
Scaling AI training
to multiple GPUs

Mats Sjöberg, Lukas Prediger – CSC – IT Center for Science, Finland

Using multiple GPUs
● Not automatic: your code needs to support

multiple GPUs
– Frameworks like Hugging Face, PyTorch

Lightning or accelerate may auto-detect
multiple GPUs (with the right options)

– For pure PyTorch code use
DistributedDataParallel (DDP)

● Pick a distributed training strategy
– If your model fits into the GPU memory =

data parallel = PyTorch DDP
– If your model > GPU memory (64 GB on

LUMI) look into model and pipeline
parallelism (see FSDP, DeepSpeed and
others)

● Use --gpus-per-node rather than –gpus-per-task
– Due to bug in Slurm, fix coming...

● Rule-of-thumb, allocate ~1/8 of resources per GCD:

– 60 GB RAM and 7 CPU cores per GPU

– Full node: 480 GB and 56 cores (leaving some ”slack”
for the system)

Multi-GPU resource allocation on LUMI

● All approaches use one Python process per GCD:
– Can be done with Slurm (--tasks-per-node=8)
– Tools like torchrun can handle launching the processes – use

Slurm only to launch a single task (--tasks-per-node=1)
– Each process should know which GPU to use, via

$ROCR_VISIBLE_DEVICES=$SLURM_LOCALID or
$LOCAL_RANK

● In PyTorch:

local_rank = int(os.environ["LOCAL_RANK"])
device = torch.device("cuda", local_rank)

Multi-GPU resource allocation on LUMI

● Setting up communication between the processes (e.g., setting
$MASTER_ADDR or --rdzv-endpoint)
– Also remember RCCL and libfabric for efficient communication

● Add fault tolerance when possible, especially for huge jobs
– Checkpointing!

● (Optionally) bind the processes to optimal CPU cores
– Improves CPU-GPU I/O, might speed up cases with high I/O

● Issues with multi-worker data loaders segfaulting:

if __name__ == __main__:
 multiprocessing.set_start_method("spawn")

Multi-GPU communication and tips

Training on two GCDs on a single node

#!/bin/bash
#SBATCH --account=project_123456
#SBATCH --partition=small-g
#SBATCH --gpus-per-node=2
#SBATCH --ntasks-per-node=1
#SBATCH --cpus-per-task=14
#SBATCH --mem=120G
#SBATCH --time=1:00:00
< module loading part as before – removed for readability>

srun singularity exec $CONTAINER \
 torchrun --standalone \
 --nnodes=1 \
 --nproc-per-node=${SLURM_GPUS_PER_NODE} \
 my_python_script.py

SLURM multi-GPU batch script (2 GPUs)

Remember rule-of-thumb:
● 1 GPU = 1/8 of node

● Use also ≤ 1/8 of CPU
cores and memory

per GPU

torchrun will take care
of launching one
process per GPU

Training on all GCDs on a single node

#!/bin/bash
#SBATCH --account=project_123456
#SBATCH --partition=standard-g
#SBATCH --gpus-per-node=8
#SBATCH --ntasks-per-node=1
#SBATCH --cpus-per-task=56
#SBATCH --mem=480G
#SBATCH --time=1:00:00
< module loading part as before – removed for readability>

srun singularity exec $CONTAINER \
 torchrun --standalone \
 --nnodes=1 \
 --nproc-per-node=${SLURM_GPUS_PER_NODE} \
 my_python_script.py

SLURM multi-GPU batch script (all 8 GPUs)

● Full node = we can also
use standard-g

Training on all GCDs on a single node without torchrun

#!/bin/bash
#SBATCH --account=project_123456
#SBATCH --partition=standard-g
#SBATCH --gpus-per-node=8
#SBATCH --ntasks-per-node=8
#SBATCH --cpus-per-task=7
#SBATCH --mem=480G
#SBATCH --time=1:00:00
< module loading part as before – removed for readability>

export MASTER_ADDR=$(scontrol show hostname ${SLURM_NODELIST} | head -n 1)
export MASTER_PORT=24500
export WORLD_SIZE=$SLURM_NPROCS

srun bash -c "RANK=\$SLURM_PROCID LOCAL_RANK=\$SLURM_LOCALID singularity exec ..."

SLURM multi-GPU batch script (all 8 GPUs, no torchrun)

How many processes are there?

Where to connect to?

Which process am I?

Do we need to change the code?

● For plain PyTorch: yes, use DistributedDataParallel (DDP)
● For higher level frameworks, mostly no:

– transformers.Trainer is automatically set up for distributed
training when WORLD_SIZE & RANK environment variables are
set

– Similar for other high-level frameworks like PyTorch Lightning or
accelerate

● BUT: Pay attention to global batch size vs per device batch size!
– Example: global batch size = 32 for one GPU,

split over 8 GPUs, per-device batch size is 4
● Cosmetic: You might want to print some things only on rank 0

PyTorch DistributedDataParallel (DDP)

● Recommended for pure (“low-level”) PyTorch
● Data parallel

– Model is duplicated on many GPUs
– Data is distributed, and gradient updates aggregated

● PyTorch DDP supports both single- and multi-node runs
● Launch with torchrun
● Uses a dedicated Python process for each GPU
● (Not to be confused with PyTorch DataParallel (DP) which uses

multi-threading – not recommended to use)

Tutorial with LUMI examples:
https://docs.csc.fi/support/tutorials/ml-multi/#pytorch-ddp

PyTorch DistributedDataParallel (DDP)

PyTorch DDP code changes
torch.distributed.init_process_group(backend='nccl')
…
model = torch.nn.parallel.DistributedDataParallel(model, …)
…
train_dataset = …
train_sampler = DistributedSampler(train_dataset)
train_loader = DataLoader(dataset=train_dataset,
 shuffle=False,
 sampler=train_sampler)

https://docs.csc.fi/support/tutorials/ml-multi/#pytorch-ddp

Check that you are actually using all GPUs!

$ srun --overlap --pty --jobid=987654 bash
@compute_node$ rocm-smi

Check GPU utilization

GPU and CPU Bindings

https://docs.lumi-supercomputer.eu/runjobs/scheduled-jobs/distribution-binding/#gpu-binding

Example: GCD 4:
psutil.Process().cpu_affinity([1,2,3,4,5,6,7])

Why do we skip
CPU 0?

Because in LUMI the
first core in each
NUMA is reserved

https://docs.lumi-supercomputer.eu/runjobs/scheduled-jobs/distribution-binding/#gpu-binding

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Multiple GPUs in PyTorch: data parallelism
	Slide 11
	Slide 12
	Slide 13

