

LUMI AI Course Coupling machine learning with HPC simulation

Harvey Richardson & Alessandro Rigazzi, HPE

October 8-9, 2025

Agenda

- Where might machine learning play a role in simulation?
- Workflows for coupling HPC simulation with AI
- Challenges and approaches
- SmartSim
- SmartSim Examples (+ some non-SmartSim ones)

Where might machine learning play a role with Simulation

Completely replace a simulation

• Al model learns to produce output by observing simulation inputs/outputs

Use simulation as one input to a machine learning model

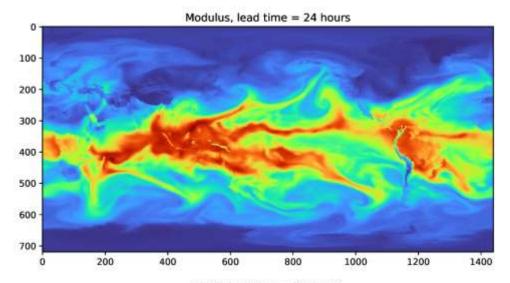
For example, use an ML model to account for location-specific history (weather)

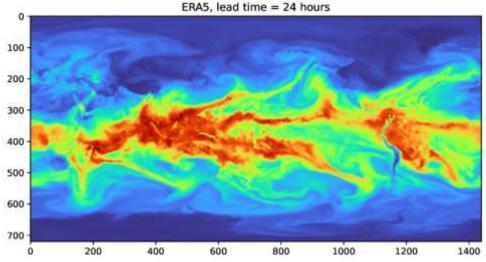
Replace modeling of physical processes or parameterised models with machine learning, Examples..

- Reduce search space for Drug discovery
- a turbulence model in an ocean simulation
- Particle physics: particle tracks
- Atomic potentials (computational chemistry)
- We will concentrate on the case where AI is coupled with simulation

Why HPC and AI instead of HPC vs. AI?

- Can Al replace numerical-based approaches?
 - Short answer: no, still limited by data
- Benefits of Al models
 - Can be run more quickly than traditional numerical models
 - Simpler to run, does not need complicated software infrastructure and HPC resources
 - Skillful models can be considered lower-order representations of 'true' simulation
 - Useful for exploring parameter space/uncertainties
- Downsides of Al models
 - How do you add process complexity?
 - Can they extrapolate beyond the data they have been trained on?
- Challenges to combining HPC&AI
 - Numerical: How can you characterize the stability and accuracy of an ML model in that context
 - Technical:
 - How do you connect Fortran/C/C++ codebases to ML packages?
 - How do you appropriately balance high-value/cost GPU resources in predominantly CPU-based code?





https://docs.nvidia.com/deeplearning/modulus/modulussym/user_quide/neural_operators/fourcastnet.html#introduction

HPC Applications combined with AI software drive innovation

Combining AI software and traditional HPC applications at different levels of a workflow unlocks innovative solutions

ML around-the-loop

- Automatic parameter tuning
- New data assimilation techniques

ML in-the-loop

- Embedding machine-learning predictions within numerical solvers
- On-the-fly analysis and visualization (e.g. principal component analysis via streaming SVD)

Edge AI: Cross-facility, event triggered, data-driven ML aroundthe-loop: Inference or training after simulation

ML on-the-loop: Inference and training every 1k-10k time steps ML in-the-loop: Inference every time step & training online with model updates

Physics Simulation

ML outside-the-loop: Intelligent sampling

Challenges and approaches

- Machine learning frameworks are invariably accessed via Python
- HPC simulation is most likely written in C/C++/Fortran
- We could implement ML in our simulation language but...
 - A lot of work for something likely already done and likely more efficiently than we will
 - We don't get access to tools to train models
 - Hard to integrate a model externally developed

Some approaches:

- Use language-interoperability to interface between simulation and Machine Learning
- Couple ML components to our simulation (sockets, messaging transports, files)
- Use a framework designed to provide such interoperability (via network transport or APIs)
 - Fortran Keras Bridge
 - FTorch
 - SmartSim (originally from Cray)

