
Scaling AI training
to multiple GPUs

Mats Sjöberg, Oskar Taubert – CSC – IT Center for Science, Finland

Training takes a long time and
I have a lot of data
 → data parallelism

Reasons to use multiple GPUs

My model is too big to fit
into one GPU
 → model parallelism

Using multiple GPUs

● Each node (computer) in
LUMI has 8 GPUs
(Actually 4 x MI250x, which is a dual
chip card = 8 GCDs)

● For each GPU you use
1-7 CPU cores for data
loading and pre-processing

Using multiple GPUs

● Not automatic: your code needs to support multiple GPUs
● Frameworks like Hugging Face, Lightning or Accelerate

may auto-detect multiple GPUs (with the right options)
● For pure PyTorch code, there are many options depending

on the scenario:
– DistributedDataParallel (DDP)
– Hybrid approaches for models too big for a single GPU:

● Fully-sharded Data Parallel (FSDP)
● DeepSpeed

● Use --gpus-per-node=N where N=1,…,8
– --gpus-per-task option not currently recommended due

to bug in Slurm

● Max 8 GPUs in one node, for more GPUs, add more nodes:
--nodes=M

– More on multi-node jobs in the next lecture

Multi-GPU resource allocation on LUMI

● Allocate a maximum of 1/8 of resources per GPU:

– 60 GB CPU memory (RAM) and 7 CPU cores per GPU

– Full node: 480 GB and 56 cores
(leaving some ”slack” for the system)

– Note: you always get the full GPU memory (VRAM) of 64 GB
per GCD (no need to allocate that with Slurm options)

– Resources billed in GPUh according to 1/8 slice

Multi-GPU resource allocation on LUMI

One Python CPU control process per GPU

Python CPU,
rank=0

GPU 0

GPU 1

GPU 2

Python CPU,
rank=1

Python CPU,
rank=2

● We start one Python process
(CPU) per GPU

● Each process needs to know
which GPU it should talk to, given
by the process rank

● The first process (rank=0) is the
main process, and the others
connect back to it

Multiple nodes: rank and local_rank

rank=0
local_rank=0

GPU 0

GPU 1

GPU 2

rank=1
local_rank=1

rank=2
local_rank=2

Node 1

rank=3
local_rank=0

GPU 0

GPU 1

GPU 2

rank=4
local_rank=1

Rank=5
local_rank=2

Node 2

Example: one full node, 8 GPUs

#!/bin/bash
#SBATCH --account=project_NNNNNNNN
#SBATCH --partition=standard-g
#SBATCH --gpus-per-node=8
#SBATCH --ntasks-per-node=8
#SBATCH --cpus-per-task=7
#SBATCH --mem=480G
#SBATCH --time=1:00:00
< module loading part as before – removed for readability>

export MASTER_ADDR=$(hostname)
export MASTER_PORT=24500
export WORLD_SIZE=$SLURM_NTASKS

srun bash -c "RANK=\$SLURM_PROCID LOCAL_RANK=\$SLURM_LOCALID singularity exec ..."

How many processes are there?

Where to connect to?

Which process am I?

The line with srun will be launched
multiple times according to the
number of tasks

In the Python code:

gpu_id = int(os.environ["LOCAL_RANK"])
device = torch.device("cuda", gpu_id)

Example: 2 nodes, 2×8=16 GPUs in total

#!/bin/bash
#SBATCH --account=project_NNNNNNNN
#SBATCH –partition=standard-g
#SBATCH --nodes=2
#SBATCH --gpus-per-node=8
#SBATCH --ntasks-per-node=8
#SBATCH --cpus-per-task=7
#SBATCH --mem=480G
#SBATCH --time=1:00:00
< module loading part as before – removed for readability>

export MASTER_ADDR=$(hostname)
export MASTER_PORT=24500
export WORLD_SIZE=$SLURM_NTASKS

srun bash -c "RANK=\$SLURM_PROCID LOCAL_RANK=\$SLURM_LOCALID singularity exec ..."

Example: one full node, 8 GPUs, with torchrun

#!/bin/bash
#SBATCH --account=project_NNNNNNNN
#SBATCH --partition=standard-g
#SBATCH --gpus-per-node=8
#SBATCH --ntasks-per-node=1
#SBATCH --cpus-per-task=56
#SBATCH --mem=480G
#SBATCH --time=1:00:00
< module loading part as before – removed for readability>

srun singularity exec $CONTAINER \
 torchrun --standalone \
 --nnodes=1 \
 --nproc-per-node=${SLURM_GPUS_PER_NODE} \
 my_python_script.py

Torchrun will take care of launching
multiple processes, Slurm just
needs to start one torchrun

Example: 2 nodes, 2×8=16 GPUs in total, with torchrun

#!/bin/bash
#SBATCH … < skipping some common Slurm options >
#SBATCH --nodes=2
#SBATCH --gpus-per-node=8
#SBATCH --ntasks-per-node=1
#SBATCH --cpus-per-task=56
#SBATCH --mem=480G
< module loading part as before – removed for readability>

export RDZV_HOST=$(hostname)
export RDZV_PORT=29400

srun singularity exec $CONTAINER \
 torchrun --rdzv_id=${SLURM_JOB_ID} --rdzv_backend=c10d
 --rdzv_endpoint="$RDZV_HOST:$RDZV_PORT" \
 --nnodes=${SLURM_JOB_NUM_NODES} \
 --nproc-per-node=${SLURM_GPUS_PER_NODE} \
 my_python_script.py

Torchrun has it’s own rendezvous
mechanism for connecting to the
main node, essentially we again need
to tell it the hostname and port

srun is needed again, as we want
Slurm to start ONE torchrun PER node

Do we need to change the Python code?

● For plain PyTorch: yes, use DistributedDataParallel (DDP)
● For higher level frameworks, mostly no:

– transformers.Trainer is automatically set up for distributed
training when WORLD_SIZE & RANK environment variables are set

– Similar for other high-level frameworks like PyTorch Lightning or
Accelerate

● BUT: Pay attention to global batch size vs per device batch size!
– Example: global batch size = 32 for one GPU,

split over 8 GPUs, per-device batch size is 4
● Cosmetic: You might want to print some things only on rank 0

PyTorch DistributedDataParallel (DDP)

1) Initialize PyTorch distributed:

torch.distributed.init_process_group(backend='nccl')

2) Wrap your model:

model = torch.nn.parallel.DistributedDataParallel(model, …)

3) Use the distributed sampler:

train_dataset = ...
train_sampler = DistributedSampler(train_dataset)
train_loader = DataLoader(dataset=train_dataset,
 shuffle=False,
 sampler=train_sampler)

Check that you are actually using all GPUs!

$ srun --overlap --pty --jobid=123456 watch rocm-smi
Check GPU utilization

● Utilization should be > 0% for all requested GPUs
● Note: showing high utilization is a necessary, but not

sufficient condition for it actually doing something
useful!
– Refer back to lecture 4 yesterday Understanding

GPU activity & checking jobs
– Check GPU power and use profiling

GPU and CPU Bindings

https://docs.lumi-supercomputer.eu/runjobs/scheduled-jobs/distribution-binding/#gpu-binding

Example: GCD 4:
psutil.Process().cpu_affinity([1,2,3,4,5,6,7])

Why do we skip
CPU 0?

Because in LUMI the
first core in each
NUMA is reserved

https://docs.lumi-supercomputer.eu/runjobs/scheduled-jobs/distribution-binding/#gpu-binding

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

