● Bumping software version: eb example-1.0.eb --try-software-version 1.1

● Changing toolchain (version): eb example.eb --try-toolchain GCC,9.4.0

● Changing specific easyconfig parameters (limited):

eb --try-amend versionsuffix='-test'

● Note the “try” aspect: additional changes may be required to make installation

work

● EasyBuild does save the so generated easyconfig files in the easybuild

subdirectory of the software installation directory and in the easyconfig archive.

97https://easybuilders.github.io/easybuild-tutorial/2022-CSC_and_LO/2_Using/2_02_creating_easyconfig_files/

https://easybuilders.github.io/easybuild-tutorial/2022-CSC_and_LO/2_Using/2_02_creating_easyconfig_files/

● Small but useful feature: copy specified easyconfig file via eb --copy-ec

● Avoids the need to locate the file first via eb --search

● Typically used to create a new easyconfig using existing one as starting point
● Example:

$ eb --copy-ec SAMtools-1.11-GCC-10.2.0.eb SAMtools.eb

...

SAMtools-1.10-GCC-10.2.0.eb copied to SAMtools.eb

Copying easyconfig files

98https://easybuilders.github.io/easybuild-tutorial/2022-CSC_and_LO/2_Using/2_02_creating_easyconfig_files/

https://easybuilders.github.io/easybuild-tutorial/2022-CSC_and_LO/2_Using/2_02_creating_easyconfig_files/

Hands-on: creating easyconfig files

99

● Step-wise example + exercise of creating an easyconfig file from scratch

● For a fictive software packages: eb-tutorial

● Great exercise to work through these yourself!
name = 'eb-tutorial'

version = '1.0.1'

homepage = 'https://easybuilders.github.io/easybuild-tutorial'

description = "EasyBuild tutorial example"

https://easybuilders.github.io/easybuild-tutorial/2022-CSC_and_LO/2_Using/2_02_creating_easyconfig_files/

https://easybuilders.github.io/easybuild-tutorial/2022-CSC_and_LO/2_Using/2_02_creating_easyconfig_files/

100

Using Easybuild

Using external modules from the Cray PE

https://easybuilders.github.io/easybuild-tutorial/2022-CSC_and_LO/2_Using/2_03_external_modules/

https://easybuilders.github.io/easybuild-tutorial/2022-CSC_and_LO/2_Using/2_03_external_modules/

External modules
● Modules not installed through EasyBuild
● Lack:

○ The metadata provided in modules generated by EasyBuild through the EBROOT
and EBVERSION environment variables

○ A corresponding easyconfig file to tell EasyBuild about further dependencies
● Use:

dependencies = [('cray-fftw', EXTERNAL_MODULE)]
dependencies = [('cray-fftw/3.3.8.12', EXTERNAL_MODULE)]

● But metadata can be added through various mechanisms
○ Default metadata definition file included with EasyBuild (outdated)
○ Own metadata definition files
○ Discovery mechanism: EasyBuild recognises certain environment variables used

by Cray modules

101https://easybuilders.github.io/easybuild-tutorial/2022-CSC_and_LO/2_Using/2_03_external_modules/

https://easybuilders.github.io/easybuild-tutorial/2022-CSC_and_LO/2_Using/2_03_external_modules/

External modules: metadata
● External modules metadata file: $EASYBUILD_EXTERNAL_MODULES_METADATA
● Keys:

○ name: Equivalent EasyBuild module name
○ version: Software version provided by the module
○ prefix: Installation prefix of the software provided by the module

○ absolute path
○ or one that starts with the name of an environment variable specified by the

module
[cray-fftw]
name = FFTW
prefix = FFTW_DIR/..
version = 3.3.8.10

102https://easybuilders.github.io/easybuild-tutorial/2022-CSC_and_LO/2_Using/2_03_external_modules/

https://easybuilders.github.io/easybuild-tutorial/2022-CSC_and_LO/2_Using/2_03_external_modules/

