
Running
containers on LUMI

Christian Schou Oxvig, updates by JV – LUMI User Support Team

Containers – bring your own user space

• When running containers, the kernel, drivers and hardware
is still provided by the host (LUMI) - but the user space
(directory tree) changes

• Benefits of using containers:
o Enhanced reproducibility: A fixed (read-only) user space for

each computational experiment
o Have a fully self-contained software environment
o Pin all versions of the software packages used
o Version control software environments

o Enhanced portability: Run your container on other systems – as
long as the system libraries are compatible

o Makes the same environment work on all compute platforms – from
laptop to supercomputer

o Makes it easier to share your software environment with others –
just share the container

o Easily test and trash: Try a new container – if it doesn't work
just trash the container and start over again

o Bonus: Your software environment is a single file (the container)
on the Lustre shared filesystems, which is much less stressful to
Lustre and more performant, making for a much nicer experience
for everyone on LUMI.

These are

generally

NOT the same

Running containers on LUMI

3

• On LUMI, you can run Singularity/Apptainer containers
o Singularity/Apptainer are HPC container runtimes that allow you to run unprivileged containers, i.e.

no need for root or sudo
o Singularity/Apptainer is not Docker, but if you have an existing Docker container, you can run it

using Singularity/Apptainer

• Main singularity commands:
o Getting (pulling) a container from a container registry
 singularity pull my_container.sif docker://ubuntu:22.04

o Opening a shell inside the container
 singularity shell my_container.sif

o Executing a command inside the container
 singularity exec my_container.sif python3 my_script.py

• Running containers on compute nodes
o Launch computation using srun
 srun <options> singularity exec my_container.sif python3 my_script.py

• When running a container on LUMI, where
is /project, /scratch, etc.?

• You may "inject" parts of the host (LUMI) file
system into the container by bind mounting it
singularity exec
--bind /project/<project_ID>  
my_containr.sif tree –L 1 /

4

Bind mounting parts of the host file system (1)

You typically want to bind mount your project folders
(/project, /scratch, /flash). A shortcut is:
module use /project/project_465001363/modules/AI-20241126
module load singularity-userfilesystems

o You may need to bind mount some of the host
libraries to fully exploit the hardware

o On LUMI you need this to get optimal performance
when using the Slingshot 11 interconnect

o WARNING: Be careful when bind mounting libraries
from the host system. You can easily end up in a
broken state if mixing the container libraries with
host libraries.

5

Bind mounting parts of the host file system (2)

Official LUMI containers available on LUMI
 under /appl/local/containers/sif-images :

• Application images:
o JAX
o mpi4py
o PyTorch
o Tensorflow + Horovod

• Base images:
o Lumi-rocm-rocm-X.Y.Z.sif: ROCm + aws-ofi-rccl + MI250X

(gfx90a) MIOpen kernels + rccltest

• Remember to copy these to your project folder
o We may remove/replace the container under

/appl/local/containers/sif-image at any time!
o If you like EasyBuild and modules, we also provide a set

of easyconfigs to "install" the containers.

6

The LUMI (FakeCPE) containers (1)

The LUMI (FakeCPE) containers (2)

7

• These LUMI containers are built against the Cray Programming Environment (CPE)
However, the CPE is NOT included in the container due to license restrictions

• To fully utilize the Slingshot 11 interconnect with these containers, you need to bind
mount parts of the CPE when running the container
  singularity exec --bind /var/spool/slurmd,/opt/cray,/usr/lib64/libcxi.so.1,
   /usr/lib64/libjansson.so.4 <program>
o For the containers making use of MPI (mpi4py and Horovod), this is required
o For all other containers it is optional. If you don't include it, RCCL internode communication

falls back to using slower TCP/IP sockets
Shortcut to getting the binds right:
module use /project/project_465001363/modules/AI-20241126
module load singularity-CPEbits

• For the LUMI application containers, you need to run $WITH_CONDA in the
container to activate the conda environment in which the application, e.g. PyTorch,
is installed

Further reading

8

• LUMI Docs running containers page:
https://docs.lumi-supercomputer.eu/runjobs/scheduled-jobs/container-jobs/

• LUMI (EasyBuild) Software Library:
https://lumi-supercomputer.github.io/LUMI-EasyBuild-docs/

https://docs.lumi-supercomputer.eu/runjobs/scheduled-jobs/container-jobs/
https://lumi-supercomputer.github.io/LUMI-EasyBuild-docs/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8

