
Extending containers with
virtual environments for
faster testing

Gregor Decristoforo – LUMI User Support Team
Norwegian research infrastructure services (NRIS) – UiT, Norway

Motivation

Cotainr is great, but building a container takes time --> not ideal for quick testing / iterating on your
project

Virtual environments offer a quick (and easy) way of installing additional packages to existing containers

WARNING

This should not be the default way of installing python packages as it puts a lot of strain

on the Lustre file system. Once you have a complete set of python packages and their versions,

always create a new container.

What are virtual environments

Source: www.dataquest.io/blog/a-complete-guide-to-python-virtual-environments/

A virtual environment is a folder tree containing a specific Python version, third-party libraries, and other scripts.

Virtual environments are conceptually similar to conda environments – just for pip only.

Requirements

We assume we already have a container built from a conda environment
file. If not, we can build one via:

 module load LUMI/23.03 cotainr

 cotainr build minimal_pytorch.sif
--base-image=/appl/local/containers/sif-images/lumi-rocm-
rocm-5.6.1.sif --conda-env=minimal_pytorch.yml

name: minimal_pytorch
channels:
 - conda-forge
dependencies:
 - filelock=3.13.4
 - fsspec=2024.3.1
 - jinja2=3.1.3
 - markupsafe=2.1.5
 - mpmath=1.3.0
 - networkx=3.3
 - numpy=1.26.4
 - pillow=10.3.0
 - pip=24.0
 - python=3.11.9
 - sympy=1.12
 - typing-extensions=4.11.0
 - pip:
 - --extra-index-url
https://download.pytorch.org/whl/rocm5.6/
 - pytorch-triton-rocm==2.2.0
 - torch==2.2.2+rocm5.6
 - torchaudio==2.2.2+rocm5.6
 - torchvision==0.17.2+rocm5.6

https://download.pytorch.org/whl/rocm5.6/

Run a shell inside the container

singularity shell --bind
/pfs,/scratch,/projappl,/project,/flash,/appl
minimal_pytorch.sif

Instead of setting --bind manually, one achieves the
same with

module use /appl/local/training/modules/AI-
20240529/

module load singularity-userfilesystems

singularity shell minimal_pytorch.sif

Create a virtual environment via venv

Inside the container, create a virtual environment via venv

python -m venv myenv --system-site-packages

The --system-site-packages flag gives the virtual environment access to the packages
inside the container.

Activate the environment via

source myenv/bin/activate

Install custom packages via pip

pip install torchmetrics

The new package will then be available alongside the packages in the container

Location of installed packages

The new package is installed in our virtual environment whereas the other packages are installed in the
container.

We can check the location of the installed files via

Cleaning up

After having found all needed packages, create a new container with an updated conda
environment file:

module load LUMI/23.03 cotainr

cotainr build minimal_pytorch.sif --base-image=/appl/local/containers/sif-
images/lumi-rocm-rocm-5.6.1.sif –conda-env=updated_environment.yml

The virtual environment should then be deleted:

rm -rf myenv

LUMI application containers

10

venv approach may also be used with the LUMI application containers which are built via
EasyBuild, e.g. /appl/local/containers/sif-images/lumi-pytorch-rocm-5.6.1-python-
3.10-pytorch-v2.2.2.sif

For these containers it is required to activate the conda environment ($WITH_CONDA) before
creating the venv

Building a (final) container from LUMI application containers + a venv is not directly supported by
cotainr

Pros and Cons

 Pros:

 Quick (and easy) approach for installing additional packages to existing containers

Cons:

 Additional packages are installed directly on Lustre file system which can lead to bad
performance

 Required to keep manually track of which venv matches which container for which use case

 Necessary to source the venv every time you run the container to get access to the packages in
the virtual environment:

 singularity exec $CONTAINER bash -c "source myenv/bin/activate && python
 my_script.py"

Summary of steps

Open shell inside container

singularity shell --bind /pfs,/scratch,/projappl,/project,/flash,/appl
container_image.sif

If no virtual environment present, create a new one

python -m venv myenv --system-site-packages

Activate virtual environment

source myenv/bin/activate

Install custom packages

pip install new_package

	Extending containers with virtual environments for faster testi
	Motivation
	What are virtual environments
	Requirements
	Run a shell inside the container
	Create a virtual environment via venv
	Install custom packages via pip
	Location of installed packages
	Cleaning up
	LUMI application containers
	Pros and Cons
	Summary of steps

