
Hyper-parameter tuning
using Ray on LUMI

Gregor Decristoforo – LUMI User Support Team
Norwegian research infrastructure services (NRIS) – UiT, Norway

What are hyper-parameters?

Source: www.slideshare.net/slideshow/cutting-edge-hyperparameter-tuning-made-simple-with-ray-tune/250862262

Hyper-parameter optimization (HPO) is expensive

 HPO is the trail and error process of finding the optimal set of hyper-parameters for a
machine learning task

 Search space is typically non-liniar, convex and high-dimensional

 Every evaluation / trial involves model training

Ray tune makes HPO easier

Source: speakerdeck.com/richardliaw/a-modern-guide-to-hyperparameter-optimization?slide=23

Ray tune provides wide range of HPO algorithms

Source: www.slideshare.net/slideshow/cutting-edge-hyperparameter-tuning-made-simple-with-ray-tune/250862262

More advanced algorithms included for Bayesian optimization, early stopping (HyperBand,
ASHA), Population-based training, etc.

Ray framework

Source: docs.ray.io/en/latest/ray-overview/index.html

Ray consists of three layers:

1) Ray AI Libraries: high-level libraries that enable
simple scaling of AI workloads

2) Ray Core: a low-level distributed computing
framework with a concise core and Python-first API

3) Ray Cluster: A set of worker nodes connected to a
common Ray head node

Installing / Using Ray on LUMI

Multiple options available:

 Use existing container that has Ray included:

CONTAINER=/scratch/project_465001063/containers/
pytorch_transformers.sif

 Add ray-tune to conda environment file and create a container with cotainr (see lecture
Converting your conda/pip AI environment to a container using cotainr)

 Extend existing container via a virtual environment and install Ray (see lecture Extending
containers with virtual environments for faster testing):

conda install -c conda-forge "ray-tune" / pip install ray[tune]

Key Concepts of Ray Tune

Tune Search Spaces

Tune offers various functions to define search spaces and sampling methods.

config = {
 "uniform": tune.uniform(-5, -1), # Uniform float between -5 and -1
 "quniform": tune.quniform(3.2, 5.4, 0.2), # Round to multiples of 0.2
 "loguniform": tune.loguniform(1e-4, 1e-1), # Uniform float in log space
 "qloguniform": tune.qloguniform(1e-4, 1e-1, 5e-5), # Round to multiples of 0.00005
 "randn": tune.randn(10, 2), # Normal distribution with mean 10 and sd 2
 "qrandn": tune.qrandn(10, 2, 0.2), # Round to multiples of 0.2
 "randint": tune.randint(-9, 15), # Random integer between -9 and 15
 "qrandint": tune.qrandint(-21, 12, 3), # Round to multiples of 3 (includes 12)
 "lograndint": tune.lograndint(1, 10), # Random integer in log space
 "qlograndint": tune.qlograndint(1, 10, 2), # Round to multiples of 2
 "choice": tune.choice(["a", "b", "c"]), # Choose one of these options uniformly
 "func": tune.sample_from(
 lambda spec: spec.config.uniform * 0.01
), # Depends on other value
 "grid": tune.grid_search([32, 64, 128]), # Search over all these values
}

Trainables

Create a function (trainable) that takes in a dictionary of hyper-parameters. This function
computes a score and reports it back to Tune.

from ray import train

def objective(x, a, b): # Define an objective function.
 return a * (x**0.5) + b

def trainable(config): # Pass a "config" dictionary into your trainable.

 for x in range(20): # "Train" for 20 iterations and compute intermediate scores.
 score = objective(x, config["a"], config["b"])

 train.report({"score": score}) # Send the score to Tune.

Tune Trials

To execute and manage hyper-parameter tuning, generate trials with tuner.fit().

space = {"a": tune.uniform(0, 1), "b": tune.uniform(0, 1)}

tuner = tune.Tuner(
 trainable, param_space=space, tune_config=tune.TuneConfig(num_samples=10)
)

tuner.fit()

Example: perform HPO for pt-imdb-model

We perform hyper-parameter tuning for the learning rate for the pt-imdb-model from lecture
“Your first AI training job on LUMI”

The goal is to test different learning rates utilizing all GPUs on one LUMI-G node simultaneously

Find code and instructions at:
github.com/Lumi-supercomputer/Getting_Started_with_AI_workshop/tree/
main/09_Hyper-parameter_tuning_using_Ray_on_LUMI

Define trainable for pt-imdb-model

def model_training(config):

 args = config["args"]
 learning_rate = config["learning_rate"]

 ...
 # train pt-imdb-model
 ...

 trainer.train(resume_from_checkpoint=args.resume)

 # report results back to ray
 eval_results = trainer.evaluate()
 train.report(
 dict(
 loss=eval_results["eval_loss"],
 perplexity=math.exp(eval_results["eval_loss"]),
)
)

Initialize Ray with correct resources

 Slurm parameters are not automatically passed on to Ray

 # We need to manually set the number of CPUs and GPUs.
 # Othewise, ray tries to use the whole node and crashes.

 ray.init(num_cpus=, num_gpus=, log_to_driver=False)

Start tuning process

 # Create a Tuner object
 tuner = Tuner(
 tune.with_resources(
 model_training, resources={"cpu": , "gpu": } # Set resources for every trial run
),
 param_space=config,
 tune_config=tune.TuneConfig(
 num_samples=8, # Number of samples
 metric="perplexity", # Metric to optimize
 mode="min", # Minimize the metric
),

)

 # Run the tuning process
 results = tuner.fit()

Desired output

Outlook: running Ray on multiple nodes on LUMI

 SLURM support for RAY is community-maintained and still a work in progress

 Requires manual setup of Ray head node and worker nodes

 Guide on documentation:
docs.ray.io/en/latest/cluster/vms/user-guides/community/slurm.html

 Please contact us if you would like more LUMI-specific guides on Ray-related topics

	Hyper-parameter tuning using Ray on LUMI
	What are hyper-parameters?
	Hyper-parameter optimization (HPO) is expensive
	Ray tune makes HPO easier
	Ray tune provides wide range of HPO algorithms
	Ray framework
	Installing / Using Ray on LUMI
	Key Concepts of Ray Tune
	Tune Search Spaces
	Trainables
	Tune Trials
	Example: perform HPO for pt-imdb-model
	Define trainable for pt-imdb-model
	Initialize Ray with correct resources
	Start tuning process
	Desired output
	Outlook: running Ray on multiple nodes on LUMI

