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Summary

Welcome to AMD’s HPC Training Examples Guide: this document represents a collection of in-
structions on how to compile and run some of the examples that are included in the GitHub repo
https://github.com/amd/HPCTrainingExamples . This instruction is collected in a series of README
files that are associated with a specific topic. While not all README files available in the repo are reported
here, the full list is reported below, with clickable links that will direct you to the specific location in the
GitHub repo.

Please be aware that this document (and the GitHub repo) are continuously updated to keep up with the
most recent releases of the AMD software.

Examples Repository Structure

The following table of contents will point you to the location in the HPC Training Examples repo where
exercises or associated README files are located. Note that a selection of these is included in this document,
properly formatted for ease of reading.

1. HIP
1. Basic Examples
1. Stream_0Overlap : this example shows how to share the workload of a GPU offload compation
using several overlapping streams. The result is an additional gain in terms of time of execution
due to the additional parallelism provided by the overlapping streams. README .
2. dgemm : a (d)GEMM application created as an exercise to showcase simple matrix-matrix

multiplications on AMD GPUs. README .
3. basic_examples : a collection of introductory exercises such as device to host data transfer

and basic GPU kernel implementation. README .
4. hip_stream : modification of the STREAM benchmark for HIP. README .

jacobi : distributed Jacobi solver, using GPUs to perform the computation and MPI for

halo exchanges. README .
matrix_addition : example of a HIP kernel performing a matrix addition.

saxpy : example of a HIP kernel performing a saxpy operation. README .

stencil_examples : examples stencils operation with a HIP kernel, including the use of
timers and asyncronous copies.
9. vectorAdd : example of a HIP kernel to perform a vector add. README .

10. vector_addition_examples : another example of a HIP kernel to perform vector addition,
including different versions such as one using shared memory, one with timers, and a CUDA
one to try HIPIFY and hipifly tools on. The examples in this directory are not part of
the HIP test suite.

2. CUDA to HIP Porting
1. HIPIFY : example to show how to port CUDA code to HIP with HIPIFY tools. README .
2. hipifly : example to show how to port CUDA code to HIP with hipifly tools. README .

3. HIP-Optimizations : a daxpy HIP kernel is used to show how an initial version can be optimized

to improve performance. README .
4. HIPFort : a gemm example in Fortran using hipfort.
5. HIPStdPar : several examples showing C++ Std Parallelism on AMD GPUs. README .
6. HIP-OpenMP : example on HIP/OpenMP interoperability.
2. MPI-examples
1. Benchmarks: GPU aware benchmarks ( collective.cpp and pt2pt.cpp ) to assess the

performance of the communication libraries. README . NOTE: for more detailed instructions
on how to run GPU aware MPI examples, see GPU__aware MPI.
2. GhostExchange: slimmed down example of an actual physics application where the solution is
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https://github.com/amd/HPCTrainingExamples/tree/main/MPI-examples
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initialized on a square domain discretized with a Cartesian grid, and then advanced in parallel
using MPI communications. NOTE: detailed README files are provided here for the different
versions of the GhostExchange_ArrayAssign code, that showcase how to use Omnitrace to
profile this application.

3. ManagedMemory: programming model exercises, topics covered are APU programming model,
OpenMP, performance protability frameworks (Kokkos and RAJA) and discrete GPU programming
model. README .

4. MLExamples: a variation of PyTorch’s MNIST example code and a smoke test for mpidpy using cupy.
Instructions on how to run and test other ML frameworks are in the README .

5. Occupancy: example on modifying thread occupancy, using several variants of a matrix vector
multiplication leveraging shared memory and launch bounds.

6. OmniperfExamples: several examples showing how to leverage Omniperf to perform kernel
level optimization. NOTE: detailed READMESs are provided on each subdirectory. README
Video of Presentation .

7. Omnitrace

1. Omnitrace on Jacobi: Omnitrace used on the Jacobi solver example. README .

2. Omnitrace by Example: Omnitrace used on several versions of the Ghost Exchange
example. READMEs available for each of the different versions of the example code.
Video of Presentation .

8. Pragma_ Examples: OpenMP (in Fortran, C, and C++) and OpenACC examples. README .

9. Speedup__Examples: examples to show the speedup obtained going from a CPU to a GPU imple-
mentation. README .

10. atomics__openmp: examples on atomic operations using OpenMP.
11. Kokkos: runs the Stream Triad example with a Kokkos implementation. README .

12. Rocgdb: debugs the HPCTrainingExamples/HIP/saxpy example with Rocgdb. README
Video of Presentation .
13. Rocprof: uses Rocprof to profile HPCTrainingExamples/HIPIFY/mini-nbody/hip/ . README .
14. GPU__aware_ MPI: OSU Mini Benchmarks with GPU aware MPI. README . Video of Presentation

15. rocm__blog_ codes: this directory contains accompany source code examples for select HPC ROCm
blogs found at https://rocm.blogs.amd.com. README .
16. login__info
1. AAC: instructions on how to log in to the AMD Accelerator Cloud (AAC) resource. README .

How to Run the Tests

Most of the exercises in the HPC Training Examples repo can be run with a test suite, by doing:

git clone https://github.com/amd/HPCTrainingExamples && \
cd HPCTrainingExamples && \

cd tests && \

./runTests.sh

You can also run a subset of the whole test suite by specifying the subset you are interested in as an input to
the runTests.sh script. For instance: ./runTests.sh --pytorch . To see a full list of the possible

subsets that can be run: ./runTests.sh --help .

NOTE: the test suite will only report a PASS or FAIL result and will not print to terminal the output of the
single examples. To print output to terminal, tests should be run manually from their respective directories,
provided the necessary modules have been loaded and they have been compiled appropriately. Please follow
the instructions in the single READMEs to do so.
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AMD Accelerator Cloud (AAC)

To support trainings, we often upload training containers to the AMD Accelerator Cloud (AAC), and have
attendees login using the instructions below. This set of instructions assumes that users have already received
their <username> and <port_number> for the container, and that they have either provided an ssh key
to the training team, or they have received a password from the training team.

Login Instructions

The instructions below rely on ssh to access the AAC. Remember that when a container is brought down, it
will not be possible to access the user data on it, so make sure to backup your data frequently if you
want to keep it.

SSH-Key Generation
Generate an ssh key on your local system, which will be stored in .ssh :

cd $HOME
ssh-keygen -t ed25519 -N "'

To examine the content of your public key do:
cat $HOME/.ssh/id_ed25519.pub

NOTE: at first login, you will be presented with the AAC user agreement form. This covers the terms of use
of the compute hardware as well as how we will handle your data. Scroll down with the down arrow and type
yes when prompted. Note that if you will scroll down too much, then no will be received as answer and
you will be logged out.

Login with SSH-Key

IMPORTANT: if you are supposed to login with an ssh key and you are prompted a password, do not type
any password! Instead, type Ctrl+C and contact us to let us know about the incident.

To login to AAC using the ssh key use the <username> and <port_number> that the training team has
provided you, for instance:

ssh <username>@aac6.amd.com -i <path/to/ssh/key> -p <port_number> (1)

Login with password

With a password login, the command is the same as in (1) , except that it is not necessary to specify a
path to the ssh key. Just type the password that has been given to you when prompted:

ssh <username>@aac6.amd.com -p <port_number>

IMPORTANT: It is fundamental to not type the wrong password more than two times otherwise your I.P.
address will be blacklisted and you will not be allowed access to AAC until we modify our firewall to get you
back in. This is especially important if you are at an event where all the attendees are connecting to the
same wireless network.