Language Interoperability

Interoperability by calling conventions

- Fortran and Python
 - f2py and fmodpy or forpy can help build wrappers to call Fortran from Python
 - ISO C bindings on the Fortran side interfaced to ctypes/Cython on the python side
 - Really helpful if what you are interfacing to has direct support for the Numpy C API
- C++/C and Python
 - Cython, pybind11, SWIG

Interoperability at Framework Level (Fortran)

Directly call Tensorflow or Torch APIs from Fortran using ISO C interoperability
 In both cases you may have to save model in a special format

Alternatively

• Communicate workflow components via filesystem or network

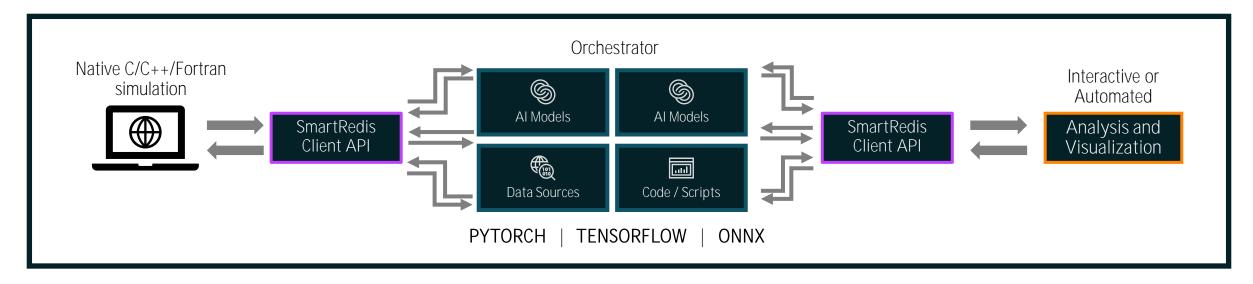
About SmartSim

The SmartSim open-source library bridges the divide between traditional numerical simulation and data science

 Provides a loose-coupling philosophy for combining HPC & Al SmartSim enables simulations to be used as engines within a system, producing data, consumed by other services to create new applications

- Use Machine Learning (ML) models in existing Fortran/C/C++ simulations
- Communicate data between C, C++, Fortran, and Python applications
- Train ML models and make predictions using TensorFlow, PyTorch, and ONNX
- Analyze data streamed from HPC applications while they are running

All of these can be done without touching the filesystem



Creating a SmartSim experiment

Integration steps

- Embed SmartRedis calls (C/C++/Fortran) into the application (~10 lines of code)
- 2. Write a driver script using the SmartSim Python library to describe and launch the workflow

Driver script can check status of components

1. Added simulation code

```
client = smartredis_CS%client
...
sr_return_code = client%put_tensor("features"//CS%key_suffix, CS%features_array, shape(CS%features_array))
model_out(1) = "EKE"//CS%key_suffix
model_in(1) = "features"//CS%key_suffix
sr_return_code = smartredis_CS%client%run_model(CS%model_key, model_in, model_out)
sr_return_code = client%unpack_tensor( model_out(1), CS%MEKE_vec, shape(CS%MEKE_vec) )
...
```