103

Using Easybuild

Implementing easyblocks

● Text-only

https://easybuilders.github.io/easybuild-tutorial/2022-CSC_and_LO/2_Using/2_04_implementing_easyblocks/

https://easybuilders.github.io/easybuild-tutorial/2022-CSC_and_LO/2_Using/2_04_implementing_easyblocks/

131

Advanced topics

Using EasyBuild as a library

● Text-only
● Investigating using EasyBuild this way to automatically generate documentation for

recipes in our EasyBuild repository.

https://easybuilders.github.io/easybuild-tutorial/2022-CSC_and_LO/3_Advanced/3_01_easybuild_library/

https://easybuilders.github.io/easybuild-tutorial/2022-CSC_and_LO/3_Advanced/3_01_easybuild_library/

132

Advanced topics

Using hooks to customise EasyBuild

● Not complete in these slides
● Used on LUMI to add LUST support as the site_contacts for all easyconfigs

installed in the central installation.

https://easybuilders.github.io/easybuild-tutorial/2022-CSC_and_LO/3_Advanced/3_02_hooks/

https://easybuilders.github.io/easybuild-tutorial/2022-CSC_and_LO/3_Advanced/3_02_hooks/

Why hooks?
● Enforce site policies on easyconfig files
● Adding a parameter to the module if it is not present

○ E.g., on LUMI, site_contacts is added to all centrally installed software, pointing to
the LUST support forms

● Modify the behaviour of a standard easyconfig file to adapt to the system while users
can use the default easyconfig

○ Could use this to produce a working Open MPI setup on LUMI for the foss
toolchain while users would be thinking they are using just the standard
easyconfigs

○ Used at JSC to always take certain libraries from the system

133https://easybuilders.github.io/easybuild-tutorial/2022-CSC_and_LO/2_Using/2_03_external_modules/

https://easybuilders.github.io/easybuild-tutorial/2022-CSC_and_LO/2_Using/2_03_external_modules/

134

Advanced topics

Submitting installations as Slurm jobs

● Text-only
● Not really tested on LUMI, may need some compromises in the EasyBuild

configuration

https://easybuilders.github.io/easybuild-tutorial/2022-CSC_and_LO/3_Advanced/3_03_slurm_jobs/

https://easybuilders.github.io/easybuild-tutorial/2022-CSC_and_LO/3_Advanced/3_03_slurm_jobs/

135

Advanced topics

Module naming schemes

● Text-only

https://easybuilders.github.io/easybuild-tutorial/2022-CSC_and_LO/3_Advanced/3_04_module_naming_schemes/

https://easybuilders.github.io/easybuild-tutorial/2022-CSC_and_LO/3_Advanced/3_04_module_naming_schemes/

136

Advanced topics

GitHub integration

https://easybuilders.github.io/easybuild-tutorial/2022-CSC_and_LO/3_Advanced/3_05_github_integration/

https://easybuilders.github.io/easybuild-tutorial/2022-CSC_and_LO/3_Advanced/3_05_github_integration/

● Documentation read all over the world

● HPC sites, consortia, and companies

● Slack: >450 members, ~100 active members per week, 226K messages

● Regular online conf calls...and we even meet in person sometimes!

The EasyBuild community

137https://easybuilders.github.io/easybuild-tutorial/2021-isc21/community

https://easybuilders.github.io/easybuild-tutorial/2021-isc21/community

There are several ways to contribute to EasyBuild, including:

● providing feedback

● reporting bugs

● joining the discussions (mailing list, Slack, conf calls)

● sharing suggestions/ideas for enhancements & additional features

● contributing easyconfigs, enhancing easyblocks,

adding support for new software, implementing additional features, ...

● extending & enhancing documentation

Contributing to EasyBuild

138https://easybuilders.github.io/easybuild-tutorial/2021-isc21/contributing

https://easybuilders.github.io/easybuild-tutorial/2021-isc21/contributing

● EasyBuild has strong integration with GitHub, which facilitates contributions

● Some additional Python packages required for this: GitPython, keyring

● Also required some additional configuration, incl. providing a GitHub token

● Enables creating, updating, reviewing pull requests using eb command!