In the commands above, -p refers to the port number and -i points to the path of your ssh key. Note
that different port numbers will be associated with different containers on the AAC, and anytime a container
is brought up, the port number will change in general.

To simplify the login even further, you can add the following to your .ssh/config file:

# AMD AAC cluster
Host aac
User <username>



Hostname aac6.amd.com // this may be different depending on the container
IdentityFile <path/to/ssh/key>

Port <port_number>

ServerAliveInterval 600

ServerAliveCountMax 30

The ServerAlivex lines in the config file may be added to avoid timeouts when idle. you can then login
using:

ssh aac -p <port_number>
It may also happen that a message like the following will show after logging into AAC:

clelelelefefelelcleldelcleleleelcedeldelceeddeededededededdeeddeddeeddedededdededeededdd

¢ WARNING: REMOTE HOST IDENTIFICATION HAS CHANGED! ¢
lcdcleeddddededdedeleeldededeeddeddedddeddeededddeelddededdddededdededelddeded

IT IS POSSIBLE THAT SOMEONE IS DOING SOMETHING NASTY!

Someone could be eavesdropping on you right now (man-in-the-middle attack)!
It is also possible that a host key has just been changed.

In such a case, remove in your local system the offending keys located in .ssh/known_hosts , as indicated
by the warning message.

Login Troubleshooting
Here are some troubleshooting tips if you cannot login to AAC following the instructions above:

1. Check the spelling of the command ssh, in particular <username> , <port_number> and password.

2. Turn off VPN if on.

3. Try logging in from a different machine if available (and migrate the ssh key to the new machine or
generate a new one and send it to us).

4. Try a jump host: this is a local server that you ssh to and then do a second ssh command from there.

In case none of these options work, send us the output of the ssh command followed by -vv and also the
output of traceroute aac6.amd.com . Additionally, let us know if the command ping aac6.amd.com
works on your end.

Directories and Files

Persistent storage is at /datasets/teams/hackathon-testing/<group>/<username> . Your home direc-
tory will be set to this directory:

$HOME=/datasets/teams/hackathon-testing/<group>/<username>

Files in the above directory will persist across container starts and stops and even be available from another
container with the same <username> on systems at the same hosting location. Remember that it will not
be possible to retrieve your data once the container has been brought down.

You can copy files in or out of AAC with the scp or the rsync command.

Copy into AAC from your local system, for instance:

scp -1 <path/to/ssh/key> -P <port_number> <file> <username>@aac6.amd.com:~/<path/to/file>
Copy from AAC to your local system:

scp -i <path/to/ssh/key> -P <port_number> <username>@aac6.amd.com:~/<path/to/file> .

To copy files in or out of the container, you can also use rsync as shown below:

rsync -avz -e "ssh -i <path/to/ssh/key> -p <port_number>" <file> <username>Q@aac6.amd.com:~/<path/to/file>



Container Environment
Please consult the container’s README to learn about the latest specs of the training container.

The container is based on the Ubuntu 22.04 Operating System with the ROCm 6.2.1 software stack. It
contains multiple versions of AMD, GCC, and LLVM compilers, hip libraries, GPU-Aware MPI, AMD
Profiling tools as well as HPC community tools. The container also has modules set up with the lua modules
package and a slurm package and configuration. It includes the following additional packages:

e cImacs

e vim

o autotools
e cmake

e tmux

e boost

e eigen

o fTtw

e gmp

o gsl

e hdf5-openmpi
e lapack

e magma
e matplotlib
e parmetis
e mpfr

e mpidpy
e openblas
e openssl
o SWig

e numpy
e scipy

e hbsparse

Explore Modules
To see what modules are available do:

module avail

The output list of module avail should show:

/etc/1mod/modules/Linux
clang/base clang/14 (D) clang/15 gcc/base gee/11 (D) gee/12 gee/13 miniconda3/23.11.0

/etc/1mod/modules/R0Cn
amdclang/17.0-6.2.1  hipfort/6.2.1  omniperf/6.2.1 (D)  omnitrace/6.2.1 (D)  opencl/6.2.1  rocm/6.2.1

/etc/1mod/modules/ROCmPlus-MPI
mpidpy/dev mvapich/3.0 openmpi/5.0.5-uccl.3.0-ucx1.17.0-xpmem2.7.3

/etc/1mod/modules/ROCmPlus-A archTools

omniperf/2.0.0 omniperf/2.0.1 omnitrace/1.11.3

/etc/1mod/modules/ROCmPlus-LatestCompilers

amd-gcc/13.2.0  aomp/amdclang-19.0

/etc/1mod/modules/ROCHPlus-AT
cupy/13.0.0b1  jax/0.4.32.dev  pytorch/2.4

/etc/1mod/modules/misc
hpctoolkit/dev kokkos/4.4.0 tau/dev

Where: D: Default Module

There are three modules associated with each ROCm version. One is the ROCm module which is needed by
many of the other modules. The second is the amdclang module when using the amdclang compiler that
comes bundled with ROCm. The third is the hipfort module for the Fortran interfaces to HIP.


https://github.com/amd/HPCTrainingDock/blob/main/README.md

Compiler modules set the C, CXX, FC flags. Note, only one compiler module can be loaded at a time. hipcc
is in the path when the rocm module is loaded.

Slurm Information

The training container comes equipped with Slurm. Slurm configuration is for a single queue that is shared
with the rest of the node. Run the following command to get info on Slurm:

sinfo

PARTITION AVAIL TIMELIMIT NODES STATE NODELIST
LocalQ up 2:00:00 1 idle localhost

The Slurm salloc command may be used to acquire a long term session that exclusively grants access to
one or more GPUs. Alternatively, the srun or sbatch commands may be used to acquire a session with
one or more GPUs and only exclusively use the session for the life of the run of an application. squeue
will show information on who is currently running jobs.

Examples Repo

The examples can also be obtained from our repo, which contains all the code that we will use for the exercises
discussed during the training. To clone the repo, do:

cd $HOME
git clone https://github.com/amd/HPCTrainingExamples.git



Programming Model Exercises — Managed Memory and Single
Address Space (APU)

NOTE: these exercises have been tested on MI210 and MI300A accelerators using a container environment.
To see details on the container environment (such as operating system and modules available) please see
README.md on this repo.

The source code for these exercises is based on those in the presentation, but with details filled in so that
there is a working code. You may want to examine the code in these exercises and compare it to the code in
the presentation and to the code in the other exercises.

CPU Code baseline

git clone https://github.com/amd/HPCTrainingExamples.git
cd HPCTrainingExamples/ManagedMemory

First run the standard CPU code. This is a working version of the original CPU code from the programming
model presentation.

cd HPCTrainingExamples/ManagedMemory/CPU_Code
module load amdclang
make

will compile with amdclang -g -03 -fopenmp cpu_code.c -o cpu_code Then run code with

./cpu_code

Standard GPU Code example

This example adds the GPU memory corresponding to the CPU arrays and explicitly manages the memory
transfers.

cd ../GPU_Code
make

This will compile with hipcc -g -03 -fopenmp --offload-arch=gfx90a gpu_code.hip -o gpu_code
Then run the code with

./gpu_code

Managed Memory Code

In this example, we will set the HSA_XNACK environment variable to 1 and let the Operating System move
the memory for us.

export HSA_XNACK=1

cd ../Managed_Memory_Code
make

./gpu_code

APU Code — Single Address Space in HIP

This example is shown on slide 29. We’ll run the same code as we used in the managed memory example.
Because the memory pointers are addressable on both the CPU and the GPU, no memory managment is
necessary. First, log onto an MI300A node. Then compile and run the code as follows.
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cd ../APU_Code
make
./gpu_code

OpenMP APU or single address space

For this example, we have a simple code with the loop offloading in the main code, openmp_code , and a

second version, openmp_codel , with the offloaded loop in a subroutine where the compiler cannot tell the
size of the array. Running this on the MI200 series, it passes, despite that it does not have a single address
space. We add export LIBOMPTARGET_INFO=-1 to verify that it is running on the GPU.

export HSA_XNACK=1

module load amdclang

cd ../OpenMP_Code

make

./openmp_code
./openmp_codel

export LIBOMPTARGET_INFO=-1
./openmp_code
./openmp_codel

For more experimentation with this example, comment out the first line of the two source codes.

