

Loading Training data on LUMI

Harvey Richardson, HPE LUMI AI Course, May 27-28 2025, Amsterdam

Agenda

LUM

- Storage on LUMI
- Lustre Filesystems:
 - Architecture
 - User control
 - Optimisation
- LUMI-O
- Data access considerations

Storage on LUMI

• Parallel Lustre Filesystems (LUMI-P and LUMI-F)

quota	Max-files	expandable	Backup	retention
20GB	100k	No	No	User lifetime
50GB	100k	To 500GB	No	Project lifetime
50TB	2000k	To 500TB	No	Project lifetime +
2TB	1000k	To 100TB	No	Project lifetime +
	20GB 50GB 50TB	20GB 100k 50GB 100k 50TB 2000k	20GB 100k No 50GB 100k To 500GB 50TB 2000k To 500TB	20GB 100k No No 50GB 100k To 500GB No 50TB 2000k To 500TB No

+ may be auto-cleaned in future

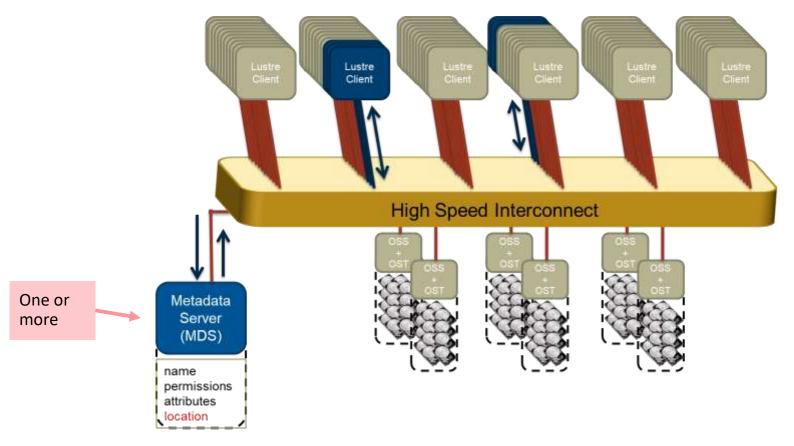
• Object Storage (LUMI-O)

	quota	Max buckets	Max objects-per-bucket	Backup	retention
Object Storage	150TB	1000	500000	No	Project lifetime

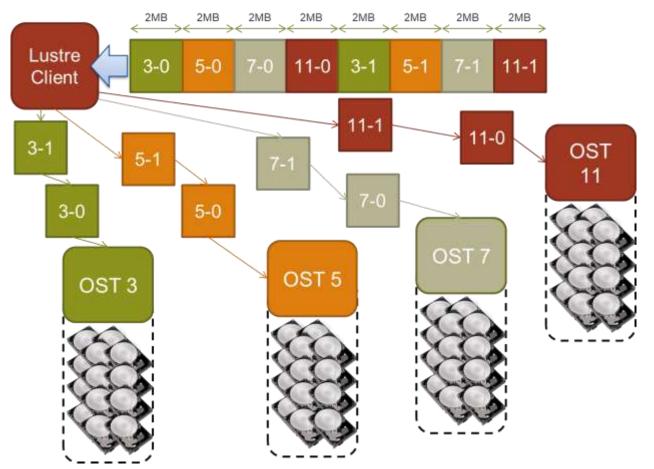
• /tmp (but be aware it takes away from memory available to your job)

Storage on LUMI: filesystems

LUMI-P/LUMI-F access


	Path	Intended use	Hardware Partition
User home	/users/ <username></username>	User home directory for personal and configuration files	LUMI-P
Project persistent	/project/ <project></project>	Project home directory for shared project files	LUMI-P
Project scratch	/scratch/ <project></project>	Temporary storage for input, output or checkpoint data	LUMI-P
Project flash	/flash/ <project></project>	High performance temporary storage for input and output data	LUMI-F

Run lumi-workspaces to see your specific locations


- Lustre is an open source parallel filesystem designed to support leadership class HPC systems
- Comprised of software subsystems, storage and associated network
 - Metadata servers (MDSs) providing metadata targets (MDTs) which store filesystem namespace information (directories, filenames, permissions etc.)
 - Object Storage Servers (OSSs) providing Object Storage Targets (OSTs) each hosting a local filesystem
 - Lustre clients (login nodes, compute nodes) access the global filesystem
- All clients see a unified namespace and the filesystem supports POSIX semantics providing concurrent coherent access to files.

