
Extreme scale AI training on LUMI

Samuel Antao

LUMI AI Workshop
Ostrava, Czechia, Nov. 26-27th, 2024

2

[Public]

LUMI AI WORKSHOP | NOV 26-27 2024 | PUBLIC

Controlling device visibility with multiple nodes

• Rank and global rank now mean different things!

• Controlling visibility

• HIP_VISIBLE_DEVICES=0,1,2,3 python -c 'import torch; print(torch.cuda.device_count())'

• ROCR_VISIBLE_DEVICES=0,1,2,3 python -c 'import torch; print(torch.cuda.device_count())’

• SLURM sets ROCR_VISIBLE_DEVICES

• Implications of both ways of setting visibility – blit kernels and/or DMA

• Considerations:

• Does my app expects GPU visibility to be set in the environment?

• Does my app expects arguments to define target GPUs

• Does my app make any assumption on the device based on other information:

• MPI rank

• CPU-range

• Auto-determined

• How many processes using the same GPU:

• Contention vs occupancy

• Runtime scheduling limits

• Increased scheduling complexity

• Imbalance

Most Pytorch applications and driver scripts assume the GPU to be used corresponds to the local rank!!!

3

[Public]

LUMI AI WORKSHOP | NOV 26-27 2024 | PUBLIC

Checking GPU-CPU affinity

• ORNL topology - https://docs.olcf.ornl.gov/systems/crusher_quick_start_guide.html

4

[Public]

LUMI AI WORKSHOP | NOV 26-27 2024 | PUBLIC

Testing affinity on multiple nodes

• Check what SLURM is giving us:

srun -c 7 -N 2 -n 16 --gpus 16 \

bash -c 'echo "$SLURM_PROCID -- GPUS $ROCR_VISIBLE_DEVICES -- $(taskset -p $$)”’ \

| sort -n -k1

0 -- GPUS 0,1,2,3,4,5,6,7 -- pid 54249's current affinity mask: fe

1 -- GPUS 0,1,2,3,4,5,6,7 -- pid 54250's current affinity mask: fe00

2 -- GPUS 0,1,2,3,4,5,6,7 -- pid 54251's current affinity mask: fe0000

3 -- GPUS 0,1,2,3,4,5,6,7 -- pid 54252's current affinity mask: fe000000

4 -- GPUS 0,1,2,3,4,5,6,7 -- pid 54253's current affinity mask: fe00000000

5 -- GPUS 0,1,2,3,4,5,6,7 -- pid 54254's current affinity mask: fe0000000000

6 -- GPUS 0,1,2,3,4,5,6,7 -- pid 54255's current affinity mask: fe000000000000

7 -- GPUS 0,1,2,3,4,5,6,7 -- pid 54256's current affinity mask: fe00000000000000

8 -- GPUS 0,1,2,3,4,5,6,7 -- pid 110083's current affinity mask: fe

9 -- GPUS 0,1,2,3,4,5,6,7 -- pid 110084's current affinity mask: fe00

10 -- GPUS 0,1,2,3,4,5,6,7 -- pid 110085's current affinity mask: fe0000

11 -- GPUS 0,1,2,3,4,5,6,7 -- pid 110086's current affinity mask: fe000000

12 -- GPUS 0,1,2,3,4,5,6,7 -- pid 110087's current affinity mask: fe00000000

13 -- GPUS 0,1,2,3,4,5,6,7 -- pid 110088's current affinity mask: fe0000000000

14 -- GPUS 0,1,2,3,4,5,6,7 -- pid 110089's current affinity mask: fe000000000000

15 -- GPUS 0,1,2,3,4,5,6,7 -- pid 110090's current affinity mask: fe00000000000000

Careful! Allocations do not follow GPU ranking!!