//#pragma omp requires unified_shared_memory
make

export LIBOMPTARGET_INFO=-1

./openmp_code

./openmp_codel

Now with the LIBOMPTARGET_INFO variable set, we get a report that memory is being copied to the device
and back. The OpenMP compiler is helping out a lot more than might be expected even without an APU.

RAJA Single Address Code

First, set up the environment

module load amdclang
module load rocm

For the Raja example, we need to build the Raja code first
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cd ~/HPCTrainingExamples/ManagedMemory/Raja_Code
PWDir="pwd"

git clone --recursive https://github.com/LLNL/RAJA.git Raja_build
cd Raja_build

mkdir build_hip && cd build_hip

cmake -DCMAKE_INSTALL_PREFIX=${PWDir}/Raja_HIP \
-DROCM_ROOT_DIR=/opt/rocm \
-DHIP_ROOT_DIR=/opt/rocm \
-DHIP_PATH=/opt/rocm/bin \
-DENABLE_TESTS=0ff \
-DENABLE_EXAMPLES=0ff \
-DRAJA_ENABLE_EXERCISES=0ff \
-DENABLE_HIP=0n \

make -j 8
make install

cd ../..
rm -rf Raja_build

export Raja_DIR=${PWDir}/Raja_HIP

Now we build the example. Note that we just allocated the arrays on the host with malloc. To run it on the
MI200 series, we need to set the HSA_XNACK wvariable.

# To run with managed memory
export HSA_XNACK=1

mkdir build && cd build
CXX=hipcc cmake ..

make

./raja_code

cd ..
rm -rf build

cd ${PwDir}
rm -rf Raja_HIP

cd ..
rm -rf ${PROB_NAME}

Kokkos Unified Address Code

First, set up the environment

module load amdclang
module load rocm
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For the Kokkos example, we need to build the Kokkos code first
cd ~/HPCTrainingExamples/ManagedMemory/Kokkos_Code
PwDir="pwd"

git clone https://github.com/kokkos/kokkos Kokkos_build
cd Kokkos_build

mkdir build_hip && cd build_hip

cmake -DCMAKE_INSTALL_PREFIX=${PWDir}/Kokkos_HIP -DKokkos_ ENABLE_SERIAL=0N \
-DKokkos_ENABLE_HIP=0N -DKokkos_ARCH_ZEN=0ON -DKokkos_ARCH_VEGA90A=0N \
-DCMAKE_CXX_COMPILER=hipcc ..

make -j 8
make install

cd ../..
rm -rf Kokkos_build

export Kokkos_DIR=${PWDir}/Kokkos_HIP

Now we build the example. Note that we have not had to declare the arrays in Kokkos Views. To run it on
the MI200 series, we need to set the HSA_XNACK variable.

# To run with managed memory
export HSA_XNACK=1

mkdir build && cd build
CXX=hipcc cmake ..

make

./kokkos_code

cd ${PWDir}
rm -rf Kokkos HIP

cd ..
rm -rf ${PROB_NAME}
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OpenMP Intro Examples

NOTE: these exercises have been tested on MI210 and MI300A accelerators using a container environment.
To see details on the container environment (such as operating system and modules available) please see
README.md on this repo.

Checking out makefiles and compiler toolchain

Running the first OpenMP example: Pragma_Examples/OpenMP/C/saxpy

Build with AMDC]lang compiler

module load amdclang
make clean

make

./saxpy

Confirm running on GPU with

export LIBOMPTARGET_KERNEL_TRACE=1
. /saxpy

e confirms that we are running on the GPU and also gives us the register usage
+ Also could use AMD_LOG_LEVEL=[0/1]2/3]4] or LIBOMPTARGET_KERNEL_TRACE=2

OpenMP Offload — The Basics
We start out with the OpenMP threaded code for the CPU. This code is in
~/HPCTrainingExamples/Pragma_Examples/OpenMP/Intro

in the saxpy_ cpu.cpp file. This is the code on slide 16. We first load the amdclang module which will set the
CXX environment variable. This variable will get picked up by the Makefile for the build.

module load amdclang
make saxpy_cpu
./saxpy_cpu

The next example, saxpyl, is from slide 18 where the first version of OpenMP offloading is tried. In this code,
there is no map clause. The compiler can figure out the arrays that need to be copied over and their sizes.

make saxpyl
./saxpy1l

While running one of these codelets, it may be useful to watch the GPU usage. Here are two approaches.
e open another terminal and ssh to the AAC node you are working on, or
e use the tmux command
e run watch -n 0.5 rocm-smi command line from that terminal to visualize GPU activities.

Note that the basic tmux survival commands are:

cntl+b \" - splits the screen

cntl+b (up arrow) - move to the upper session
cntl+b (down arrow) - move to lower session
exit - end tmux session
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Next, run the codelet on your preferred GPU device if you have allocated more than 1 GPU. For example, to
execute on GPU ID #2, set the following environment variable: export ROCR_VISIBLE_DEVICES=2 then

run the code.
Profile the codelet and then compare output by setting

export LIBOMPTARGET_KERNEL_TRACE=1
export LIBOMPTARGET_KERNEL_TRACE=2

Note:
rocminfo can be used to get target architecture information.

The Fortran version of the saxpy code is shown in saxpylf.F90. It is very similar to the C and C++ OpenMP
pragmas. In Fortran, the compiler hints are technically directives that are contained in specially formatted
comments. One of the strengths of OpenMP is that the language can be used in C, C++, and Fortran code
and they can even be mixed in an application. Here is how to run the Fortran example.

make saxpylf
./saxpylf

The compile line uses the specific GPU architecture type. It grabs it from the rocminfo command with a
little bit of string manipulation.

Let’s now add a map clause as shown in quotes on slide 18 — map(tofrom:y[0:N])

make saxpy2
. /saxpy?2

A lot of the initial optimization of an OpenMP offloading port is to minimize the data movement from host
to device and back. What is the optimum mapping of data for this example? See saxpy3.cpp for the optimal
map clauses.

make saxpy3
./saxpy3

In the example we have been working with so far, the compiler can determine the sizes and will move the
data for you. Let’s see what happens when we have a subroutine with pointers where the compiler does not
know the sizes.

make saxpy4
./saxpy4

Try removing the map clause — the program will now fail.

