

Find information about the course and ask questions here:

https://siili.rahtiapp.fi/lumi-ai-workshop-oct25

Moving your Al training jobs to LUMI workshop 8.10.2025

Find information about the course and ask questions here:

https://siili.rahtiapp.fi/lumi-ai-workshop-oct25

Exercise material

https://github.com/Lumi-supercomputer/Getting_Started_with_Al_workshop

LUMI AI Guide

https://github.com/Lumi-supercomputer/LUMI-AI-Guide

8.10.2025

LUMI is not one single computer

It behaves quite a bit different than your local computer

LUMI is a very fast computer in Europe

- 9th fastest computer in world (TOP500)
- Operated by LUMI consortium
 - 11 countries collaborating
 - 50 % financed by EuroHPC JU
- · Located in Kajaani, Finland
- Distributed LUMI user support team (LUST)
 - One full time employee equivalent from each country
 - Offer email support, courses, workshops, ...
 - Responsible of software stack

LUMI is a cluster of individual computers

- LUMI is not one superfast computer
- Instead it consists of a few thousand individual computers ("nodes")
- All of them are connected by a fast interconnect
- Speed comes from parallelization

Two ways of connecting

Command line interface

Browser based interface (OpenOnDemand)

LUMI consists of different parts

Computers

- Login nodes UAN (user access nodes)
- CPU compute nodes LUMI-C
- GPU compute nodes LUMI-G
- Visualisation nodes LUMI-D

Storage

- 80 PB main parallel storage LUMI-P
- 8.5 PB accelerated storage LUMI-F
- 30 PB object-based storage LUMI-O

Interconnect

- HPE Slingshot 13
- Connects everything

LUMI-C and -G are quite different

LUMI-G

2978 nodes with 4x MI250X (2 x 64GB) 1x AMD Trento CPU 512 GB RAM 4x 200 Gbit/s NIC

To Slingshot

1888 nodes with 256 GB, 128 with 512 GB and 32 with 1 TB RAM 2x 64-core AMD Milan CPUs 1 x 200 Gbit/s NIC

LUMI-C

GPU nodes are the center of LUMI

Interconnect is the fast backbone of LUMI

- Connnects all nodes
- Has a similar role to ethernet
- Much higher speed bandwidth

Interconnect is the fast backbone of LUMI

- Slingshot in Dragonfly topology
 - Each G node is connected to 4 switches
 - All-to-all amongst switches in a group
 - All-to-all between groups
 - Max of 3 switch hops
- Make sure to use it

AMD is not Nvidia

But the differences are quite small

Our GPUs are confusing

Each AMD Instinct MI250X

- 2 Graphics Compute Die (GCD)
- 110 compute units per GCD with each
 64 stream processors
- 64 GB HBM GPU memory per GCD
- Each process can only use 64GB max not 128GB

Different names but usually same concept

PyTorch

ML Training

PyTorch

Infiniband / RoCE

Networking Between Nodes

HPE Slingshot

NCCL

Cross-GPU Communication

RCCL

CUDA / CuDNN

Software Stack

ROCm

A100, H100

GPU

MI250X, MI300X

ROCm is not CUDA

- ROCm is the equivalent software stack to Nividia's CUDA
- Basically drop-in replacement
- Very similar concept
- Some small differences
- Consists of
 - GPU drivers
 - Compilers and profilers
 - Math and communication libraries

PyTorch makes it simple

- Both CUDA and ROCm are loaded with `cuda` submodule
- Check whether you can see any GPUs with `torch.cuda.device_count()`

```
dietzej@nid005021:~$ singularity exec $SIF python -c 'import torch; print(f"Number of GPUs
: {torch.cuda.device_count()}"); print(torch.cuda.get_device_properties(0))'
Number of GPUs: 1
_CudaDeviceProperties(name='AMD Instinct MI250X', major=9, minor=0, gcnArchName='gfx90a:sr
amecc+:xnack-', total_memory=65520MB, multi_processor_count=110)
dietzej@nid005021:~$
```


Storage is not as easy as on your laptop

But if you follow some rules you will be fine

There is more than one storage server

LUMI has three storage systems

LUMI-P

- Lustre file system
- Disk based
- 4 independent systems with each 20 PB

LUMI-F

- Lustre file system
- Solid-state (flash) based
- 8.5 PB

• LUMI-O

- Object storage based
- Disk based
- 30 PB

There are no local disks

- Compute nodes have no local disks
- Instead network storage (LUMI-P & -F) has to be used
- 4 storage areas

Area	Path	Usage
User home	/users/ <username></username>	Configuration files
Project persistent	/project/ <project></project>	Installations + final results
Project scratch	/scratch/ <project></project>	Input + Intermediate results
Project flash	/flash/ <project></project>	Input if high bandwidth is needed

Lustre doesn't like many small files

Lustre consists of 3 parts

- Client
 Compute or login node that wants to access a file
- Metadata Server
 - Doesn't store file content
 - Just metadata like location, size, ...
 - Tells client where to find file
- Object Storage Server
 - Stores actual file content
 - Either complete file or parts
 - Sends and receives data to/from client

Lustre doesn't like many small files

Problem with many small files

- For each file the client queries the Metadata server (MDS)
- Many object storage servers but only one MDS
- MDS can get overloaded by queries if many clients ask for lots of small files each

Lustre likes few large files

To avoid overloading MDS

- Avoid many (thousands) small files
- Avoid opening/closing many files in short time
- Bundle files together
- Python environments can be a problem → discuss later

What about /tmp?

- Compute nodes don't have local disks/flash
- /tmp resides in memory
- Consumes space of your memory allocation
- Remember to allocate enough memory if you want to use /tmp

LUMI consists of different parts

Use them well and you will get great

LUMI

Questions?