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Where might machine learning play a role in simulation?

Workflows for coupling HPC simulation with AI

Challenges and approaches

SmartSim

SmartSim Examples
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Completely replace a simulation

AI model learns to produce output by observing simulation inputs/outputs

Use simulation as one input to a machine learning model

For example use an ML model to account for location-specific history (weather)

Replace modeling of physical processes or parameterised models with machine learning, 
Examples..

Reduce search space for Drug discovery

a turbulence model in an ocean simulation

Particle physics: particle tracks

Atomic potentials (computational chemistry)

We will concentrate on the case where AI is coupled with simulation
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Where might machine learning play a role with Simulation



Can AI replace numerical-based approaches?
Short answer: no, still limited by data

Benefits of AI models
Can be run more quickly than traditional numerical models
Simpler to run, does not need complicated software 
infrastructure and HPC resources
Skillful models can be considered lower-order 

Useful for exploring parameter space/uncertainties

Downsides of AI models
How do you add process complexity?
Can they extrapolate beyond the data they have been 
trained on?

Challenges to combining HPC&AI
Numerical: How can you characterize the stability and 
accuracy of an ML model in that context
Technical:

How do you connect Fortran/C/C++ codebases to ML packages?
How do you appropriately balance high-value/cost GPU resources 
in predominantly CPU-based code?
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Why HPC and AI instead of HPC vs. AI?

https://docs.nvidia.com/deeplearning/modulus/modulus-
sym/user_guide/neural_operators/fourcastnet.html#introduction



Combining AI software and traditional HPC applications at different levels of a workflow unlocks innovative solutions
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HPC Applications combined with AI software drive innovation

Physics
Simulation

ML in-the-loop:
Inference every 
time step &
training online with 
model updates

ML on-the-loop:
Inference  and 
training every 
1k-10k time steps

ML around-
the-loop:
Inference or 
training after  
simulation

ML outside-the-loop:
Intelligent sampling

Edge AI:
Cross-facility,
event triggered, 
data-driven
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ML around-the-loop
Automatic parameter tuning

New data assimilation techniques

ML in-the-loop
Embedding machine-learning predictions within 
numerical solvers

On-the-fly analysis and visualization (e.g. principal 
component analysis via streaming SVD)



Machine learning frameworks are invariably accessed via Python

HPC simulation is most likely written in C/C++/Fortran

A lot of work for something likely already done and likely more efficiently than you will

Hard to integrate a model externally developed

Some approaches

Use language-interoperability to interface between simulation and Machine Learning

Couple ML components to our simulation (sockets, messaging transports, files)

Use a framework designed to provide such interoperability (via network transport or APIs)
Fortran Keras Bridge

SmartSim (originally from Cray)
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Challenges and approaches



Interoperability by calling conventions

Fortran and Python
f2py and fmodpy or forpy can help build wrappers to call Fortran from Python

ISO C bindings on the Fortran side interfaced to ctypes/Cython on the python side

Really helpful if what you are interfacing to has direct support for the Numpy C API

C++/C and Python
Cython, pybind11, SWIG

Interoperability at Framework Level (Fortran)

Directly call Tensorflow or Torch APIs from Fortran using ISO C interoperability

    In both cases you may have to save model in a special format 

Alternatively

Communicate workflow components via filesystem or network
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Language Interoperability
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About SmartSim

SmartRedis 
Client API

AI Models AI Models

Data Sources Code / Scripts

Native C/C++/Fortran 
simulation 

Orchestrator

SmartRedis 
Client API

Analysis and 
Visualization

The SmartSim open-source library 
bridges the divide between traditional 
numerical simulation and data science

• Provides a loose-coupling 
philosophy for combining HPC & AI

SmartSim enables simulations to be used as engines within a system, producing 
data, consumed by other services to create new applications

• Use Machine Learning (ML) models in existing Fortran/C/C++ simulations

• Communicate data between C, C++, Fortran, and Python applications

• Train ML models and make predictions using TensorFlow, PyTorch, and ONNX

• Analyze data streamed from HPC applications while they are running

All of these can be done without touching the filesystem

PYTORCH  |   TENSORFLOW   |   ONNX

Interactive or 
Automated 



Integration steps

1. Embed SmartRedis calls 
(C/C++/Fortran) into the 
application (~10 lines of code)

2. Write a driver script using the 
SmartSim Python library to 
describe and launch the workflow

Driver script can check status of 
components
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Creating a SmartSim experiment
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Added simulation code

SmartSim Driver Script
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Added client simulation code

Reference to 
initialized client Put data into database 

(Orchestrator) naming it

Execute ML models
output to database

Retrieve previously named 
data
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SmartSim driver script (create ensemble)

Driver Script
Describes, launches and manages 
workflow with applications and ML 
infrastructure

Experiment
Top level object that provides 
factory methods to create workflow 
objects

Batch Settings 
Can be used if application is to be 
launched non-interactively, including 
as ensembles

RunSettings object
Describes system-specific resources 
(nodes, accelerators, cpus etc.