Multilevel Parallelism

We have been running on the GPU, but with only one thread in serial. Let’s start adding parallelism. The
first thing we can do is add #pragma omp parallel for simd before the loop to tell it to run in parallel.

make saxpyb
./saxpyb

We have told it to run the loop in parallel, but we haven’t given it any hardware resources. To add more
compute units, we need to add the teams clause. Then to spread the work across the threads, we need the
distribute clause. (This code is currently not working ...)

make saxpy6
. /saxpy6
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More commonly, we add the triplet of target teams distribute to the pragma to enable all hardware
elements to the computation.

make saxpy7
. /saxpy7

And in Fortran.

make saxpy2f
./saxpy2f

Structured and Unstructured Target Data Regions

This example from slide 29 shows the use of a structured block region that encompasses several compute
loops. The data region persists across all of them, eliminating the need for map clauses and data transfers.

make target_data_structured
./target_data_structured

This example shows the use of the target data to map the data to the device and then updating it with the
target update in the middle of the target data block.

make target_data_unstructured
./target_data_unstructured

When using larger data regions, it can be necessary to move data in the middle of the region to support MPI
commuunication or I/0O. This example shows the use of the update clause to copy new input from the host to
the device.

make target_data_update
./target_data_update

Advanced OpenMP Presentation

Here, we will discuss some examples that show more advanced OpenMP features.

Memory Pragmas
First, we will consider the examples in the CXX/memory_pragmas directory:

cd ~/HPCTrainingExamples/Pragma_Examples/OpenMP/CXX/memory_pragmas

Exercises Setup
Setup your environment:

export LIBOMPTARGET_INFO=-1
export OMP_TARGET_OFFLOAD=MANDATORY

The first flag above will allow you to see OpenMP activity, while the second terminates the program if code
fails to be executed on device (as opposed to falling back on the host). You can also be more selective in the
output generated by using the individual bit masks:

export LIBOMPTARGET_INFO=$((0x01 | 0x02 | 0x04 | 0x08 | 0x10 | 0x20))

Create a build directory and compile using cmake : this will place all executables in the build directory:
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mkdir build && cd build
cmake ..
make

Mem1 (Initial Version)

There are 12 versions of an initial example code called meml.cc , which is an implementation of a daxpy
kernel with a single pragma with a map clause at the computational loop:

void daxpy(int n, double a, double *__restrict__ x, double *__restrict__ y, double *__restrict__ z)
{
#pragma omp target teams distribute parallel for simd map(to: z[0:n], y[0:n]) map(from: z[0:n])
for (int i = 0; i < n; i++)
z[i] = axx[i] + y[il;
}

Run memi to have an idea of what output is produced by the LIBOMPTARGET_INFO=-1 flag, which should
include OpenMP calls like the following:

o

Libomptarget device
Libomptarget device
Libomptarget device
Libomptarget device
Libomptarget device
Libomptarget device
Libomptarget device
Libomptarget device
Libomptarget device
Libomptarget device
Libomptarget device
Libomptarget device
Libomptarget device
Libomptarget device
Libomptarget device
Libomptarget device
Libomptarget device
Libomptarget device
Libomptarget device

info: Entering OpenMP kernel at meml.cc:89:1 with 5 arguments:
info: firstprivate(n) [4] (implicit)

info: from(z[0:n]) [80000]

info: firstprivate(a) [8] (implicit)

info: to(x[0:n]) [80000]

info: to(y[0:n]) [80000]

info: Creating new map entry with HstPtrBase=0x0000000001772200,
info: Creating new map entry with HstPtrBase=0x000000000174b0eO,
info: Copying data from host to device, HstPtr=0x000000000174b0e0,
info: Creating new map entry with HstPtrBase=0x000000000175e970,
info: Copying data from host to device, HstPtr=0x000000000175e970,
info: Mapping exists with HstPtrBegin=0x0000000001772200,

info: Mapping exists with HstPtrBegin=0x000000000174b0eO,

info: Mapping exists with HstPtrBegin=0x000000000175e970,

info: Mapping exists with HstPtrBegin=0x000000000175e970,

info: Mapping exists with HstPtrBegin=0x000000000174b0e0,

info: Mapping exists with HstPtrBegin=0x0000000001772200,

info: Copying data from device to host, TgtPtr= OxOOOO7f617c4QOOOO,
info: Removing map entry with HstPtrBegin=0x000000000175e970,
Libomptarget device info: Removing map entry with HstPtrBegin=0x000000000174b0e0,
Libomptarget device info: Removing map entry with HstPtrBegin=0x0000000001772200,
-Timing in Seconds: min=0.010115, max=0.010115, avg=0.010115

-Overall time is 0.010505

Last Value: z[9999]=7.000000

O OO OO OO OO ODOOOOOOOOoOOoOOo

Not all versions are discussed in this document. Using vimdiff to compare versions is useful to explore
the differences, e.g.:

vimdiff meml.cc mem2.cc

Mem2 (Add enter/exit data alloc/delete when memory is created/freed)

The initial code in meml.cc is modified to obtain mem2.cc with the following additions:
#pragma omp target enter data map(alloc: z[0:n], y[0:n], 2[0:n]) // line 52
#pragma omp target exit data map(delete: z[0:n], y[O:n], 2[0:n]) // line 82
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Mem3 (Replace map to/from with updates to bypass unneeded device memory check)

In mem3.cc , in addition to the changes in mem2.cc , the daxpy kernel is modified as follows:

void daxpy(int n, double a, double *__restrict__ x, double *__restrict__ y, double *__restrict__

{
#pragma omp target update to (z[0:n], y[O0:n])
#pragma omp target teams distribute parallel for simd

for (int i = 0; 1 < n; i++)

z[i] = a*x[i] + y[i]l;

#pragma omp target update from (z[0:n])
}
Mem4 (Replace delete with release to use reference counting)

Compared to mem2.cc , memd.cc differs only at line 82, where a delete is replaced with a release:

#pragma omp target exit data map(release: z[0:n], y[0:n], z[0:n]) // line 82

Memb5 (Use enter data map to/from alloc/delete to reduce memory copies)

Similar to mem2.cc . this version differs from the original only at lines 52 and 82:

#pragma omp target enter data map(to: x[0:n], y[0:n]) map(alloc: z[0:n]) // line 52
#pragma omp target exit data map(from: z[0:n]) map(delete: z[0:n], y[O:n]) // line 82

Mem?7 (Use managed memory to automatically move data)

In this example, we epxloit automatic memory management by the operating system. To enable it, export:
export HSA_XNACK=1

We also need to include the following pragma:

#pragma omp requires untfied_shared_memory // line 22

Mem8 (Use unified shared memory with maps for backward compatibility)
Compared to mem7.cc , mem8.cc supports backward compatibility using maps and also:

#ifndef NO_UNIFIED_SHARED MEMORY
#pragma omp requires untfied_shared_memory
#endi f

Mem12 (Only runs on MI300A)
This example uses the APU programming model of MI300A and unified addresses in OpenMP.

Kernel Pragmas

This set of exercises is in: HPCTrainingFExamples/Pragma_Examples/OpenMP/CXX/kernel pragmas .