Lustre components

LUMI

File decomposition example – 2MB stripes

LUMI

Controlling striping with Ifs setstripe

• Sets the stripe for a file or a directory

- size: Number of bytes on each OST (O filesystem default)
- count: Number of OSTs to stripe over (0 default, -1 all)

• Comments

- Striping policy is set when the file is created. It is not possible to change it afterwards.
- Can use its to create an empty file with the stripes you want (like the touch command)
- Can apply striping settings to a directory, any children will inherit parent's stripe settings on creation.
- There is an index option to choose the first OST, don't use this in normal circumstances.
- You can use **lfs getstripe** to verify striping settings

Advice for striping settings

- Selecting the striping values will have a large impact on the I/O performance of your application
- Rules of thumb: Try to use all OSTs
 - # files > # OSTs => Set stripe_count=1 You will reduce the lustre contention and OST file locking this way and gain performance
 - #files==1 => Set stripe_count=#OSTs or a number where your performance plateaus Assuming you have more than 1 I/O client
 - #files<#OSTs => Select stripe_count so that you use all OSTs Example : You have 8 OSTs and write 4 files at the same time, then select stripe_count=2
- Always allow the system to choose OSTs at random!

Lustre considerations

- Lustre was designed for high performance streaming I/O for large amounts of data
- It will struggle with some usage patterns such as
 - Directories with huge number of files (reduce number, organize by client)
 - Small data transfers
- Python environments can be a challenge for Lustre, particularly if started in parallel on many nodes
 - Containerise them (LUMI tools can be used to help with this)
 - Possibly move into /tmp and run from there

LUMI-O Object Storage

- Provides 30PB of storage for storing, sharing and staging data
- Supports private and public access
- Storage is object-based, you store objects in buckets you allocate...
 - **Buckets**: Containers used to store one or more objects. Object storage uses a flat structure with only one level which means that buckets cannot contain other buckets.
 - **Objects**: Any type of data. An object is stored in a bucket.
 - **Metadata**: Both buckets and objects have metadata specific to them. The metadata of a bucket specifies e.g., the access rights to the bucket. While traditional file systems have fixed metadata (filename, creation date, type, etc.), an object storage allows you to add custom metadata.

Accessing LUMI-O

LUMI

- Make commands available module load lumio
- To configure a connection to LUMI-O run lumio-conf
- This is only supported on LUMI but can be downloaded (<u>https://github.com/Lumi-supercomputer/LUMI-O-tools</u>)
- Above command instructs you to go to the LUMI-O credentials management service at <u>https://auth.lumidata.eu/</u>
- Follow instructions at: <u>https://docs.lumi-supercomputer.eu/storage/lumio/auth-lumidata-eu/</u>
 - Enter generated key into lumio-conf, it creates setup for rclone
 - Templates can be generated for shell, boto3, rclone, s3cmd, aws
- Keys have a lifetime, so duration needs to outlast the workflow
 - For example move data from LUMI-O to scratch for job

Running lumio-conf

> lumio-conf

Please login to https://auth.lumidata.eu/

In the web interface, choose first the project you wish to use.

Next generate a new key or use existing valid key

Open the Key details view and based on that give following information

Running lumio-conf

Secret key

New configuration set as default

Created s3cmd config lumi-465001707 for project_465001707

Other existing configurations can be accessed by adding the -c flag

s3cmd -c ~/.s3cfg-<profile-name> COMMAND ARGS

======= CONFIGURING RCLONE ========

Updated rclone config /users/<user>/.config/rclone/rclone.conf

rclone remote lumi-465001707-private: now provides an S3 based connection to Lumi-0 storage area of
project_465001707

rclone remote lumi-465001707-public: now provides an S3 based connection to Lumi-0 storage area of
project_465001707

Data pushed here is publicly available using the URL: https://465001707.lumidata.eu/<bucket_name>/<object>"

LUMI

You need to supply the key obtained from the website

Generating Keys...

LUMI

Help & Support

Documentation

Logout

×

Authentication keys

Project number: 465001707

Generate a new authentication key pair

Both fields are required. Key duration may not exceed 168 hours.

Key description*		
LUMI_AI_demo		

Generate key

Available keys

There are no keys to show.

The keys you generate will appear in this list.

Expired keys

The are no expired keys to show.

Your projects

Project number	Project description	Quota
		153600
465001362	LUST Training / 2024-10-28-31 Advanced LUMI course Amsterdam	153600
465001363	LUST Training / 2024-11-26-27 AI Workshop Ostrava	153600
465001707	LUST Training / 2025-02-04-05 AI Workshop	153600
465001726	LUST Training / 2025-03-3-7LUMI Intro+Advanced Course (Stockholm)	153600

Getting configuration templates...