Model object
Holds information on user 
application

Application file handling
Can be parameterized (also args)
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SmartSim 

Ensemble members have 
identical parameters
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SmartSim 

Setup Orchestrator 
(stores ML 

models/tensors and 
executes models

Write all files needed for 
workflow entities

GO
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Online Inference, multiple languages

Fortran

C++

Python



EXAMPLES OF USING AI IN-THE-
LOOP IN THE MOM6 OCEAN 
MODEL
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In-Memory Data Store 

              

EKEResnet

EKEResNet predicts and returns turbulent
kinetic energy values

MOM6 sends input features

Shard 1

Shard 2

Shard 16

MOM6 Ensemble

SmartSim IL launching MOM6 and Orchestrator

.

.

.

Step 1
Send features from 

MOM6 to the database

Fortran client

Rank 910

.Fortran client
Rank 1

.

...

Fortran client

Rank 910

.Fortran client
Rank 1

.

...

Fortran client

Rank 910

.Fortran client
Rank 1

.

...

Step 2
Run the machine 

learning model in the 
database

Original MEKE Scheme (Jansen et al. [2015]):
• Integrate a prognostic eddy kinetic energy 

equation with parameterized sources/sinks
• Use length-scale relations to convert EKE to Gent-

McWilliams, Redi, and viscosity coefficients

Known shortcomings
• EKE equation has terms which are tunable and/or 

have errors which may be first-order

Propose ML-based solution
• Use an eddy-resolving simulation to train a neural 

network to learn the relationship between large-
scale quantities and eddy kinetic energy

• Embed neural network predictions in eddy-
permitting simulations 

Step 3
Retrieve the inference 

results in MOM6



Using SmartSim in mom6 for turbulence modelling [NCAR+HPE]

• Experiment setup
• 12 ensemble members
• 10,920 CPUs (~200 nodes) and 16 P100s (16 nodes)

Inference embedded at the tracer timestep (3hr)
970 billion inferences over 10 simulation years
1.6 million inferences per second

Key results:
Offloading ML inference to dedicated nodes improves GPU 
utilization while incurring small communication cost
With SmartSim, the accuracy over the current state of the art 
improved by over 20%
Neural network more accurately predicts (20% RMSE 
improvement) rather than the prognostic approach
Overall performance only decreased by 10% while only 
minimally increasing hardware footprint of the model

Partee et al. [2022]: Using Machine Learning at scale in numerical simulations with SmartSim: 
An application to ocean climate modeling
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EXAMPLES OF USING AI 
AROUND-THE-LOOP
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Goal: Reduce Turbulent Separation Bubble formation

Method: Deep Reinforcement Learning with small NN
Reward based on recirculation length of turbulent bubble

Aim: minimize recirculation area

Action: NN can control actuators upwind of bubble
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Active flow control through deep Reinforcement learning



Reference: Project is work in progress, Andrew Moat, Imperial College London

Turbine wakes can reduce efficiency of downstream turbines

We can steer the wake by adjusting angle (yaw) of turbines

In general, the system is very complex, changing direction/speed, multiple turbines, interaction of wakes 
etc.  

Use reinforcement learning to find some optimal set of angles to optimize power output

Direct coupling with SmartSim an improvement over file-based coupling
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Dynamic turbine wake steering in wind farms



Agent interacts with 
an environment to 
optimize some 
quantity
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Reinforcement learning

Agent

Environment

Action at

State st

 Reward rt

Change in 
yaw angles

Total power 
or wind farm



Initial approach was to couple the Large Eddy simulation of the Windfarm with pytorch reinforcement 
learning model

Used file storage to communicate (at st rt)

Issues: 
Large files often written was costly

Was not going to be practical when simulating larger wind farms

Made it difficult to train multiple environments at a time

Moved to SmartSim
Now using Smart Redis database

Modifications needed
XCompact3D Replace file ops with calls to send and retrieve data to smart-redis 

Configured SmartSim to start XCompact3D environments/simulations (32 at a time for example)
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Implementation



Setup
32 Environments each with

10 turbines

128 cores per environment (a node)

50 simulation timesteps per RL step

Batched into 512 frames for training
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Experiment



After initial training 
the turbines settle 
down into being 
driven in sinusoidal 
pattern

Better power 
output than 
without steering.
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Initial Results



Computational Fluid Dynamics

OpenFOAM, FLEXI, PHASTA, libCEED,
NekRS (in progress)

Climate and Weather

MOM6, NEMO, CESM

Molecular Dynamics

LAMMPS, OPENMM

In-situ Visualization workflow
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Other Examples of SmartSim use



Language Interoperability
F2py and fmodpy intro https://www.matecdev.com/posts/fortran-in-python.html
forpy (https://github.com/ylikx/forpy)
pybind11 (https://github.com/pybind/pybind11)
Talk: Reducing the overhead of coupling machine learning models between Python and Fortran,
https://www.youtube.com/watch?v=Ei6H_BoQ7g4
https://jackatkinson.net/slides/RSECon23/RSECon23.html#/title-slide

Interoperability at framework level:
Fortran Keras Bridge, tensorflow but not very active

https://github.com/scientific-computing/FKB
https://arxiv.org/abs/2004.10652

SmartSim 
https://github.com/CrayLabs/SmartSim
https://github.com/CrayLabs/SmartSim-Zoo
ARCHER2 Webinar: Exploring new computational frontiers with SmartSim

© 2024 HEWLETT PACKARD ENTERPRISE DEVELOPMENT LP 26
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Questions?
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