Exercises Setup
You should unset the LIBOMPTARGET_INFO environment flag if previously set.
unset LIBOMPTARGET_INFO

Then, set these environment variable
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export CXX=amdclang++

export LIBOMPTARGET_KERNEL_TRACE=1
export OMP_TARGET_OFFLOAD=MANDATORY
export HSA_XNACK=1

Brief Exercises Description

The example kernell.cc is the same as memory_pragmas/memll.cc except for the pragma line below

(from kernell.cc ):

cout << "-0Overall time is " << main_timer << endl;
#pragma omp target update from(z[0])

The example kernel2.cc differs from kernell.cc as it adds num_threads(64) to the pragma line

in the daxpy kernel:

void daxpy(int n, double a, double *__restrict__ x, double *__restrict__ y, double *__restrict__

{

#pragma omp target teams distribute parallel for simd num_threads(64)
for (int i = 0; i < n; i++)
z[i] = axx[i] + y[i];
}
Similarly, example kernel3.cc differsfrom kernell.cc asitadds num_threads(64) thread_limit(64)

to the pragma line in the daxpy kernel:

void daxpy(int n, double a, double *__restrict__ x, double *__restrict__ y, double *__restrict__

{
#pragma omp target teams distribute parallel for simd num_threads(64) thread_limit (64)
for (int i = 0; i < m; i++)
z[i] = axx[i] + y[il;

}

Something to test On your own: uncomment line 15 in CMakeLists.txt (the one with -faligned-allocation
-fnew-alignment=256).

Another option to explore is adding the attribute (std::align val t(128) ) to each new line, for example:

double *x = new (std::align_val_t(128) ) double[n];

Real-World OpenMP Language Constructs

For all excercises in this section:

module load amdclang
git clone https://github.com/AMD/HPCTrainingExamples

either choose

cd ~/HPCTrainingExamples/Pragma_Examples/OpenMP/Fortran
or

cd ~/HPCTrainingExamples/Pragma_Examples/OpenMP/C

Note: make sure the compilers are set to your preference. This can be obtained by exporting the FC and
CC environment variables:

export FC=<my favorite Fortran compiler>
export CC=<my favorite C compiler>
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It is suggested for those that want to truly experience the effort, that you take all the pragma statements out
of these examples and do the port yourself.

Simple Reduction
The first example is a simple reduction:

cd reduction_scalar
make
./reduction_scalar

Now try the array form

cd ../reduction_array
make
./reduction_array

If your compiler passes, it supports at least simple array reduction clauses

Device Routine

Subroutines called from within a target region also cause some difficulties. We must tell the compiler that we
want these compiled for the GPU. Note that device routines are not (yet) supported by all compilers!

For this example
cd ../device_routine

there are multiple versions to choose from in Fortran, either with an interface and an external routine or
using a module. Hence one first needs to enter the selected subfolder, and then:

make
./device_routine

Device Routine with Global Data

Including the use of data from global scope in device routines also causes difficulties. We have examples for
both statically sized arrays and dynamically allocated global data. Note that device routines are not (yet)
supported by all compilers! Also, this excercise only exists in the C version at the moment.

cd ../device_routine_wglobaldata
make
./device_routine

cd ../device_routine_wdynglobaldata
make
./device_routine
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Introduction to HIP Exercises

NOTE: these exercises have been tested on MI210 and MI300A accelerators using a container environment.
To see details on the container environment (such as operating system and modules available) please see
README.md on this repo.

git clone https://github.com/amd/HPCTrainingExamples.git

For the first interactive example, get an slurm interactive session

salloc -N 1 -p LocalQ --gpus=1 -t 10:00

Basic examples
cd HPCTrainingExamples/HIP/vectorAdd

Examine files here - README, Makefile, CMakeLists.txt and vectoradd.hip. Notice that Makefile requires
ROCM_PATH to be set. Check with module show rocm or echo $ROCM_PATH Also, the Makefile builds and
runs the code. We’ll do the steps separately. Check also the HIPFLAGS in the Makefile. There is also a
CMakeLists.txt file to use for a cmake build.

For the portable Makefile system

module load rocm

make vectoradd
./vectoradd

Pro tip for Makefile builds. Run make clean before make to be sure nothing is left over from a previous
build.

This example also runs with the cmake system

module load rocm

mkdir build && cd build
cmake ..

make

./vectoradd

Pro tip for cmake builds. To rebuild after changing CMake options or using a different compiler, either

e Remove the CMakeCache.txt, or
e clean out all files from the ./build directory

We can use a SLURM submission script, let’s call it hip_batch.sh . There is a sample script for some
systems in the example directory.

#1/bin/bash
#SBATCH -N 1
#SBATCH —-p Local(
#SBATCH —-gpus=1
#SBATCH -t 10:00

module load rocm
cd $HOME/HPCTrainingExamples/HIP/vectorAdd

make vectoradd
./vectoradd
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Submit the script sbatch hip_batch.sh

Check for output in slurm-<job-id>.out or error in slurm-<job-id>.err
To use the cmake option in the batch file, change the build to

mkdir build && cd build
cmake ..

make

./vectoradd

Now let’s try the hip-stream example. This example is from the original McCalpin code as ported to CUDA
by Nvidia. This version has been ported to use HIP.

module load rocm

cd $HOME/HPCTrainingExamples/HIP/hip-stream
make

./stream

Note that it builds with the hipcc compiler. You should get a report of the Copy, Scale, Add, and Triad cases.
On your own:

1. Check out the saxpy example in HPCTrainingExamples/HIP

2. Write your own kernel and run it

3. Test the code on an Nvidia system — Add  HIPCC=nvcc  before the make command or
-DCMAKE_GPU_RUNTIME=CUDA to the cmake command. (See README file)

More advanced HIP makefile

The jacobi example has a more complex build that incorporates MPI. The original Makefile has not been
modified, but a CMakeLists.txt has been added to demonstrate a portable cmake build. From an interactive
session, build the example.

cd $HOME/HPCTrainingExamples/HIP/jacobi

module load rocm
module load openmpi

mkdir build && cd build
cmake ..
make

Since we will be running on two MPI ranks, you will need to alloc 2 GPUs for a quick run. Exit your current
allocation with exit and then get the two GPUs. Keep the requested time short to avoid tying up the
GPUs so others can run the examples. The requested time shown is in the format hours:minutes:seconds so it
is for one minute.

salloc -p LocalQ --gpus=2 -n 2 -t 00:01:00
module load rocm openmpi
mpirun -n 2 ./Jacobi_hip -g 2
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Porting Applications to HIP

Hipify Examples

NOTE: these exercises have been tested on MI210 and MI300A accelerators using a container environment.
To see details on the container environment (such as operating system and modules available) please see
README.md on this repo.

Exercise 1: Manual code conversion from CUDA to HIP (10 min)

Choose one or more of the CUDA samples in HPCTrainingExamples/HIPIFY/mini-nbody/cuda directory.
Manually convert it to HIP. Tip: for example, the cudaMalloc will be called hipMalloc. You can choose from
nbody-block.cu, nbody-orig.cu, nbody-soa.cu

You'll want to compile on the node you’ve been allocated so that hipcc will choose the correct GPU
architecture.

Exercise 2: Code conversion from CUDA to HIP using HIPify tools (10 min)

Use the hipify-perl script to “hipify” the CUDA samples you used to manually convert to HIP in
Exercise 1. hipify-perl is in $ROCM_PATH/hip/bin directory and should be in your path.

First test the conversion to see what will be converted

hipify-perl -examine nbody-orig.cu

You'll see the statistics of HIP APIs that will be generated. The output might be different depending on the
ROCm version.

[HIPIFY] info: file 'mbody-orig.cu' statistics:
CONVERTED refs count: 7
TOTAL lines of code: 91
WARNINGS: O
[HIPIFY] info: CONVERTED refs by names:
cudaFree => hipFree: 1
cudaMalloc => hipMalloc: 1
cudaMemcpyDeviceToHost => hipMemcpyDeviceToHost: 1
cudaMemcpyHostToDevice => hipMemcpyHostToDevice: 1

hipify-perl 1isin $ROCM_PATH/hip/bin directory and should be in your path. In some versions of

ROCm, the script is called hipify-perl .