5

[Public]

LUMI AI WORKSHOP | NOV 26-27 2024 | PUBLIC

Testing affinity on multiple nodes

• Check what SLURM is giving us:

srun -N 2 -n 16 --gpus 16 \

--cpu-bind=mask_cpu:0xfe000000000000,0xfe00000000000000,0xfe0000,0xfe000000,0xfe,0xfe00,0xfe00000000,0xfe0000000000 \

bash -c 'echo "$SLURM_PROCID -- GPUS $ROCR_VISIBLE_DEVICES -- $(taskset -p $$)”’ \

| sort -n -k1

0 -- GPUS 0,1,2,3,4,5,6,7 -- pid 13819's current affinity mask: fe000000000000

1 -- GPUS 0,1,2,3,4,5,6,7 -- pid 13820's current affinity mask: fe00000000000000

2 -- GPUS 0,1,2,3,4,5,6,7 -- pid 13821's current affinity mask: fe0000

3 -- GPUS 0,1,2,3,4,5,6,7 -- pid 13822's current affinity mask: fe000000

4 -- GPUS 0,1,2,3,4,5,6,7 -- pid 13823's current affinity mask: fe

5 -- GPUS 0,1,2,3,4,5,6,7 -- pid 13824's current affinity mask: fe00

6 -- GPUS 0,1,2,3,4,5,6,7 -- pid 13825's current affinity mask: fe00000000

7 -- GPUS 0,1,2,3,4,5,6,7 -- pid 13826's current affinity mask: fe0000000000

8 -- GPUS 0,1,2,3,4,5,6,7 -- pid 94670's current affinity mask: fe000000000000

9 -- GPUS 0,1,2,3,4,5,6,7 -- pid 94671's current affinity mask: fe00000000000000

10 -- GPUS 0,1,2,3,4,5,6,7 -- pid 94672's current affinity mask: fe0000

11 -- GPUS 0,1,2,3,4,5,6,7 -- pid 94673's current affinity mask: fe000000

12 -- GPUS 0,1,2,3,4,5,6,7 -- pid 94674's current affinity mask: fe

13 -- GPUS 0,1,2,3,4,5,6,7 -- pid 94675's current affinity mask: fe00

14 -- GPUS 0,1,2,3,4,5,6,7 -- pid 94676's current affinity mask: fe00000000

15 -- GPUS 0,1,2,3,4,5,6,7 -- pid 94677's current affinity mask: fe0000000000

Consider add an affinity check in your job scripts!

Interpreted across nodes using a round-robin approach

6

[Public]

LUMI AI WORKSHOP | NOV 26-27 2024 | PUBLIC

Checking GPU and NIC connection

• ORNL topology - https://docs.olcf.ornl.gov/systems/crusher_quick_start_guide.html

7

[Public]

LUMI AI WORKSHOP | NOV 26-27 2024 | PUBLIC

Comms are important!

◢ LUMI, Frontier (and others) directly attaches AMD Instinct MI250x Accelerator to the Slingshot
Network

◢ Minimize the role of the CPU in the control path

◢ Lowest latency for network message passing is from GPU HBM memory

◢ For example,

 hipMalloc(&device_buffer, Msize);

 init_data<< >>(device_buffer, Msize); // launch GPU kernel

 hipDeviceSynchronize();

 MPI_Sendrecv(&device_buffer, Msize, MPI_FLOAT, … , MPI_COMM_WORLD, MPI_STATUS_IGNORE);

◢ Requires: HPE Cray MPICH

To Slingshot Network

8 |

[Public]

▪ LUMI, Frontier (and others) directly attaches AMD Instinct MI250x Accelerator to the Slingshot Network

▪ Enable collectives computation on devices

▪ Minimize the role of the CPU in the control path – expose more asynchronous computation opportunities

▪ Lowest latency for network message passing is from GPU HBM memory

▪ CXI plugin is a runtime dependency. Requires: HPE Cray libfabric implementation

▪ https://github.com/ROCm/aws-ofi-rccl

▪ 3-4x faster collectives

▪ Included in the LUMI provided containers! If not using the LUMI containers make sure you have that in your

environment:

export NCCL_DEBUG=INFO

export NCCL_DEBUG_SUBSYS=INIT

and search the logs for:

[0] NCCL INFO NET/OFI Using aws-ofi-rccl 1.4.0

To Slingshot Network
CXI

plugin

Comms are important! - RCCL AWS-CXI plugin

9

[Public]

LUMI AI WORKSHOP | NOV 26-27 2024 | PUBLIC

Configuring RCCL environment

• RCCL should be set to use only high-speed-interfaces - Slingshot

• The problem one might see on startup:

•
 NCCL error in: /workdir/pytorch-
example/pytorch/torch/csrc/distributed/c10d/ProcessGroupNCCL.cpp:1269, unhandled
system error, NCCL version 2.12.12

• Check error origin by setting RCCL specific debug environment variables:

export NCCL_DEBUG=INFO

NCCL INFO NET/Socket : Using [0]nmn0:10.120.116.65<0> [1]hsn0:10.253.6.67<0>
[2]hsn1:10.253.6.68<0> [3]hsn2:10.253.2.12<0> [4]hsn3:10.253.2.11<0>
NCCL INFO /long_pathname_so_that_rpms_can_package_the_debug_info/data/driver/rccl/src/init.cc:1292

• The fix:
export NCCL_SOCKET_IFNAME=hsn0,hsn1,hsn2,hsn3

Node has interfaces other than Slingshot

These are the correct ones.

Point RCCL to use all 4 high-speed

interfaces. It will know how to bind them

based on the node topology.

10

[Public]

LUMI AI WORKSHOP | NOV 26-27 2024 | PUBLIC

Configuring RCCL environment (cont.)

• RCCL should be set configured to use GPU RDMA:

• export NCCL_NET_GDR_LEVEL=PHB

• On upcoming ROCm versions (6.2) this won’t be

needed – it is default.

• Why should I spend time with all this?

• 3-4x better bandwidth utilization with plugin

• 2x better bandwidth utilization with RDMA

• Can scale further!

• Careful using external containers! You may

need to be setting plugin yourself!

11

[Public]

LUMI AI WORKSHOP | NOV 26-27 2024 | PUBLIC

MIOpen configuration

• MIOpen is a library for high-optimized machine learning primitives

• Used on many models – not in our LLM example though

• It uses caches to enable just-in-time compilation organized as SQLite databases

• File system doesn’t deal well with SQLite locks when many processes are trying to access it.

• Solution? Setup individual caches for groups of ranks – we recommend per node:

export MIOPEN_USER_DB_PATH="/tmp/$(whoami)-miopen-cache-$SLURM_NODEID"

export MIOPEN_CUSTOM_CACHE_DIR=$MIOPEN_USER_DB_PATH

• Want to check MIOpen activity – setup the following environment variable:
export MIOPEN_ENABLE_LOGGING=1

12

[Public]

LUMI AI WORKSHOP | NOV 26-27 2024 | PUBLIC

Where’s the master???

• Ranks need to know where the master ranks is:

export MASTER_ADDR=$(hostname)

export MASTER_PORT=29500

• When using multiple nodes this is not good enough.

• We can leverage SLURM tools to query what the first node of an allocation is:

export MASTER_ADDR=$(scontrol show hostname "$SLURM_NODELIST" | head -n1)

export MASTER_PORT=29500

• There is no SLURM tools inside the containers:

srun singularity exec mycontainer.sif \

bash -c 'MASTER_ADDR=$(scontrol show hostname "$SLURM_NODELIST" | head -n1) ./myapp’

MASTER_ADDR=$(scontrol show hostname "$SLURM_NODELIST" | head -n1)

srun singularity exec mycontainer.sif \

bash -c './myapp'

13

[Public]

