

Scaling AI training to multiple GPUs

Mats Sjöberg, Lukas Prediger – CSC – IT Center for Science, Finland

Using multiple GPUs

- Not automatic: your code needs to support multiple GPUs
 - Frameworks like Hugging Face, PyTorch Lightning or accelerate may auto-detect multiple GPUs (with the right options)
 - For pure PyTorch code use DistributedDataParallel (DDP)
- Pick a distributed training strategy
 - If your model fits into the GPU memory = data parallel = PyTorch DDP
 - If your model > GPU memory (64 GB on LUMI) look into model and pipeline parallelism (see FSDP, DeepSpeed and others)

Multi-GPU resource allocation on LUMI

- Use --gpus-per-node rather than -gpus-per-task
 - Due to bug in Slurm, fix coming...
- Rule-of-thumb, allocate ~1/8 of resources per GCD:
 - 60 GB RAM and 7 CPU cores per GPU
 - Full node: 480 GB and 56 cores (leaving some "slack" for the system)

Multi-GPU resource allocation on LUMI

- All approaches use one Python process per GCD:
 - Can be done with Slurm (--tasks-per-node=8)
 - Tools like torchrun can handle launching the processes use Slurm only to launch a single task (--tasks-per-node=1)
 - Each process should know which GPU to use, via \$ROCR_VISIBLE_DEVICES=\$SLURM_LOCALID or \$LOCAL_RANK
 - In PyTorch:

local_rank = int(os.environ["LOCAL_RANK"])
device = torch.device("cuda", local_rank)

Multi-GPU communication and tips

LUMI

- Setting up communication between the processes (e.g., setting \$MASTER_ADDR or --rdzv-endpoint)
 - Also remember RCCL and libfabric for efficient communication
- Add fault tolerance when possible, especially for huge jobs
 - Checkpointing!
- (Optionally) bind the processes to optimal CPU cores
 - Improves CPU-GPU I/O, might speed up cases with high I/O
- Issues with multi-worker data loaders segfaulting:

if __name__ = __main__:

multiprocessing.set_start_method("spawn")

Training on two GCDs on a single node SLURM multi-GPU batch script (2 GPUs) #!/bin/bash Remember rule-of-thumb: #SBATCH -- account=project 123456 • 1 GPU = 1/8 of node #SBATCH -- partition=small-g #SBATCH -- gpus-per-node=2 • Use also $\leq 1/8$ of CPU #SBATCH -- ntasks-per-node=1 cores and memory #SBATCH -- cpus-per-task=14 per GPU #SBATCH -- mem=120G #SBATCH -- time=1:00:00 ## < module loading part as before - removed for readability> srun singularity exec \$CONTAINER \ torchrun will take care torchrun --standalone \ of launching one --nnodes=1 \setminus process per GPU --nproc-per-node=\${SLURM GPUS PER NODE} \ my python script.py

```
Training on all GCDs on a single node
SLURM multi-GPU batch script (all 8 GPUs)
#!/bin/bash
#SBATCH -- account=project 123456
#SBATCH -- partition=standard-g
                                         • Full node = we can also
#SBATCH -- gpus-per-node=8
                                                use standard-g
#SBATCH -- ntasks-per-node=1
#SBATCH -- cpus-per-task=56
#SBATCH -- mem=480G
#SBATCH -- time=1:00:00
## < module loading part as before - removed for readability>
srun singularity exec $CONTAINER \
    torchrun --standalone \
             --nnodes=1 \setminus
             --nproc-per-node=${SLURM GPUS PER NODE} \
             my python script.py
```

Training on all GCDs on a single node without torchrun
📼 SLURM multi-GPU batch script (all 8 GPUs, no torchrun)
#!/bin/bash
#SBATCHaccount=project_123456
#SBATCHpartition=standard-g
#SBATCHgpus-per-node=8
#SBATCHntasks-per-node=8
#SBATCHcpus-per-task=7
#SBATCHmem=480G
#SBATCHtime=1:00:00
< module loading part as before – removed for readability>
<pre>export MASTER_ADDR=\$(scontrol show hostname \${SLURM_NODELIST} head -n 1)</pre>
export MASTER_PORT=24500 Where to connect to?
export WORLD_SIZE=\$SLURM_NPROCS How many processes are there?
<i>Which process am I?</i> srun bash -c "RANK=\\$SLURM_PROCID LOCAL_RANK=\\$SLURM_LOCALID singularity exec"

Do we need to change the code?

- For plain PyTorch: yes, use DistributedDataParallel (DDP)
- For higher level frameworks, **mostly no:**
 - transformers.Trainer is automatically set up for distributed training when WORLD_SIZE & RANK environment variables are set
 - Similar for other high-level frameworks like PyTorch Lightning or accelerate
- BUT: Pay attention to global batch size vs per device batch size!
 - Example: global batch size = 32 for one GPU, split over 8 GPUs, per-device batch size is 4
- Cosmetic: You might want to print some things only on rank 0

PyTorch DistributedDataParallel (DDP)

- Recommended for pure ("low-level") PyTorch
- Data parallel
 - Model is duplicated on many GPUs
 - Data is distributed, and gradient updates aggregated
- PyTorch DDP supports both single- and multi-node runs
- Launch with torchrun
- Uses a dedicated Python process for each GPU
- (Not to be confused with PyTorch DataParallel (DP) which uses multi-threading – not recommended to use)

PyTorch DistributedDataParallel (DDP)

Check that you are actually using all GPUs!

Check GPU utilization \$ srun --overlap --pty --jobid=987654 bash @compute_node\$ rocm-smi

https://docs.lumi-supercomputer.eu/runjobs/scheduled-jobs/distribution-binding/#gpu-binding