Now let’s actually do the conversion.

hipify-perl nbody-orig.cu > nbody-orig.cpp
Compile the HIP programs.

hipcc -DSHMOO -I ../ nbody-orig.cpp -o nbody-orig

The #define SHMOO fixes some timer printouts. Add --offload-arch=<gpu_type> to specify the GPU
type and avoid the autodetection issues when running on a single GPU on a node.

e Fix any compiler issues, for example, if there was something that didn’t hipify correctly.
e Be on the lookout for hard-coded Nvidia specific things like warp sizes and PTX.

Run the program
./nbody-orig

A batch version of Exercise 2 is:
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#!/bin/bash
#SBATCH -N 1
#SBATCH --ntasks=1
#SBATCH —-gpus=1
#SBATCH -p LocalQ
#SBATCH -t 00:10:00

pwd
module load rocm

cd HPCTrainingExamples/HIPIFY/mini-nbody/cuda
hipify-perl -print-stats nbody-orig.cu > nbody-orig.cpp
hipcc -DSHMOO -I ../ nbody-orig.cpp -o nbody-orig
./nbody-orig

Notes:

o Hipify tools do not check correctness
e hipconvertinplace-perl isa convenience script that does hipify-perl -inplace -print-stats
command

Mini-App conversion example
Load the proper environment

cd $HOME/HPCTrainingExamples/HIPIFY/
module load rocm

Get the CUDA version of the Pennant mini-app.
wget https://asc.llnl.gov/sites/asc/files/2020-09/pennant-singlenode-cude.tgz
tar -xzvf pennant-singlenode-cude.tgz

cd PENNANT

hipexamine-perl.sh
And review the output

Now do the actual conversion. We want to do the conversion for the whole directory tree, so we’ll use
hipconvertinplace-sh

hipconvertinplace-perl.sh

We want to use .hip extensions rather than .cu , so change all files with .cu to .hip
mv src/HydroGPU.cu src/HydroGPU.hip

Now we have two options to convert the build system to work with both ROCm and CUDA

Makefile option
First cut at converting the Makefile. Testing with make can help identify the next step.

o Change all occurances of CUDA to HIP (e.g. sed -i ‘s/cuda/hip/g’ Makefile)

o Change the CXX variable to clang++ located in ${ROCM_PATH}/1lvm/bin/clang++
e Change all the CUDAC variables to HIPCC

e Change HIPCC to point to hipcc

¢ Change HIPCCFLAGS with CUDA options to HIPCCFLAGS__ CUDA

¢ Remove -fast and -fno-alias from the CXXFLAGS OPT
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e Change all .cu to .hip in the Makefile

Now we are just getting compile errors from the source files. We will have to do fixes there. We’ll tackle
them one-by-one.

The first errors are related to the double2 type.

compiling src/HydroGPU.hip

(CPATH=;hipcc -03 -I. -c -o build/HydroGPU.o src/HydroGPU.hip)
In file included from src/HydroGPU.hip:14:

In file included from src/HydroGPU.hh:16:

src/Vec2.hh:35:8: error: definition of type 'double2' conflicts with type alias of the same name

struct double2

/opt/rocm-5.6.0/include/hip/amd_detail/amd_hip_vector_types.h:1098:1: note: 'double2' declared here

__MAKE_VECTOR_TYPE__(double, double);

/opt/rocm-5.6.0/include/hip/amd_detail/amd_hip_vector_types.h:1062:15: note: expanded from macro '__MAKE_VECTOR_TYPE__'

using CUDA_name##2 = HIP_vector_type<T, 2>;\

<scratch space>:316:1: note: expanded from here
double2

HIP defines double2. Let’s look at Vec2.hh. At line 33 where the first error occurs. We see an
#ifndef __CUDACC__ around a block of code there. We also need the #ifndef to include HIP as well. Let’s
check the available compiler defines from the presentation to see what is available. It looks like we can use
__HIP_DEVICE_COMPILE__ or maybe __HIPCC__ .

Change line 33 in Vec2.hh to #ifndef __HIPCC__
The next error is about function attributes that are incorrect for device code.

compiling src/HydroGPU.hip

(CPATH=;hipcc -03 -I. -c -o build/HydroGPU.o src/HydroGPU.hip

src/HydroGPU.hip:168:23: error: no matching function for call to 'cross
double sa = 0.5 * cross(px[p2] - px[p1l, =zx[z] - px[pll);

src/Vec2.hh:206:15: note: candidate function not viable: call to __host__ function from __device__ function

The FNQUALIFIER macro is what handles the attributes in the code. We find that defined at line 22 and
again we see a #ifdef __CUDACC__ . It is another #ifdef __CUDACC__ . We can see that we need to
pay attention to all the CUDA ifdef statements.

Change line 22 to #ifdef __HIPCC__

Finally we get an error about already defined operators on double2 types. These appear to be defined in HIP,
but not in CUDA. So we change line 84

compiling src/HydroGPU.hip
(CPATH=;hipcc -03 -I. -c -o build/HydroGPU.o src/HydroGPU.hip)
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src/HydroGPU.hip:149:15: error: use of overloaded operator '+=' is ambiguous (with operand types 'double2 [...]

zxtot += ctemp2[sn];
/opt/rocm-5.6.0/include/hip/amd_detail/amd_hip_vector_types.h:510:26:
note: candidate function

HIP_vector_type& operator+=(const HIP_vector_type& x) noexcept

src/Vec2.hh:88:17: note: candidate function
inline double2& operator+=(double2& v, const double2& v2)

Change line 85 to #elif defined(__CUDACC__)

Now we start getting errors for HydroGPU.hip. The first is for the atomicMin function. It is already defined
in HIP, so we need to add an ifdef for CUDA around the code.

compiling src/HydroGPU.hip

(CPATH=;hipcc -03 -I. -c -o build/HydroGPU.o src/HydroGPU.hip)

src/HydroGPU.hip:725:26: error: static declaration of 'atomicMin' follows non-static declaration
static __device__ double atomicMin(double* address, double val)
/opt/rocm-5.6.0/include/hip/amd_detail/amd_hip_atomic.h:478:8: note: previous definition is here
double atomicMin(double* addr, double val) {

1 error generated when compiling for gfx90a.
Add #ifdef __CUDACC__/endif to the more block of code in HydroGPU.hip from line 725 to 737

We finally got through the compiler errors and move on to link errors

linking build/pennant
/opt/rocm-5.6.0//11vm/bin/clang++ -o build/pennant
build/ExportGold.o build/ImportGMV.o
build/Parallel.o build/WriteXY.o
build/HydroBC.o build/QCS.o build/TTS.o build/main.o build/Mesh.o
build/InputFile.o build/GenMesh.o
build/Driver.o build/Hydro.o build/PolyGas.o build/HydroGPU.o -L/1ib64 -lcudart
1d.11d: error: unable to find library -lcudart

In the Makefile, change the LDFLAGS while keeping the old settings for when we set up the switch between
GPU platforms.