Creation time

Feb 03 2025 22:44:30 GMT+0200

Expires on

Feb 08 2025 22:44:30 GMT+0200

Extend key duration

The expiry time of a key can be set from the current time point by maximum of 168 hours.

Expire after (hours)

Set expiration

Configuration templates

Select configuration format to generate (opens in a new tab)

Accessing LUMI-O

• rclone and s3cmd can perform basic operations

Action	rclone comand	s3cmd command
List buckets	rclone lsd <lumi-o-endpoint>:</lumi-o-endpoint>	s3cmd ls s3:
Create bucket mybuck	rclone mkdir <lumi-o-endpoint>:mybuck</lumi-o-endpoint>	s3cmd mb s3://mybuck
List objects in bucket mybuck	rclone ls <lumi-o-endpoint>:mybuck/</lumi-o-endpoint>	s3cmd lsrecursive s3://mybuck
Upload file <i>file1</i> to bucket <i>mybuck</i>	rclone copy file1 <lumi-o-endpoint>:mybuck/</lumi-o-endpoint>	s3cmd put file1 s3://mybuck
Download file <i>file1</i> from bucket <i>mybuck</i>	rclone copy <lumi-o-endpoint>:mybuck/file1 .</lumi-o-endpoint>	s3cmd get s3://mybuck/file1 .

• rclone and s3cmd can perform more complex operations (see manpages)

Endpoints for rclone and URL access

- lumi-<project>-private: The private endpoint. The buckets and objects uploaded to this endpoint will not be publicly accessible.
- lumi-<project>-public: The public endpoint. The buckets and objects uploaded to this endpoint will be publicly accessible using the URL:

https://<project>.lumidata.eu/<bucket_name>`

• Be careful to not upload data that cannot be public to the public endpoint

API access to LUMI-O

LUMI

• LUMI-O can also be accessed via APIs such as boto3

• For example to list buckets in project 46500001

```
import boto3
session =
    boto3.session.Session(profile_name='lumi-465000001')
s3_client = session.client('s3')
buckets=s3_client.list_buckets()
```


Workflows

LUMI

- As noted, LUMI has various filesystems and provides LUMI-O
- Most likely you will load data from the filesystems
- There are many APIs provided by languages, language modules and frameworks that you can use...

Considerations for data access

- 'Containerise' files in higher level formats (HDF5) particularly for arraybased data or images
- Use compressed file/image formats to save most on storage
- Use compact binary data formats
- User appropriate formats and loaders
 - csv, feather, parquet, jay, pickle; pandas, dask, datatables
 - Use multiple workers in data loaders (PyTorch Dataloader,... num_workers=...)
- Explore image loading libraries
 - (Python Imaging Library (PIL), pyspng, PyTurboJPEG
- Perhaps cache files in memory

LUMI

A couple of perspectives on resolving bottlenecks

Solving Bottlenecks blog

 Towards Data Science article by Chaim Rand. Solving Bottlenecks on the Data Input Pipeline with PyTorch Profiler and TensorBoard: PyTorch Model Performance Analysis and Optimization — Part 4

https://towardsdatascience.com/solving-bottlenecks-on-the-data-inputpipeline-with-pytorch-profiler-and-tensorboard-5dced134dbe9

- Pipeline... CPU (load, collate, pre-process) then send to GPU
- Use Torch profiling to see if GPU is keeping busy, it might reveal other timeconsuming parts
- Can set num_workers in the DataLoader perhaps up to number of available cpus
- But other parts might have threading capability (some image processing libraries have this capability)
- Look at applying transformations (say for images) on whole batches at once

Diagnosing and Debugging PyTorch Data

- Will Price blog: Diagnosing and Debugging PyTorch Data Starvation
- <u>https://www.willprice.dev/2021/03/27/debugging-pytorch-performance-bottlenecks.html</u>
- You identify GPU starvation: maybe cpu-intensive part of training loop or waiting on a batch of data
- Often you see stalls after multiple batch loads (this is due to workers)

Tuning Pytorch Data Loading

• num_workers

Increase this but don't overload cpus or memory

batch_size

The larger it is the more work is needed

• shuffle

Good to randomize samples but not good for disk access, maybe shuffle within blocks of data

pin_memory

Makes cpu to GPU transfers more efficient

persistent_workers

Controls if workers are torn down and re-created per epoch

Other considerations

LUMI

- Where is the data?
 - Load it from faster storage or even /tmp if you have the choice
 - Containerise it even in a zip file can be useful
- May have to think about all aspects of performance
- Transforming data (image vide)
 - Likely to move to GPU

Profiling

If you really want to look into bottlenecks in detail then some profiling may help.

