
Scaling AI training
to multiple GPUs

Mats Sjöberg, Lukas Prediger – CSC – IT Center for Science, Finland

Training takes a long time and
I have a lot of data
 → data parallelism

Reasons to use multiple GPUs

My model is too big to fit
into one GPU
 → model parallelism

Using multiple GPUs

● Each node (computer) in
LUMI has 8 GPUs
(Actually 4 x MI250x, which is a dual
chip card = 8 GCDs)

● For each GPU you use
1-7 CPU cores for data
loading and pre-processing

Using multiple GPUs

● Not automatic: your code needs to support multiple GPUs
● Frameworks like Hugging Face, Lightning or Accelerate

may auto-detect multiple GPUs (with the right options)
● For pure PyTorch code, there are many options depending

on the scenario:
– DistributedDataParallel (DDP)
– Hybrid approaches for models too big for a single GPU:

● Fully-sharded Data Parallel (FSDP)
● DeepSpeed

● Use --gpus-per-node=N where N=2,…,8
(--gpus-per-task option not currently recommended due to bug in Slurm)

● Allocate a maximum of 1/8 of resources per GPU:

– 60 GB CPU memory and 7 CPU cores per GPU

– Full node: 480 GB and 56 cores
(leaving some ”slack” for the system)

– Note: you always get the full GPU memory of 64 GB per GCD
(no need to allocate that with Slurm options)

– Resources billed in GPUh according to 1/8 slice

Multi-GPU resource allocation on LUMI

● Torchrun can handle launching the
processes. Launch single torchrun:
--tasks-per-node=1

● Without torchrun, use Slurm tasks:
--tasks-per-node=8

● Each process should know which
GPU to use, e.g.

 gpu_id = int(os.environ["LOCAL_RANK"])
 device = torch.device("cuda", gpu_id)

One Python CPU control process per GPU

Python,
CPU process 0

GPU 0

GPU 1

GPU 2

Python,
CPU process 1

Python,
CPU process 2

● First process is the ”master” and
the others connect back to it

● Torchrun can handle this
automatically:
torchrun --standalone ...

● Without torchrun you need to set
up environment variables:

MASTER_ADDR=$(hostname)
MASTER_PORT=25900
WORLD_SIZE=$SLURM_NPROCS
RANK=$SLURM_PROCID

– Note: rank needs to be set differently for
each process, see exercise for example

Set up communication between processes

Python,
CPU process 0

GPU 0

GPU 1

GPU 2

Python,
CPU process 1

Python,
CPU process 2

Example: 2 GPUs with torchrun

#!/bin/bash
#SBATCH --account=project_123456
#SBATCH --partition=small-g
#SBATCH --gpus-per-node=2
#SBATCH --ntasks-per-node=1
#SBATCH --cpus-per-task=14
#SBATCH --mem=120G
#SBATCH --time=1:00:00
< module loading part as before – removed for readability>

srun singularity exec $CONTAINER \
 torchrun --standalone \
 --nnodes=1 \
 --nproc-per-node=${SLURM_GPUS_PER_NODE} \
 my_python_script.py

Remember rule-of-thumb:
● 1 GPU = 1/8 of node

● Use also ≤ 1/8 of CPU
cores and memory

per GPU

torchrun will take care
of launching one
process per GPU

Example: 8 GPUs with torchrun

#!/bin/bash
#SBATCH --account=project_123456
#SBATCH --partition=standard-g
#SBATCH --gpus-per-node=8
#SBATCH --ntasks-per-node=1
#SBATCH --cpus-per-task=56
#SBATCH --mem=480G
#SBATCH --time=1:00:00
< module loading part as before – removed for readability>

srun singularity exec $CONTAINER \
 torchrun --standalone \
 --nnodes=1 \
 --nproc-per-node=${SLURM_GPUS_PER_NODE} \
 my_python_script.py

Full node = we can also use
standard-g

Example: 8 GPUs without torchrun

#!/bin/bash
#SBATCH --account=project_123456
#SBATCH --partition=standard-g
#SBATCH --gpus-per-node=8
#SBATCH --ntasks-per-node=8
#SBATCH --cpus-per-task=7
#SBATCH --mem=480G
#SBATCH --time=1:00:00
< module loading part as before – removed for readability>

export MASTER_ADDR=$(scontrol show hostname ${SLURM_NODELIST} | head -n 1)
export MASTER_PORT=24500
export WORLD_SIZE=$SLURM_NPROCS

srun bash -c "RANK=\$SLURM_PROCID LOCAL_RANK=\$SLURM_LOCALID singularity exec ..."

How many processes are there?

Where to connect to?

Which process am I?

We use Slurm tasks to
launch 8 Python processes

Do we need to change the Python code?

● For plain PyTorch: yes, use DistributedDataParallel (DDP)
● For higher level frameworks, mostly no:

– transformers.Trainer is automatically set up for distributed
training when WORLD_SIZE & RANK environment variables are set

– Similar for other high-level frameworks like PyTorch Lightning or
Accelerate

● BUT: Pay attention to global batch size vs per device batch size!
– Example: global batch size = 32 for one GPU,

split over 8 GPUs, per-device batch size is 4
● Cosmetic: You might want to print some things only on rank 0

PyTorch DistributedDataParallel (DDP)

1) Initialize PyTorch distributed:

torch.distributed.init_process_group(backend='nccl')

2) Wrap your model:

model = torch.nn.parallel.DistributedDataParallel(model, …)

3) Use the distributed sampler:

train_dataset = ...
train_sampler = DistributedSampler(train_dataset)
train_loader = DataLoader(dataset=train_dataset,
 shuffle=False,
 sampler=train_sampler)

Check that you are actually using all GPUs!

$ srun --interactive --pty --jobid=123456 watch rocm-smi
Check GPU utilization

● Utilization should be > 0% for all requested GPUs
● Note: showing high utilization is a necessary but not

sufficient condition for it actually doing something
useful!
– More about profiling in the next lecture!

● Use RCCL and libfabric for efficient communication
– AWS OFI RCCL plugin for containers!

● Add fault tolerance when possible, especially for huge jobs
– Checkpointing!

● (Optionally) bind the processes to optimal CPU cores
– Improves CPU-GPU I/O, might speed up cases with high I/O

● Issues with multi-worker data loaders segfaulting:

if __name__ == __main__:
 multiprocessing.set_start_method("spawn")

Multi-GPU tips & tricks

GPU and CPU Bindings

https://docs.lumi-supercomputer.eu/runjobs/scheduled-jobs/distribution-binding/#gpu-binding

Example: GCD 4:
psutil.Process().cpu_affinity([1,2,3,4,5,6,7])

Why do we skip
CPU 0?

Because in LUMI the
first core in each
NUMA is reserved

https://docs.lumi-supercomputer.eu/runjobs/scheduled-jobs/distribution-binding/#gpu-binding

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15