LDFLAGS_CUDA := -L$(HIP_INSTALL_PATH)/1ib64 -lcudart
LDFLAGS := -L${ROCM_PATH}/hip/1lib -lamdhip64

We then get the link error
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linking build/pennant

/opt/rocm-5.6.0//11lvm/bin/clang++ -o build/pennant build/ExportGold.o build/ImportGMV.o
build/Parallel.o build/WriteXY.o build/HydroBC.o build/QCS.o build/TTS.o build/main.o
build/Mesh.o build/InputFile.o build/GenMesh.o build/Driver.o build/Hydro.o
build/PolyGas.o build/HydroGPU.o -L/opt/rocm-5.6.0//hip/1lib -lamdhip64}

1d.11d: error: undefined symbol: hydroInit(int, int, int, int, int, double, double,
double, double, double, double, double, double, double, int, double const*,

int, double const*, double2 const*, double2 const*, double const*, double constx*,
double const*, double const*, double const*, double const*, double constx*,

int const*, int const*, int const*, int const*, int const*, int constx*)}

\begin{verbatim}
>>> referenced by Hydro.cc
>>> build/Hydro.o: (Hydro: :Hydro (InputFile const*, Meshx))

1d.11d: error: undefined symbol: hydroGetData(int,int,double2*,double*,double*,doublex*)
>>> referenced by Hydro.cc
>>> build/Hydro.o: (Hydro: :getData())

This one is a little harder. We can get more information by using nm build/Hydro.o |grep hydroGetData

and nm build/HydroGPU.o |grep hydroGetData . We can see that the subroutine signatures are slightly
different due to the double2 type on the host and GPU. You can also switch the compiler from clang++ to
g++ to get a slightly more informative error. We are in a tough spot here because we need the hipmemcpy in
the body of the subroutine, but the types for double2 are for the device instead of the host. One solution is
to just compile and link everything with hipcc, but we really don’t want to do that if only one routine needs
to use the device compiler. So we cheat by declaring the prototype arguments as void * and casting the

type in the call with (void *) . The types are really the same and it is just arguing with the compiler.

nm build/Hydro.o |grep hydroGetData
U _Z12hydroGetDataiiP7double2PdS1_S1_
nm build/HydroGPU.o |grep hydroGetData
0000000000003750 T _Z12hydroGetDataiiP15HIP_vector_typelIdLj2EEPdS2_S2_

In HydroGPU.hh

e Change line 38 and 39 to from const double2* to const void*
e Change line 62 from double2* to void*

In HydroGPU.hip

e Change line 1031 and 1032 to const void*
e Change line 1284 to const voidx*

In Hydro.cc

e Add (void *) before the arguments on lines 59, 60, and 145
Now it compiles and we can test the run with
build/pennant test/sedovbig/sedovbig.pnt

So we have the code converted to HIP and fixed the build system for it. But we haven’t accomplished our
original goal of running with both ROCm and CUDA.

We can copy a sample portable Makefile from HPCTrainingExamples/HIP/saxpy/Makefile and modify
it for this application.
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EXECUTABLE = pennant

BUILDDIR := build

SRCDIR = src

all: $(BUILDDIR)/$(EXECUTABLE) test

.PHONY: test

OBJECTS = $(BUILDDIR)/Driver.o $(BUILDDIR)/GenMesh.o $(BUILDDIR)/HydroBC.o
OBJECTS += $(BUILDDIR)/ImportGMV.o $(BUILDDIR)/Mesh.o $(BUILDDIR)/PolyGas.o
OBJECTS += $(BUILDDIR)/TTS.o $(BUILDDIR)/main.o $(BUILDDIR)/ExportGold.o
OBJECTS += $(BUILDDIR)/Hydro.o $(BUILDDIR)/HydroGPU.o $(BUILDDIR)/InputFile.o
OBJECTS += $(BUILDDIR)/Parallel.o $(BUILDDIR)/QCS.o $(BUILDDIR)/WriteXY.o

CXXFLAGS = -g -03
HIPCC_FLAGS = -03 -g -DNDEBUG

HIPCC 7= hipcc

ifeq ($(HIPCC), nvcc)
HIPCC_FLAGS += -x cu
LDFLAGS = -lcudadevrt -lcudart_static -1lrt -lpthread -1dl
endif
ifeq ($(HIPCC), hipcc)
HIPCC_FLAGS += -munsafe-fp-atomics
LDFLAGS = -L${ROCM_PATH}/hip/1ib -lamdhip64
endif

$(BUILDDIR)/%.d : $(SRCDIR)/%.cc
Q@echo making depends for $<
$ (maketargetdir)
@3 (CXX) $(CXXFLAGS) $(CXXINCLUDES) -M $< | sed "1s![” \t]\+\.o!$(@:.d=.0) $@!" >$e

$(BUILDDIR)/%.d : $(SRCDIR)/%.hip
Q@echo making depends for $<
$ (maketargetdir)
@$ (HIPCC) $(HIPCCFLAGS) $(HIPCCINCLUDES) -M $< | sed "1s![” \tl\+\.o!$(@:.d=.0) $e!" >$@

$(BUILDDIR)/%.0 : $(SRCDIR)/%.cc
Q@echo compiling $<
$ (maketargetdir)
$(CXX) $(CXXFLAGS) $(CXXINCLUDES) -c -o $@ $<

$ (BUILDDIR)/%.0 : $(SRCDIR)/%.hip
@echo compiling $<
$ (maketargetdir)
$ (HIPCC) $(HIPCC_FLAGS) -c $~ -o $@

$ (BUILDDIR)/$ (EXECUTABLE) : $(OBJECTS)
@echo linking $@
$ (maketargetdir)
$(CXX) $(OBJECTS) $(LDFLAGS) -o $@

test : $(BUILDDIR)/$(EXECUTABLE)
$ (BUILDDIR) /$ (EXECUTABLE) test/sedovbig/sedovbig.pnt
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define maketargetdir
-@mkdir -p $(dir $@) > /dev/null 2>&1
endef

clean :
rm -rf $(BUILDDIR)

To test the makefile,

make build/pennant
make test

or just make to both build and run the test

To test the makefile build system with CUDA (note that the system used for this training does not have
CUDA installed so this exercise is left to the student)

module load cuda
HIPCC=nvcc CXX=g++ make

CMake option

To create a cmake build system, we can copy a sample portable CMakeLists.txt and modify it for this
applicaton.

HPCTrainingExamples/HIP/saxpy/CMakelLists.txt

cmake_minimum_required (VERSION 3.21 FATAL_ERROR)
project (Pennant LANGUAGES CXX)
include(CTest)

set (CMAKE CXX_STANDARD 14)

if (NOT CMAKE_BUILD_TYPE)
set (CMAKE_BUILD_TYPE RelWithDebInfo)
endif (NOT CMAKE_BUILD_TYPE)

string (REPLACE -02 -03 CMAKE_CXX_FLAGS_RELWITHDEBINFO ${CMAKE_CXX_FLAGS_RELWITHDEBINFO})

if (NOT CMAKE_GPU_RUNTIME)

set (GPU_RUNTIME "ROCM" CACHE STRING "Switches between ROCM and CUDA")
else (NOT CMAKE_GPU_RUNTIME)

set (GPU_RUNTIME "${CMAKE_GPU_RUNTIME}" CACHE STRING "Switches between ROCM and CUDA")
endif (NOT CMAKE_GPU_RUNTIME)
# Really should only be ROCM or CUDA, but allowing HIP because it is the currently buili-in option
set (GPU_RUNTIMES "ROCM" "CUDA" "HIP")
if (NOT "${GPU_RUNTIME}" IN_LIST GPU_RUNTIMES)

set (ERROR_MESSAGE "GPU_RUNTIME is set to \"${GPU_RUNTIME}\".\nGPU_RUNTIME must be either HIP,
ROCM, or CUDA.")

