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What are hyper-parameters?

Source: www.slideshare.net/slideshow/cutting-edge-hyperparameter-tuning-made-simple-with-ray-tune/250862262



Hyper-parameter optimization (HPO) is expensive

 HPO is the trail and error process of finding the optimal set of hyper-parameters for a 
machine learning task

 Search space is typically non-liniar, convex and high-dimensional

 Every evaluation / trial involves model training 



Ray tune makes HPO easier

Source: speakerdeck.com/richardliaw/a-modern-guide-to-hyperparameter-optimization?slide=23



Ray tune provides wide range of HPO algorithms

Source: www.slideshare.net/slideshow/cutting-edge-hyperparameter-tuning-made-simple-with-ray-tune/250862262

More advanced algorithms included for Bayesian optimization, early stopping (HyperBand, 
ASHA), Population-based training, etc.



Ray framework

Source: docs.ray.io/en/latest/ray-overview/index.html

Ray consists of three layers:

1) Ray AI Libraries: high-level libraries that enable 
simple scaling of AI workloads

2) Ray Core: a low-level distributed computing 
framework with a concise core and Python-first API

3) Ray Cluster: A set of worker nodes connected to a 
common Ray head node



Installing / Using Ray on LUMI

Multiple options available: 

 Use existing container that has Ray included:

CONTAINER=/scratch/project_465001063/containers/
pytorch_transformers.sif

 Add ray-tune to conda environment file and create a container with cotainr (see lecture 
Converting your conda/pip AI environment to a container using cotainr)

 Extend existing container via a virtual environment and install Ray (see lecture Extending 
containers with virtual environments for faster testing):

conda install -c conda-forge "ray-tune" / pip install ray[tune]



Key Concepts of Ray Tune



Tune Search Spaces

Tune offers various functions to define search spaces and sampling methods.

config = {
    "uniform": tune.uniform(-5, -1),  # Uniform float between -5 and -1
    "quniform": tune.quniform(3.2, 5.4, 0.2),  # Round to multiples of 0.2
    "loguniform": tune.loguniform(1e-4, 1e-1),  # Uniform float in log space
    "qloguniform": tune.qloguniform(1e-4, 1e-1, 5e-5),  # Round to multiples of 0.00005
    "randn": tune.randn(10, 2),  # Normal distribution with mean 10 and sd 2
    "qrandn": tune.qrandn(10, 2, 0.2),  # Round to multiples of 0.2
    "randint": tune.randint(-9, 15),  # Random integer between -9 and 15
    "qrandint": tune.qrandint(-21, 12, 3),  # Round to multiples of 3 (includes 12)
    "lograndint": tune.lograndint(1, 10),  # Random integer in log space
    "qlograndint": tune.qlograndint(1, 10, 2),  # Round to multiples of 2
    "choice": tune.choice(["a", "b", "c"]),  # Choose one of these options uniformly
    "func": tune.sample_from(
        lambda spec: spec.config.uniform * 0.01
    ),  # Depends on other value
    "grid": tune.grid_search([32, 64, 128]),  # Search over all these values
}



Trainables

Create a function (trainable) that takes in a dictionary of hyper-parameters. This function 
computes a score and reports it back to Tune.

from ray import train

def objective(x, a, b):  # Define an objective function.
    return a * (x**0.5) + b

def trainable(config):  # Pass a "config" dictionary into your trainable.

    for x in range(20):  # "Train" for 20 iterations and compute intermediate scores.
        score = objective(x, config["a"], config["b"])

        train.report({"score": score})  # Send the score to Tune.



Tune Trials

To execute and manage hyper-parameter tuning, generate trials with tuner.fit().

space = {"a": tune.uniform(0, 1), "b": tune.uniform(0, 1)}

tuner = tune.Tuner(
    trainable, param_space=space, tune_config=tune.TuneConfig(num_samples=10)
)

tuner.fit()



Example: perform HPO for pt-imdb-model

We perform hyper-parameter tuning for the learning rate for the pt-imdb-model from lecture 
“Your first AI training job on LUMI”

The goal is to test different learning rates utilizing all GPUs on one LUMI-G node simultaneously

Find code and instructions at: 
github.com/Lumi-supercomputer/Getting_Started_with_AI_workshop/tree/
main/09_Hyper-parameter_tuning_using_Ray_on_LUMI



Define trainable for pt-imdb-model

def model_training(config):

    args = config["args"]
    learning_rate = config["learning_rate"]

    ...
    # train pt-imdb-model
    ...
    
    trainer.train(resume_from_checkpoint=args.resume)

    # report results back to ray
    eval_results = trainer.evaluate()
    train.report(
        dict(
            loss=eval_results["eval_loss"],
            perplexity=math.exp(eval_results["eval_loss"]),
        )
    )
 



Initialize Ray with correct resources

   Slurm parameters are not automatically passed on to Ray

    
    # We need to manually set the number of CPUs and GPUs. 
    # Othewise, ray tries to use the whole node and crashes.

    ray.init(num_cpus=, num_gpus=, log_to_driver=False)



Start tuning process

    # Create a Tuner object
    tuner = Tuner(
        tune.with_resources(
            model_training, resources={"cpu": , "gpu": }  # Set resources for every trial run
        ),
        param_space=config,
        tune_config=tune.TuneConfig(
            num_samples=8,  # Number of samples
            metric="perplexity",  # Metric to optimize
            mode="min",  # Minimize the metric
        ),

    )

    # Run the tuning process
    results = tuner.fit()



Desired output



Outlook: running Ray on multiple nodes on LUMI

 SLURM support for RAY is community-maintained and still a work in progress

 Requires manual setup of Ray head node and worker nodes

 Guide on documentation: 
docs.ray.io/en/latest/cluster/vms/user-guides/community/slurm.html

 Please contact us if you would like more LUMI-specific guides on Ray-related topics
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