2. SmartSim Driver Script

```
# Create experiment
experiment = Experiment("AI-EKE-MOM6", launcher="auto")

# Create ensemble
ensemble_batch_settings = experiment.create_batch_settings(
    nodes = ensemble_stze*nodes_per_member,
    time = walltime,
    batch_args = mom6_batch_args
)

mom6_run_settings = experiment.create_run_settings(mom6_exe_path)
mom6_run_settings.set_tasks_per_node(tasks_per_node)
mom6_run_settings.set_tasks(nodes_per_member*tasks_per_node)
mom_ensemble = experiment.create_ensemble(
    "MOM",
    batch_settings = ensemble_batch_settings,
    run_settings = mom6_run_settings,
    run_settings = mom6_run_settings,
    run_settings = ensemble_size
)

mom_ensemble.attach_generator_files(
    to_configure=glob("../MOM6_config/configurable_files/*"),
    to_copy="../MOM6_config/OM4_e25",
    to_symlink="../MOM6_config/INPUT"
)
```

```
MORE config options - 1
     "EKE MODEL": eke_model_name,
     "EXE_EACKEND": eke_bockend,
"DOPAIN_LAYOUT": domain_layout,
      MASHTABLE': mask_table
 MOM6_config_options.update( {
     "SMARTREDIS COLOCATED": "Falso",
"SMARTREDIS COLOCATED STRIDE":0,
"SMARTREDIS CLUSTER": "Falso
MOM6 config options.update( ['SMARTREDIS_CLUSTER': True') ]
for model in ensemble:
     model_params = MOM6_config_options
     model_register incoming entity(model)
orchestrator = exp.create.database(
    port = orchestrator_port,
    do_nodes - orchestrator_nodes;
    time-walltime.
    threads_per_queue=2;
orchestrator.set_cpus(18)
orchestrator set batch arg("constraint", orchestrator node features)
orchestrator.set_batch_arg("exclusive", None)
experiment generate( mos_ensemble, orchestrator, overwrite<True )
experiment start(non_ensemble, orchestrator, block=True, summary=True)
```

Added client simulation code

Reference to initialized client

Put data into database (Orchestrator) naming it

```
client = smartredis_CS%client
...

sr_return_code = client%put_tensor("features"//CS%key_sufftx, CS%features_array, shape(CS%features_array))
model_out(1) = "EKE"//CS%key_suffix
model_in(1) = "features"//CS%key_suffix
sr_return_code = smartredis_CS%client%run_model(CS%model_key, model_in, model_out)
sr_return_code = client%unpack_tensor( model_out(1), CS%MEKE_vec, shape(CS%MEKE_vec) )
...
```

Retrieve previously named data

SmartSim driver script (create ensemble)

Create experiment

Driver Script

Describes, launches and manages workflow with applications and ML infrastructure

Experiment

Top level object that provides factory methods to create workflow objects

Batch Settings

Can be used if application is to be launched non-interactively, including as ensembles

RunSettings object

Describes system-specific resources (nodes, accelerators, cpus etc.

Model object

Holds information on user application

Application file handling

Can be parameterized (also args)

experiment = Experiment("AI-EKE-MOM6", launcher="auto") # Create ensemble ensemble_batch_settings = experiment.create_batch_settings(= ensemble size*nodes per member. nodes time = walltime, batch_args = mom6_batch_args mom6_run_settings = experiment.create_run_settings(mom6_exe_path) mom6_run_settings.set_tasks_per_node(tasks_per_node) mom6_run_settings.set_tasks(nodes_per_member*tasks_per_node) mom_ensemble = experiment.create_ensemble("MOM", batch settings = ensemble batch settings, run_settings = mom6_run_settings, replicas = ensemble size mom ensemble.attach generator files(to_configure=glob("../MOM6_config/configurable_files/*"), to_copy="../MOM6_config/OM4_025", to symlink="../MOM6 config/INPUT"

SmartSim driver script... (configure ensemble members)

```
# Configure ensembles
MOM6_config_options = {
    "SIM_DAYS": 15, # length of simlations
    "EKE_MODEL": eke_model_name,
    "EKE_BACKEND": eke_backend,
    "DOMAIN_LAYOUT": domain_layout,
    "MASKTABLE": mask table
MOM6_config_options.update( {
    "SMARTREDIS_COLOCATED": "False",
    "SMARTREDIS_COLOCATED_STRIDE":0,
    "SMARTREDIS CLUSTER": "False"
})
                                                                       Ensemble members have
MOM6_config_options.update( {'SMARTREDIS_CLUSTER':'True'} )
                                                                       identical parameters in
for model in ensemble:
                                                                            this example
    model.params = MOM6_config_options
    model.register_incoming_entity(model)
```