LUMI AI WORKSHOP | NOV 26-27 2024 | PUBLIC

Putting it all together

• What can/should I include in my start script:

if [\$SLURM_LOCALID -eq 0] ; then

rocm-smi

fi

export MIOPEN_USER_DB_PATH="/tmp/$(whoami)-miopen-cache-\$SLURM_NODEID"

export MIOPEN_CUSTOM_CACHE_DIR=\$MIOPEN_USER_DB_PATH

Report affinity

echo "Rank \$SLURM_PROCID --> \$(taskset -p \$\$)"

Start conda environment inside the container

\$WITH_CONDA

Set interfaces to be used by RCCL.

export NCCL_SOCKET_IFNAME=hsn0,hsn1,hsn2,hsn3

export NCCL_NET_GDR_LEVEL=PHB

Set environment for the app

export MASTER_ADDR=\$(python /workdir/get-master.py "\$SLURM_NODELIST")

export MASTER_PORT=29500

export WORLD_SIZE=\$SLURM_NPROCS

export RANK=\$SLURM_PROCID

export ROCR_VISIBLE_DEVICES=\$SLURM_LOCALID

Run app

python -u ./myapp

Smoke test to confirm GPUs are available

Just-in-time compiles are a common technique in these

applications. MIOpen leverages this functionality. Let’s cache

those builds in node-local storage instead of the default home

folder.

Activate the container Conda environment that provides Pytorch

Point RCCL to use the high-speed network interfaces

Translate SLURM environment into something that Pytorch DDP

understands

Run my model training

14

[Public]

LUMI AI WORKSHOP | NOV 26-27 2024 | PUBLIC

Monitoring activity with multiple nodes

• rocm-smi can still be used to understand GPU activity.

• Using SLURM to access nodes other than the first one in the allocation can be challenged.

• You can chose to forward the relevant monitoring information to access from the login node.

• Pipe information to a port of your choosing in your launching script :

srun -N 2 -n 2 bash -c 'watch -n1 rocm-smi | nc -l 0.0.0.0 56789’

• Access the information from the login node:

nc nid007974 56789

======================= ROCm System Management Interface =======================

================================= Concise Info =================================

GPU Temp AvgPwr SCLK MCLK Fan Perf PwrCap VRAM% GPU%

0 46.0c 92.0W 800Mhz 1600Mhz 0% manual 500.0W 0% 0%

1 52.0c N/A 800Mhz 1600Mhz 0% manual 0.0W 0% 0%

15

[Public]

LUMI AI WORKSHOP | NOV 26-27 2024 | PUBLIC

Monitoring activity with multiple nodes - profiling

• Profiling and logging can and (most of the time) should be target at specific ranks.

• Overhead

• Cluttered information

• Leverage the SLURM environment to tailor the application instantiation to activate profile or logging.

pcmd=''

if [$SLURM_PROCID -eq 2] then

pcmd='rocprof --hip-trace --stats’

fi
$pcmd ./myapp

• If profiling with more than one rank makes sure to define rank-specific output files to avoid corruption.

rocprof --hip-trace --stats -o myprofile-$SLURM_PROCID.csv ./myapp

16

[Public]

LUMI AI WORKSHOP | NOV 26-27 2024 | PUBLIC

Monitoring is your friend

• Why would I want to scale my model?

• Train faster – strong-scaling

• Train bigger – weak-scaling

• My model doesn’t fit in just a few GPUs

• How far can I go?

• Depends on your model

• Scaling can change the bottlenecks

• Scaling can change convergence

• Monitor the regime in which your

operating the GPUs at all times!

Well performing

single-node training

Scale to multiple

nodes

Batch size per GPU

decreases

Become I/O bound

Faster iterations

but more needed

for same accuracy

Network bound

◢ You’ll always be bound by some type of communication at some point!!!

17

[Public]

LUMI AI WORKSHOP | NOV 26-27 2024 | PUBLIC

Other ways to express parallelism - FSDP

• We talked mostly about Distribute Data Parallel (DDP) applications – there are others!

• Fully Sharded Data Parallel is another option.

