
Loading Training 

data on LUMI

Harvey Richardson, HPE
LUM AI Course, May 29-30 2024, Copenhagen



Agenda

• Storage on LUMI

• Lustre Filesystems

• LUMI-O

• Data access considerations



Storage on LUMI

• Parallel Lustre Filesystems (LUMI-P and LUMI-F)

• Object Storage (LUMI-O)

• /tmp (but need to have sufficient job memory request)

quota Max-files expandable Backup retention

User home 20GB 100k No No User lifetime

Project persistent 50GB 100k to 500GB No Project lifetime

Project scratch 50TB 2000k To 500TB No Project lifetime

Project fast (flash) 2TB 1000k To 100TB No Project lifetime

quota Max 
buckets

Max 
objects-per-bucket

Backup retention

Object Storage 150TB 1000 500000 No Project lifetime



Storage on LUMI: filesystems

LUMI-P/LUMI-F access

Run lumi-workspaces to see your specific locations

Path Intended use Hardware 
Partition

User home /users/<username> User home directory for
personal and configuration files

LUMI-P

Project persistent /project/<project> Project home directory for
shared project files

LUMI-P

Project scratch /scratch/<project> Temporary storage for
input, output or checkpoint data

LUMI-P

Project flash /flash/<project> High performance temporary
storage for input and output data

LUMI-F



Lustre

• Lustre is an open source parallel filesystem designed to support 
leadership class HPC systems

• Comprised of software subsystems, storage and associated network
• Metadata servers (MDSs) providing metadata targets (MDTs) which store 

filesystem namespace information (directories, filenames, permissions etc.)

• Object Storage Servers (OSSs) providing Object Storage Targets (OSTs) each 
hosting a local filesystem

• Lustre clients (login nodes, compute nodes) access the global filesystem

• All clients see a unified namespace and the filesystem supports POSIX 
semantics providing concurrent coherent access to files.



Lustre components

One or 
more



File decomposition – 2MB stripes



Controlling striping with lfs setstripe

Sets the stripe for a file or a directory

lfs setstripe <--stripe-size |-S size> 
      <--stripe-count|-c count> <file|dir> 

size:  Number of bytes on each OST (0 filesystem default)
count: Number of OSTs to stripe over (0 default, -1 all)

Comments
Striping policy is set when the file is created. It is not possible to change it afterwards.
Can use lfs to create an empty file with the stripes you want (like the touch command) 
Can apply striping settings to a directory, 



Advice for striping settings

• Selecting the striping values will have a large impact on the I/O 
performance of your application

• Rules of thumb: Try to use all OSTs 
• # files > # OSTs => Set stripe_count=1

You will reduce the lustre contention and OST file locking this way 
and gain performance

• #files==1 => Set stripe_count=#OSTs or a number where your 
performance plateaus
Assuming you have more than 1 I/O client

• #files<#OSTs => Select stripe_count  so that you use all OSTs
Example : You have 8 OSTs and write 4 files at the same time, then 
select stripe_count=2

• Always allow the system to choose OSTs at random!



Lustre considerations

• Lustre was designed for high performance streaming I/O for large 
amounts of data

• It will struggle with some usage patterns such as
• Directories with huge number of files (reduce number, organize by client)

• Small data transfers

• Python environments can be a challenge for Lustre, particularly if started 
in parallel on many nodes
• Containerise them (LUMI tools can be used to help with this)

• Possibly move into /tmp and run from there



LUMI-O Object Storage

• Provides 30PB of storage for storing, sharing and staging data

• Supports private and public access

• Storage is object-based, you store objects in buckets you allocate…
• Buckets: Containers used to store one or more objects. Object storage uses a flat 

structure with only one level which means that buckets cannot contain other 
buckets.

• Objects: Any type of data. An object is stored in a bucket.

• Metadata: Both buckets and objects have metadata specific to them. The 
metadata of a bucket specifies e.g., the access rights to the bucket. While 
traditional file systems have fixed metadata (filename, creation date, type, etc.), 
an object storage allows you to add custom metadata.



Accessing LUMI-O

• Make commands available
 module load lumio

• To configure a connection to LUMI-O run
 lumio-conf

• Above command instructs you to go to https://auth.lumidata.eu/

• Follow instructions at: https://docs.lumi-
supercomputer.eu/storage/lumio/auth-lumidata-eu/
• Enter generated key into lumio-conf, it creates setup for rclone

• Templates can be generated for shell, boto3, rclone, s3cmd, aws

• Keys have a lifetime so duration needs to outlast the workflow
• For example move data from LUMI-O to scratch for job

https://auth.lumidata.eu/
https://docs.lumi-supercomputer.eu/storage/lumio/auth-lumidata-eu/
https://docs.lumi-supercomputer.eu/storage/lumio/auth-lumidata-eu/