SmartSim driver script... (configure and start ensemble members)

```
Setup Orchestrator
# Create in-memory database
                                                            (stores ML
                                                        models/tensors and
orchestrator = exp.create database(
    port = orchestrator port,
                                                          executes models
    interface = orchestrator_interface,
    db nodes = orchestrator nodes,
    time=walltime,
    threads per queue=2,
                                                    Write all files needed for
    batch=True)
                                                       workflow entities
orchestrator.set_cpus(18)
orchestrator.set_batch_arg("censtraint", orchestrator_node_features)
orchestrator.set_batch_arg("exclusive", None)
experiment.generate( mom_ensemble, orchestrator, overwrite=True )
experiment.start(mom_ensemble, orchestrator, block=True, summary=True)
```

Online Inference, multiple languages

Fortran

```
call client%put_tensor(in_key, array, shape(array))
inputs(1) = in_key
  outputs(1) = out key
call client%run_model(model_name, inputs, outputs)
result(:,:) = 0.
call client%unpack_tensor(out_key, result, shape(result))
\mathbb{C}++
  // Put the image tensor on the database
  client.put tensor(in key, img.data(), {1,1,28,28},
   SmartRedis::TensorType::flt,
   SmartRedis::MemoryLayout::contiguous);
  // Run model already in the database
  client.run_model(model_name, {in_key}, {out_key});
  // Get the result of the model
  std::vector<float> result(1*10);
  client.unpack_tensor(out_key, result.data(), {10},
  SmartRedis::TensorType::flt,
  SmartRedis::MemoryLayout::contiguous);
```

Python

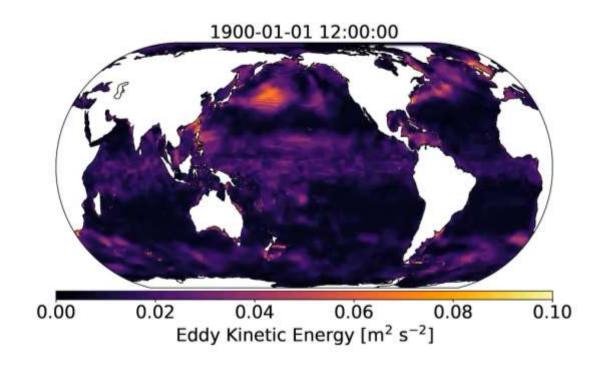
```
client.put_tensor("input", torch.rand(20, 1, 28, 28).numpy())

# put the PyTorch CNN in the database in GPU memory
client.set_model("cnn", net, "TORCH", device="GPU")

# execute the model, supports a variable number of inputs and outputs
client.run_model("cnn", inputs=["input"], outputs=["output"])

# get the output
output = client.get_tensor("output")
print(f"Prediction: {output}")
```

Example of using Al in-the-loop in the MOM6 ocean model



Improving MOM6's eddy kinetic energy

Original MEKE Scheme (Jansen et al. [2015]):

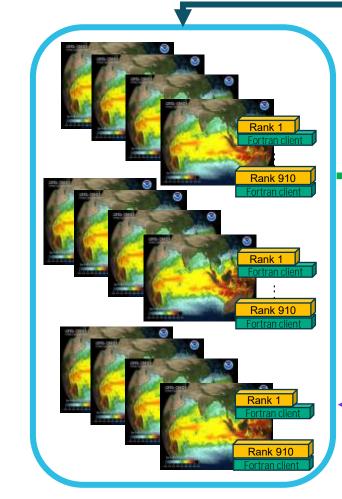
- Integrate a prognostic eddy kinetic energy equation with parameterized sources/sinks
- Use length-scale relations to convert EKE to Gent-McWilliams, Redi, and viscosity coefficients

Known shortcomings

EKE equation has terms which are tunable and/or have errors which may be first-order