• Create shards out of the neural net model more likely to be activated together

• Try keep less state in the GPU – could support larger models with less GPUs

• More complexities in configuring the different knobs. Depending on the tunning may require more or less changes
to your code.

• https://pytorch.org/blog/introducing-pytorch-fully-sharded-data-parallel-api/

• Using FSDP requires wrapping your model into the relevant FSDP object.

wrapper_kwargs = Dict(cpu_offload=CPUOffload(offload_params=True))

with enable_wrap(wrapper_cls=FullyShardedDataParallel, **wrapper_kwargs):

fsdp_model = wrap(model())

• Some tools to control the wrapping in less intrusive ways have been created - accelerate.
• Enabling FSDP on transformers: https://huggingface.co/docs/transformers

Your original model

https://pytorch.org/blog/introducing-pytorch-fully-sharded-data-parallel-api/
https://huggingface.co/docs/transformers

18

[Public]

LUMI AI WORKSHOP | NOV 26-27 2024 | PUBLIC

• Horovod is a framework to enable distributed deep-learning training with TensorFlow, Keras,

PyTorch, and Apache MXNet. The goal of Horovod is to make distributed deep learning fast

and easy to use.

Other ways to express parallelism - Horovod

Configure for ROCm
export HOROVOD_WITHOUT_MXNET=1
export HOROVOD_WITHOUT_GLOO=1
export HOROVOD_GPU=ROCM
export HOROVOD_ROCM_HOME=$ROCM_PATH
export HOROVOD_GPU_OPERATIONS=NCCL
export HOROVOD_CPU_OPERATIONS=MPI
export HOROVOD_WITH_MPI=1
export HOROVOD_ROCM_PATH=$ROCM_PATH
export HOROVOD_RCCL_HOME=$ROCM_PATH/rccl
export RCCL_INCLUDE_DIRS=$ROCM_PATH/rccl/include
export HOROVOD_RCCL_LIB=$ROCM_PATH/rccl/lib
export HCC_AMDGPU_TARGET=gfx90a
export CMAKE_PREFIX_PATH=$MPICH_PATH

Configure for TensorFlow
export HOROVOD_WITH_TENSORFLOW=1
export HOROVOD_WITHOUT_PYTORCH=1

Configure for PyTorch
export HOROVOD_WITHOUT_TENSORFLOW=1
export HOROVOD_WITH_PYTORCH=1

Install
pip install --no-cache-dir --force-reinstall --verbose horovod==$HOROVOD_VERSION

Step 1: configure ROCm details

Horovod needs MPI at launch

Step 2: configure for your

favorite framework details

Step 3: install

19

[Public]

LUMI AI WORKSHOP | NOV 26-27 2024 | PUBLIC

• DeepSpeed is a framework to optimize distributed deep-learning training and inference

Other ways to express parallelism - DeepSpeed

DS_BUILD_AIO=0 \
DS_BUILD_CCL_COMM=1 \
DS_BUILD_CPU_ADAM=0 \
DS_BUILD_CPU_LION=0 \
DS_BUILD_EVOFORMER_ATTN=0 \
DS_BUILD_FUSED_ADAM=1 \
DS_BUILD_FUSED_LION=1 \
DS_BUILD_CPU_ADAGRAD=0 \
DS_BUILD_FUSED_LAMB=1 \
DS_BUILD_QUANTIZER=0 \
DS_BUILD_RANDOM_LTD=0 \
DS_BUILD_SPARSE_ATTN=0 \
DS_BUILD_TRANSFORMER=0 \
DS_BUILD_TRANSFORMER_INFERENCE=0 \
DS_BUILD_STOCHASTIC_TRANSFORMER=1 \
pip install deepspeed==0.14.0 \
--global-option="build_ext" --global-option="-j32"

ds_report

Select all the optimizations

not all are enabled for

GPUs.

Allow multiple process builds.

Utility to report supported capabilities.