● Makes testing contributions very easy (~2,000 easyconfig pull requests per year!)

● Extensively documented:

https://docs.easybuild.io/en/latest/Integration_with_GitHub.html

GitHub integration features

139https://easybuilders.github.io/easybuild-tutorial/2021-isc21/contributing

https://docs.easybuild.io/en/latest/Integration_with_GitHub.html
https://easybuilders.github.io/easybuild-tutorial/2021-isc21/contributing

metadata is automatically
derived from easyconfig

saves a lot of time!

Opening a pull request in 1, 2, 3

140https://easybuilders.github.io/easybuild-tutorial/2021-isc21/contributing

+ log into GitHub to actually open the pull request (clickety, clickety...)

$ mv sklearn.eb scikit-learn-0.19.1-intel-2017b-Python-3.6.3.eb
$ mv scikit-learn*.eb easybuild/easyconfigs/s/scikit-learn
$ git checkout develop && git pull upstream develop
$ git checkout -b scikit_learn_0191_intel_2017b
$ git add easybuild/easyconfigs/s/scikit-learn
$ git commit -m "{data}[intel/2017b] scikit-learn v0.19.1"
$ git push origin scikit_learn_0191_intel_2017b

eb --new-pr sklearn.eb

one single eb command

no git commands

no GitHub interaction

https://easybuilders.github.io/easybuild-tutorial/2021-isc21/contributing

Topics we didn’t cover...

141

https://docs.easybuild.io - https://easybuild.io/tutorial

● Using RPATH linking

● Building Docker/Singularity container images with EasyBuild (experimental)

https://docs.easybuild.io
https://easybuild.io/tutorial

● EasyBuild: GPLv2 license - Spack: MIT/Apache 2.0 license

● no stable releases yet for Spack (< 1.0), EasyBuild is stable since 2012

● roughly on par w.r.t. amount of supported software (but differences w.r.t. which software)

● targeted to different use cases: HPC support teams (EasyBuild) vs developers (Spack)

● fixed dependency/toolchain versions in EasyBuild vs flexible CLI in Spack

● both support running on top of Python 2.7 and 3.5+

● macOS support in EasyBuild is limited (no toolchains/testing for macOS)

● both projects are backed by an active & supportive community!
● For a more detailed (but very outdated) comparison, see

https://archive.fosdem.org/2018/schedule/event/installing_software_for_scientists

vs

142

https://archive.fosdem.org/2018/schedule/event/installing_software_for_scientists

https://www.eessi-hpc.org https://eessi.github.io/docs

● European Environment for Scientific Software Installations (EESSI)

● Collaboration between different European partners in HPC community

● Goal: building a common scientific software stack,

for HPC systems & beyond (personal workstations, cloud instances, …)

● Heavily inspired by Compute Canada software stack

● Focus on performance, automation, testing, collaboration, ...

Just one more thing…

143

https://www.eessi-hpc.org
https://eessi.github.io/docs

144

Software layer
applications + dependencies

Filesystem layer
distribution of the software stack

Compatibility layer
levelling the ground across client OSs

host operating system (any Linux distribution)

Host OS
provides
network
& GPU
drivers,

resource
manager
(Slurm),

...

High-level overview of the EESSI project https://www.eessi-hpc.org

https://eessi.github.io/docs

https://www.eessi-hpc.org
https://eessi.github.io/docs

● EESSI is based on EasyBuild while E4S is based on Spack

● Different distribution mechanisms

o EESSI strictly via CernVM FS

§ Can use CernVM FS from a container, but performance may be slow

without close enough cache

o E4S via build caches with binaries for multiple platforms, or rebuild otherwise

+ containers for Docker, singularity, Shifter and CharlieCloud

vs

145