Propose ML-based solution

- Use an eddy-resolving simulation to train a neural network to learn the relationship between largescale quantities and eddy kinetic energy
- Embed neural network predictions in eddypermitting simulations
- SmartSim launching MOM6 and Orchestrator
- MOM6 sends state of simulation
- MOM6 retrieves inference results

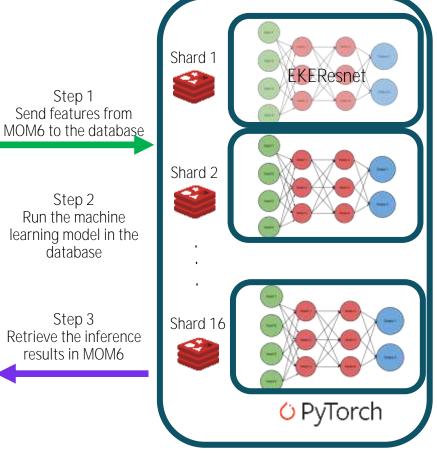


learning model in the database

Step 2 Run the machine

Step 1 Send features from

Step 3 Retrieve the inference results in MOM6



In-Memory Data Store

"Orchestrator"

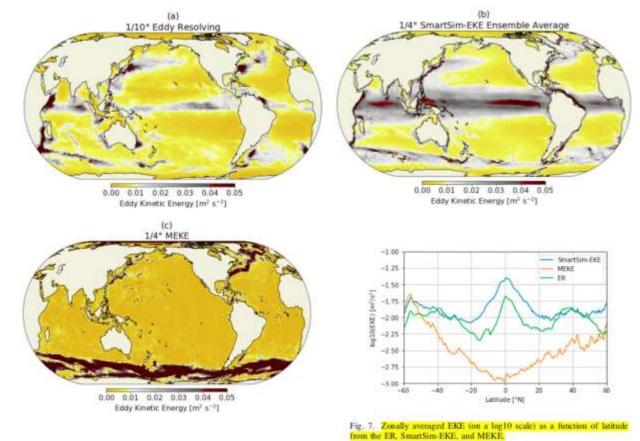
Using SmartSim in MOM6 for turbulence modelling [NCAR+HPE]

Experiment setup

- 12 ensemble members
- 10,920 CPUs (~200 nodes) and 16 P100s (16 nodes)
- Inference embedded at the tracer timestep (3hr)
 - 970 billion inferences over 10 simulation years
 - 1.6 million inferences per second

Key results:

- Offloading ML inference to dedicated nodes improves GPU utilization while incurring small communication cost
- Neural network more accurately predicts (20% RMSE improvement) rather than the prognostic approach
- Overall performance only decreased by 10% while only minimally increasing hardware footprint of the model



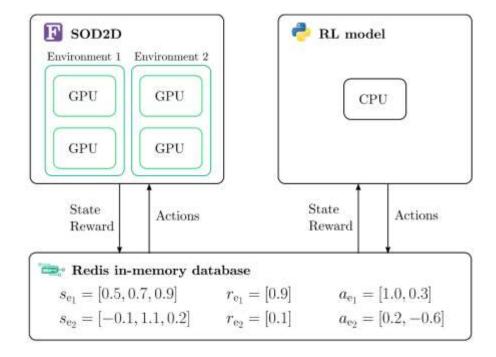
Partee et al. [2022]: Using Machine Learning at scale in numerical simulations with SmartSim:

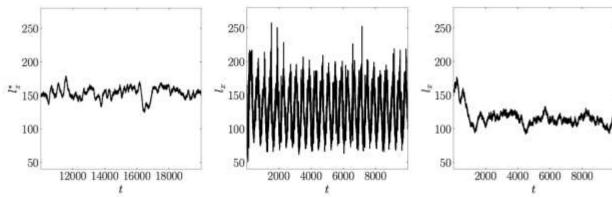
An application to ocean climate modeling

