
Extending containers with
virtual environments for
faster testing

Gregor Decristoforo – LUMI User Support Team
Norwegian research infrastructure services (NRIS) – UiT, Norway

Motivation

Cotainr is great, but building a container takes time --> not ideal for quick testing / iterating on your
project

Virtual environments offer a quick (and easy) way of installing additional packages to existing containers

What are virtual environments

Source: w ww.dataquest.io/blog/a-complete-guide-to-python-virtual-environments/

A virtual environment is a folder tree containing a specific Python version, third-party libraries, and other scripts.

Virtual environments are conceptually similar to conda environments – just for pip only.

Requirements

We assume we already have a container built from a conda environment
file. If not, we can build one via:

module load LUMI/24.03 cotainr

cotainr build minimal_pytorch.sif --base-image=/appl/local/containers/sif-images/lumi-
rocm-rocm-6.0.3.sif --conda-env=minimal_pytorch.yml --accept-license

name: minimal_pytorch

channels:
- conda-forge

dependencies:

- filelock=3.15.4
- fsspec=2024.9.0
- jinja2=3.1.4

- markupsafe=2.1.5
- mpmath=1.3.0
- networkx=3.3

- numpy=2.1.1
- pillow=10.4.0
- pip=24.0

- python=3.12.3
- sympy=1.13.2
- typing-extensions=4.12.2

- pip:
- --extra-index-url https://download.pytorch.org/whl/rocm6.0/
- pytorch-triton-rocm==3.0.0

- torch==2.4.1+rocm6.0
- torchaudio==2.4.1+rocm6.0
- torchvision==0.19.1+rocm6.0

Run a shell inside the container

singularity shell --bind /pfs,/scratch,/projappl,/project,/flash,/appl
minimal_pytorch.sif

Instead of setting --bind manually, one achieves the
same with

module use /appl/local/containers/ai-modules

module load singularity-AI-bindings

singularity shell minimal_pytorch.sif

Create a virtual environment via venv

Inside the container, create a virtual environment via venv

python -m venv myenv --system-site-packages

The --system-site-packages flag gives the virtual environment access to the packages inside

the container.

Activate the environment via

source myenv/bin/activate

Install custom packages via pip

pip install torchmetrics

The new package will then be available alongside the packages in the container

Location of installed packages

The new package is installed in our virtual environment whereas the other packages are installed in the
container.

We can check the location of the installed files via

Warning

You should not stop here, as this way of installing python packages creates typically thousands of
small files. This puts a lot of strain on the Lustre file system and might exceed your file quota.

Once you have a complete set of python packages and their versions, choose one of the following
options:

⚫ Create a new container with cotainr and delete virtual environment

⚫ Turn myenv into a SquashFS file and bind mount it to the container

Option 1: Create a new container with cotainr

After having found all needed packages, add them to the conda
environment file and create a new container:

module load LUMI/24.03 cotainr

cotainr build updated_pytorch.sif --base-image=/appl/local/containers/sif-images/lumi-
rocm-rocm-6.0.3.sif --conda-env=updated_pytorch.yml --accept-license

The virtual environment should then be deleted:

rm -rf myenv

name: updated_pytorch

channels:
- conda-forge

dependencies:

- filelock=3.15.4
- fsspec=2024.9.0
- jinja2=3.1.4

- markupsafe=2.1.5
- mpmath=1.3.0
- networkx=3.3

- numpy=2.1.1
- pillow=10.4.0
- pip=24.0

- python=3.12.3
- sympy=1.13.2
- typing-extensions=4.12.2

- pip:
- --extra-index-url https://download.pytorch.org/whl/rocm6.0/
- pytorch-triton-rocm==3.0.0

- torch==2.4.1+rocm6.0
- torchaudio==2.4.1+rocm6.0
- torchvision==0.19.1+rocm6.0.6

- torchmetrics==1.6.0

Option 2: Turn myenv into a SquashFS file

Turn the myenv directory into a SquashFS file and bind mount it to the container:

mksquashfs myenv myenv.sqsh

rm -rf myenv

export SINGULARITYENV_PREPEND_PATH=/user-software/bin

singularity exec -B myenv.sqsh:/user-software:image-src=/ minimal_pytorch.sif python my_script.py

This is much better for the file system as it regards the myenv.sqshas a single file.

For advanced users:

This approach is compatible with packages that cannot be installed via cotainr (e.g. packages

that require manual compilation)

LUMI application containers

12

venv approach may also be used with the LUMI application containers that are not built with cotainr,
e.g. /appl/local/containers/sif-images/lumi-pytorch-rocm-6.2.1-python-3.12-pytorch-20240918-vllm-4075b35.sif

For these containers it is required to activate the conda environment ($WITH_CONDA) before creating
the venv

CONTAINER=/appl/local/containers/sif-images/lumi-pytorch-rocm-6.2.1-python-3.12-pytorch-20240918-vllm-
4075b35.sif

srun singularity exec $CONTAINER bash -c '$WITH_CONDA && source myenv/bin/activate && python my_script.py'

Building a (final) container from LUMI application containers + a venv is not directly supported by
cotainr

Pros and Cons

Pros:

⚫ Quick (and easy) approach for installing additional packages to existing containers

Cons:

⚫ Additional packages are installed directly on Lustre file system which can lead to bad performance
and exceed your file limit (if SquashFS approach is not used)

⚫ Required to keep manually track of which venv matches which container for which use case

⚫ Necessary to source the venv every time you run the container to get access to the packages in the
virtual environment

Summary of steps

Open shell inside container

singularity shell --bind /pfs,/scratch,/projappl,/project,/flash,/appl container_image.sif

If no virtual environment present, create a new one

python -m venv myenv --system-site-packages

Activate virtual environment

source myenv/bin/activate

Install custom packages

pip install new_package