Options:

- Framework python profiling support For example <u>PyTorch Profiler</u>
- Rocm profiliers
- Cray perftools (recent python support)

Profiling can reveal things we forget

- We were experimenting with Cray performance tools profiling the LUMI <u>MNIST image example</u>
- Using a venv for ptorch torchvision torchaudio with rocm 6.0 support
- Run on 4 nodes 32 GPUs
- Looking at the profile most of the I/O was in python files and read/open/dlopen
- Moved to putting the venv into the container: Runtime changed from 100s to 52s

Profiles (1)

Table 1: Profile by Function Group and Function

Time% 	Time 	Time Time% 		Function PE=HIDE Thread=HIDE
100.0% 10	00.092305 		6,694.9 '	Total
56.3%	56.393921 0.	304940 0.6		USER
	56.393921 0	.304940 0.	6% 1.0	 main
	27.566174	1		
12.7%	14.763520 0 12.746512 0	.306016 2. .299764 2.	1%	open64 read
=====================================	15.437528			
15.4%	15.437522 0	.139285 0.	9% 68.0	dlopen ====================================

Profiles (2)

LUMI

Table 5: File Input Stats by Filename (limited entries shown)

| ______

Avg Read		Avg Read	L	Read Rate	Number	L	Avg	Bytes/ Call File Name=!x/^/(proc sys)/
Time per	· 1	MiBytes	L	MiBytes/sec	of	I	Reads	PE=HIDE
Reader	· 1	per	L	I	Reader	I	per	
Rank	1	Reader	L	I	Ranks	I	Reader	I
	Т	Rank	L	I		L	Rank	
0.10788	8	44.860855	5 1	415.809039	1	Т	2.0	23,520,008.00 ./data15/MNIST/raw/train-images-idx3-ubyte
0.10774	2	44.860855	5 1	416.374213	1	T	2.0	23,520,008.00 ./data12/MNIST/raw/train-images-idx3-ubyte
0.10773	9	44.860855	5 1	416.383469	1	Т	2.0	23,520,008.00 ./data13/MNIST/raw/train-images-idx3-ubyte
0.10770	7	44.860855	5 1	416.509934	1	Т	2.0	23,520,008.00 ./data14/MNIST/raw/train-images-idx3-ubyte
0.10768	7	44.860855	5 1	416.586354	1	T	2.0	23,520,008.00 ./data9/MNIST/raw/train-images-idx3-ubyte
0.10758	4	44.860855	5 1	416.986388	1	Т	2.0	23,520,008.00 ./data8/MNIST/raw/train-images-idx3-ubyte
0.10755	7	44.860855	5 1	417.090452	1	T	2.0	23,520,008.00 ./data11/MNIST/raw/train-images-idx3-ubyte
0.10737	9	44.860855	5 1	417.782382	1	T	2.0	23,520,008.00 ./data10/MNIST/raw/train-images-idx3-ubyte
0.09705	9	44.860855	5 1	462.204205	1	T	2.0	23,520,008.00 ./data5/MNIST/raw/train-images-idx3-ubyte
0.09703	5	44.860855	5 1	462.315979	1	Т	2.0	23,520,008.00 ./data3/MNIST/raw/train-images-idx3-ubyte
0.09695	8	44.860855	5 1	462.685183	1	T	2.0	23,520,008.00 ./data1/MNIST/raw/train-images-idx3-ubyte
0.09688	6	44.860855	5 1	463.025957	1	T	2.0	23,520,008.00 ./data2/MNIST/raw/train-images-idx3-ubyte

More Information...

- LUMI-O <u>https://docs.lumi-supercomputer.eu/storage/lumio/</u>
- Generic Tutorial on reading large datasets: <u>https://www.kaggle.com/code/rohanrao/tutorial-on-reading-large-datasets</u>
- Best Practice for Data Formats in Deep Learning (SURF) <u>https://servicedesk.surf.nl/wiki/display/WIKI/Best+Practice+for+Data+For</u> <u>mats+in+Deep+Learning</u>
- Ray data loading: <u>https://docs.ray.io/en/latest/train/user-guides/data-loading-preprocessing.html</u>
- Pytorch Tutorial on pre-defined datasets/dataloaders: <u>https://pytorch.org/tutorials/beginner/basics/data_tutorial.html</u>
- Example of keeping training data in memory: "*Scaling Out Deep Learning Convergence Training on LUM*", Diana Moise & Samuel Antao, <u>PDF</u>