Examples of using Al around-the-loop

Active flow control through deep Reinforcement learning

- Goal: Reduce Turbulent Separation Bubble formation
- Method: Deep Reinforcement Learning with small NN
 - Reward based on recirculation length of turbulent bubble
 - Aim: minimize recirculation area
 - Environment: 72 points for the NN to "observe"
 - Action: NN can control actuators upwind of bubble





Dynamic turbine wake steering in wind farms

- Project is work in progress, Andrew Moat, Imperial College London
- Reference: Reinforcement Learning Increases Wind Farm Power Production by Enabling Closed-Loop Collaborative Control, arXiv:2506.20554
- Turbine wakes can reduce efficiency of downstream turbines
- We can steer the wake by adjusting angle (yaw) of turbines
- In general, the system is very complex, changing wind direction/speed, multiple turbines, interaction of wakes etc.
- Use reinforcement learning to find some optimal set of angles to optimize power output
- Direct coupling with SmartSim an improvement over file-based coupling

Reinforcement learning

 Agent interacts with an environment to Change in optimize some yaw angles quantity Agent State s_t Action a_t Reward r_t Environment Total power of wind farm

Implementation

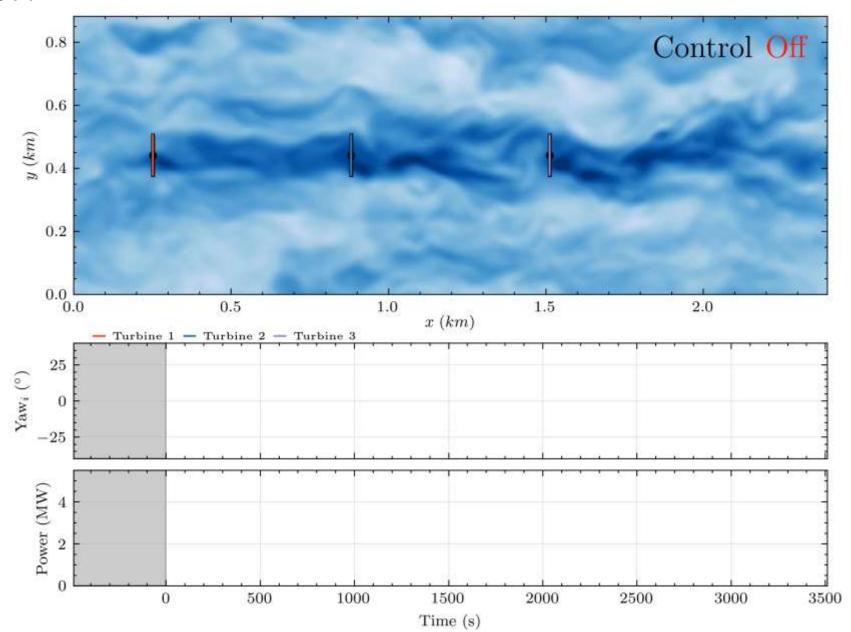
- Initial approach was to couple the Large Eddy simulation of the windfarm with pytorch reinforcement learning model
- Used file storage to communicate $(a_t s_t r_t)$
- Issues:
 - Costly to frequently write large files
 - Was not going to be practical when simulating larger wind farms
 - Made it difficult to train multiple environments at a time
- Moved to SmartSim
 - Now using Smart Redis database
- Modifications needed
 - XCompact3D: Replace file ops with calls to send and retrieve data to smart-redis
 - Configured SmartSim to start XCompact3D environments/simulations (32 at a time for example)

Experiment

Setup

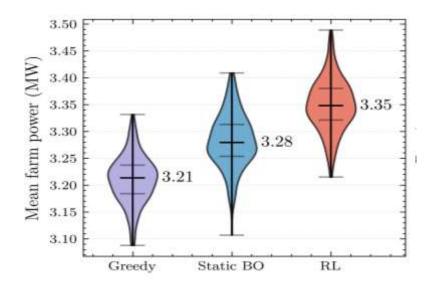
- 32 Environments each with
- 10 turbines
- 128 cores per environment (a node)
- 50 simulation timesteps per RL step
- Batched into 512 frames for training