Accessing LUMI-O

• rclone and s3cmd can perform basic operations

Action rclone comand s3cmd command

List buckets rclone lsd lumi-o: s3cmd ls s3:

Create bucket mybuck rclone mkdir lumi-o:mybuck s3cmd mb s3://mybuck

List objects in bucket mybuck rclone ls lumi-o:mybuck/ s3cmd ls --recursive 
s3://mybuck

Upload file file1 to bucket mybuck rclone copy file1 lumi-o:mybuck/ s3cmd put file1 s3://mybuck

Download file file1 from bucket 
mybuck

rclone copy lumi-o:mybuck/file1 . s3cmd get s3://mybuck/file1 .

• rclone and s3cmd can perform more complex operations (see manpages)



Endpoints for rclone and URL access

• lumi-o: The private endpoint. The buckets and objects uploaded to this 
endpoint will not be publicly accessible.

• lumi-pub: The public endpoint. 
The buckets and objects uploaded to this endpoint will publicly 
accessible using the URL:

https://<project-number>.lumidata.eu/<bucket_name>`

• Be careful to not upload data that cannot be public to lumi-pub



API access to LUMI-O

• LUMI-O can also be accessed via APIs such as boto3
• For example to list buckets in project 465000001

import boto3

session = 
   boto3.session.Session(profile_name='lumi-465000001')

s3_client = session.client('s3')

buckets=s3_client.list_buckets()

S3 client docs

https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/s3.html


Workflows

• As noted, LUMI has various filesystems and provides LUMI-O

• Most likely you will load data from the filesystems

• There are many APIs provided by languages, language modules and 
frameworks that you can use…



Considerations for data access

• ‘Containerise’ files in higher level formats (HDF5) — particularly for array-
based data or images

• Use compressed file/image formats to save most on storage

• Use compact binary data formats

• User appropriate formats and loaders
•  csv, feather, parquet, jay, pickle; pandas, dask, datatables, rapids

• Explore image loading libraries 
• (Python Imaging Library (PIL), pyspng, PyTurboJPEG

• Perhaps cache files in memory 

https://pillow.readthedocs.io/en/stable/
https://github.com/nurpax/pyspng
https://github.com/lilohuang/PyTurboJPEG


More Information…

• LUMI-O https://docs.lumi-supercomputer.eu/storage/lumio/

• Generic Tutorial on reading large datasets:
https://www.kaggle.com/code/rohanrao/tutorial-on-reading-large-
datasets

• Best Practice for Data Formats in Deep Learning (SURF)
https://servicedesk.surf.nl/wiki/display/WIKI/Best+Practice+for+Data+For
mats+in+Deep+Learning

• Ray data loading: https://docs.ray.io/en/latest/train/user-guides/data-
loading-preprocessing.html

• Pytorch Tutorial on pre-defined datasets/dataloaders: 
https://pytorch.org/tutorials/beginner/basics/data_tutorial.html

• Example of keeping training data in memory: “Scaling Out Deep Learning 
Convergence Training on LUM”, Diana Moise & Samuel Antao, PDF

https://docs.lumi-supercomputer.eu/storage/lumio/
https://www.kaggle.com/code/rohanrao/tutorial-on-reading-large-datasets
https://www.kaggle.com/code/rohanrao/tutorial-on-reading-large-datasets
https://servicedesk.surf.nl/wiki/display/WIKI/Best+Practice+for+Data+Formats+in+Deep+Learning
https://servicedesk.surf.nl/wiki/display/WIKI/Best+Practice+for+Data+Formats+in+Deep+Learning
https://docs.ray.io/en/latest/train/user-guides/data-loading-preprocessing.html
https://docs.ray.io/en/latest/train/user-guides/data-loading-preprocessing.html
https://pytorch.org/tutorials/beginner/basics/data_tutorial.html
https://linklings.s3.amazonaws.com/organizations/pasc/pasc23/submissions/stype119/jvCyu-msa152s2.pdf

	Slide 1: Loading Training data on LUMI
	Slide 2: Agenda
	Slide 3: Storage on LUMI
	Slide 4: Storage on LUMI: filesystems
	Slide 5: Lustre
	Slide 6: Lustre components
	Slide 7: File decomposition – 2MB stripes
	Slide 8: Controlling striping with lfs setstripe
	Slide 9: Advice for striping settings
	Slide 10: Lustre considerations
	Slide 11: LUMI-O Object Storage
	Slide 12: Accessing LUMI-O
	Slide 13: Accessing LUMI-O
	Slide 14: Endpoints for rclone and URL access
	Slide 15: API access to LUMI-O
	Slide 16: Workflows
	Slide 17: Considerations for data access
	Slide 18: More Information…