--
op name installed .. compatible
--
async_io [NO] [NO]
fused_adam [YES] [OKAY]
cpu_adam [NO] [OKAY]
cpu_adagrad [NO] [OKAY]
cpu_lion [NO] [OKAY]
evoformer_attn [NO] [NO]
fused_lamb [YES] [OKAY]
fused_lion [YES] [OKAY]
inference_core_ops [NO] [OKAY]
cutlass_ops [NO] [OKAY]
transformer_inference .. [NO] [OKAY]
quantizer [NO] [OKAY]
ragged_device_ops [NO] [OKAY]
ragged_ops [NO] [OKAY]
random_ltd [NO] [OKAY]
sparse_attn [NO] [NO]
spatial_inference [NO] [OKAY]
transformer [NO] [OKAY]
stochastic_transformer . [YES] [OKAY]
--

20

[Public]

LUMI AI WORKSHOP | NOV 26-27 2024 | PUBLIC

• Again wrapping your model in the relevant object is the way to go!

Other ways to express parallelism - DeepSpeed

import deepspeed

deepspeed.init_distributed()

model, optimizer, _, _ = deepspeed.initialize(
model = model,
optimizer = optimizer, #e.g. SGD
args = args,
dist_init_required=True

)

Original model

Original optimizers

21

[Public]

LUMI AI WORKSHOP | NOV 26-27 2024 | PUBLIC

Disclaimer and Attributions

©2024 Advanced Micro Devices, Inc. All rights reserved. AMD, the AMD Arrow logo, AMD Instinct, EPYC, Infinity Fabric, ROCm, and combinations thereof are trademarks of
Advanced Micro Devices, Inc. PCIe is a registered trademark of PCI-SIG Corporation. OpenCL is a registered trademark used under license by Khronos. The OpenMP name
and the OpenMP logo are registered trademarks of the OpenMP Architecture Review Board. TensorFlow, the TensorFlow logo and any related marks are trademarks of
Google Inc. PyTorch, the PyTorch logo and any related marks are trademarks of Facebook, Inc.

Other product names used in this publication are for identification purposes only and may be trademarks of their respective companies.

The information contained herein is for informational purposes only and is subject to change without notice. While every precaution has been taken
in the preparation of this document, it may contain technical inaccuracies, omissions and typographical errors, and AMD is under no obligation to
update or otherwise correct this information. Advanced Micro Devices, Inc. makes no representations or warranties with respect to the accuracy or
completeness of the contents of this document, and assumes no liability of any kind, including the implied warranties of noninfringement,
merchantability or fitness for particular purposes, with respect to the operation or use of AMD hardware, software or other products described
herein. No license, including implied or arising by estoppel, to any intellectual property rights is granted by this document. Terms and limitations
applicable to the purchase or use of AMD products are as set forth in a signed agreement between the parties or in AMD's Standard Terms and
Conditions of Sale. GD-18

22

[Public]

LUMI AI WORKSHOP | NOV 26-27 2024 | PUBLIC

	Slide 1: Extreme scale AI training on LUMI
	Slide 2: Controlling device visibility with multiple nodes
	Slide 3: Checking GPU-CPU affinity
	Slide 4: Testing affinity on multiple nodes
	Slide 5: Testing affinity on multiple nodes
	Slide 6: Checking GPU and NIC connection
	Slide 7
	Slide 8: Comms are important! - RCCL AWS-CXI plugin
	Slide 9: Configuring RCCL environment
	Slide 10: Configuring RCCL environment (cont.)
	Slide 11: MIOpen configuration
	Slide 12: Where’s the master???
	Slide 13: Putting it all together
	Slide 14: Monitoring activity with multiple nodes
	Slide 15: Monitoring activity with multiple nodes - profiling
	Slide 16: Monitoring is your friend
	Slide 17: Other ways to express parallelism - FSDP
	Slide 18
	Slide 19
	Slide 20
	Slide 21: Disclaimer and Attributions
	Slide 22