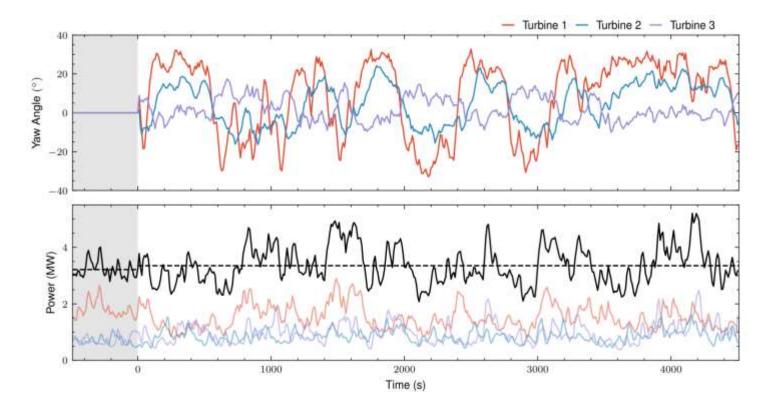
Evaluation



Results

- After initial training the turbines settle down into being driven in sinusoidal pattern
- Better power output than without steering.





Other Examples of SmartSim use

- Computational Fluid Dynamics
 - OpenFOAM: co-developed official sub-module
 - https://github.com/OFDataCommittee/openfoam-smartsim
 - FLEXI, PHASTA, libCEED, NekRS (in progress)
- Climate and Weather
 - MOM6, NEMO, CESM
- Molecular Dynamics
 - LAMMPS, OPENMM
- In-situ Visualization workflow

ML in Computational Chemistry: examples

Examples encompass molecular dynamics, quantum simulation and macromolecules

- Density Functional Theory
 - Approximates solution to QM formulation of electron positions by parameterised basis functions
 - ML can be used to find those basis functions
 - References: <u>Pure non-local machine-learned density functional theory for electron correlation</u>, <u>Large-Scale Materials Modeling at Quantum Accuracy:...</u>
- DeepDriveMD example of selecting 'promising' protein folding solutions from an ensemble
 - Complex workflow
 - A SmartSim-based re-implementation of this workflow is available on GitHub as <u>smartsim-openmm</u>
 - Paper: <u>DeepDriveMD: Deep-Learning Driven Adaptive Molecular Simulations for Protein Folding</u>
- Nobel Prize in Chemistry 2024 for protein folding:
 - Amino Acids combine to create proteins.
 - Computational approaches: Rosetta -> Alphafold (NN) -> Alphafold2
 - References: Nobel Press Release (includes reference to technical descriptions PDF PDF)

References

- Language Interoperability
 - F2py and fmodpy intro https://www.matecdev.com/posts/fortran-in-python.html
 - forpy (https://github.com/ylikx/forpy)
 - pybind11 (https://github.com/pybind/pybind11)
 - Talk: Reducing the overhead of coupling machine learning models between Python and Fortran, https://www.youtube.com/watch?v=Ei6H_BoQ7g4 https://jackatkinson.net/slides/RSECon23/RSECon23.html#/title-slide
- Interoperability at framework level:
 - FTorch, Torch inference library for Fortran
 - https://github.com/Cambridge-ICCS/FTorch
 - Fortran Keras Bridge, TensorFlow but not very active
 - https://github.com/scientific-computing/FKB
 - https://arxiv.org/abs/2004.10652
- SmartSim
 - https://github.com/CrayLabs/SmartSim
 - https://github.com/CrayLabs/SmartSim-Zoo
 - ARCHER2 Webinar: Exploring new computational frontiers with SmartSim
- Al and Weather Forecasting at ECMWF: https://physicsworld.com/a/european-centre-celebrates-50-years-at-the-forefront-of-weather-forecasting/

Questions?