message (FATAL_ERROR ${ERROR_MESSAGE})
endif ()
# GPU_RUNTIME for AMD GPUs should really be ROCM, if selecting AMD GPUs
# so manually resetting to HIP <1f ROCM is selected
if (${GPU_RUNTIME} MATCHES "ROCM")

set (GPU_RUNTIME "HIP")
endif (${GPU_RUNTIME} MATCHES "ROCM")
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set_property (CACHE GPU_RUNTIME PROPERTY STRINGS ${GPU_RUNTIMES})

enable_language (${GPU_RUNTIME})
set (CMAKE_${GPU_RUNTIME} EXTENSIONS OFF)
set (CMAKE_${GPU_RUNTIME}_STANDARD_REQUIRED ON)

set (PENNANT_CXX_SRCS src/Driver.cc src/ExportGold.cc src/GenMesh.cc src/Hydro.cc src/HydroBC.cc
src/ImportGMV.cc src/InputFile.cc src/Mesh.cc src/Parallel.cc src/PolyGas.cc
src/QCS.cc src/TTS.cc src/WriteXY.cc src/main.cc)

set (PENNANT_HIP_SRCS src/HydroGPU.hip)
add_executable(pennant ${PENNANT_CXX_SRCS} ${PENNANT_HIP_SRCS} )

# Make example runnable using ctest
add_test (NAME Pennant COMMAND pennant ../test/sedovbig/sedovbig.pnt )
set_property(TEST Pennant

PROPERTY PASS_REGULAR_EXPRESSION "End cycle 3800, time = 9.64621e-01")

set (ROCMCC_FLAGS "${ROCMCC_FLAGS} -munsafe-fp-atomics")
set (CUDACC_FLAGS "${CUDACC_FLAGS} ")

if (${GPU_RUNTIME} MATCHES "HIP")
set (HIPCC_FLAGS "${ROCMCC_FLAGS}")
else (${GPU_RUNTIME} MATCHES "HIP")
set (HIPCC_FLAGS "${CUDACC_FLAGS}")
endif (${GPU_RUNTIME} MATCHES "HIP")

set_source_files_properties(${PENNANT_HIP_SRCS} PROPERTIES LANGUAGE ${GPU_RUNTIME})
set_source_files_properties(HydroGPU.hip PROPERTIES COMPILE_FLAGS ${HIPCC_FLAGS})

install(TARGETS pennant)

To test the cmake build system, do the following

mkdir build && cd build
cmake ..

make VERBOSE=1

ctest

Now testing for CUDA

module load cuda

mkdir build && cd build

cmake -DCMAKE_GPU_RUNTIME=CUDA ..

make VERBOSE=1
ctest

HIPIFLY Example: Vector Addition

Original author was Trey White, at the time with HPE and now with ORNL.

The HIPifly method for converting CUDA code to HIP, is straight-forward and works with minimal modifi-
cations to the source code. This example applies the HIPifly method to a simple vector addition problem
offloaded to the GPU using CUDA.
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All CUDA functions are defined in the src/gpu_functions.cu file. By including the cuda_to_hip.h
file when using HIP, all the CUDA functions will be automatically replaced with the analogous HIP function
during compile time.

By default, the program is compiled for NVIDIA GPUs using nvcc . To compile for CUDA just run make

To compile for AMD GPUs using hipcc run make DFLAGS=-DENABLE_HIP . Note that the Makefile
applies different GPU compilation flags when compiling for CUDA or for HIP.

The paths to the CUDA or the ROCm software stack as CUDA_PATH or ROCM_PATH are needed to compile.

After compiling run the program: ./vector_add
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HIP and OpenMP Interoperability

The first example is just a staightforward openmp offload version of saxpy. Any C++ compiler that supports
OpenMP offload to hip should work.

cd HPCTrainingExamples/HIP-OpenMP/CXX/saxpy_openmp_offload
module load rocm
module load amdclang

Now we move on to an OpenMP main calling a HIP version of the SAXPY kernel. Note that we have to get
the device version of the array pointers to pass into the HIP kernel.

cd HPCTrainingExamples/HIP-OpenMP/CXX/saxpy_openmp_hip
module load rocm

module load amdclang

export HSA_XNACK=1

We can’t leave this example without looking at what the code would look like with the APU programming
model.

cd HPCTrainingExamples/HIP-OpenMP/CXX/saxpy_APU
module load rocm

module load amdclang

export HSA_XNACK=1

You can put both OpenMP and HIP code in the same file with some care. This next hands-on exercise shows
how in the code in HPCTrainingExamples/HIP-OpenMP /daxpy. We have code that uses both OpenMP and
HIP. These require two separate passes with compilers: one with amdclang++ and the other with hipcc. Go
to the directory containing the example and set up the environment:

cd HPCTrainingExamples/HIP-OpenMP/CXX/daxpy
module load rocm

module load amdclang

export HSA_XNACK=1

View the source code file daxpy.cc and note the two #ifdef blocks.

The first one is DEVICE__ CODE that we want to compile with hipcc.

The second is HOST__CODE that we will use the C++ compiler to compile.

All of the HIP calls and variables are in the first block. The second block contains the OpenMP pragmas.

While we can use hipcc to compile standard C++ code, it will not work on code with OpenMP pragmas.
The call to the HIP daxpy kernel occurs near the end of the host code block. We could split out these two
code blocks into separate files, but this may be more intrusive with a code design.

Now we can take a look at the Makefile we use to compile the code in the single file. In the file, we create
two object files for the executable to be dependent on.

We then compile one with the CXX compiler with -D__HOST_CODE__ defined.
The second object file is compiled using hipcc and with -D__DEVICE_CODE__ defined.

This doesn’t completely solve all the issues with separate translation units, but it does help workaround some
code organization constraints.

Now on to building and running the example.

make
./daxpy
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GPU Aware MPI

Point-to-point and collective

NOTE: these exercises have been tested on MI210 and MI300A accelerators using a container environment.
To see details on the container environment (such as operating system and modules available) please see
README.md on this repo.

Allocate at least two GPUs and set up your environment

module load openmpi rocm
export OMPI_CXX=hipcc

Find the code and compile

cd HPCTrainingExamples/MPI-examples
mpicxx -o ./pt2pt ./pt2pt.cpp

Set the environment variable and run the code

mpirun -n 2 -mca pml ucx ./pt2pt

OSU Benchmark
Get the OSU micro-benchmark tarball and extract it

mkdir OMB

cd OMB

wget https://mvapich.cse.ohio-state.edu/download/mvapich/osu-micro-benchmarks-7.3.tar.gz
tar -xvf osu-micro-benchmarks-7.3.tar.gz

Create a build directory and cd to osu-micro-benchmarks-7.3

mkdir build
cd osu-micro-benchmarks-7.3
module load rocm openmpi

Build and install OSU micro-benchmarks

./configure —-prefix="pwd /../build/ \
CC="which mpicc™ \
CXX="which mpicxx™ \
CPPFLAGS=-D__HIP_PLATFORM_AMD__=1 \
——enable-rocm \
--with-rocm=${ROCM_PATH}

make -j12

make install

If you get the error “cannot include hip/hip_runtime_api.h”, grep for HIP_ PLATFORM__HCC and
replace it with HIP_ PLATFORM__AMD in configure.ac and configure files.

Check if osu microbenchmark is actually built
1s -1 ../build/libexec/osu-micro-benchmarks/mpi/

if you see files collective, one-sided, pt2pt, and startup, your build is successful.

Allocate 2 GPUs, and make those visible

export HIP_VISIBLE_DEVICES=0,1
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Make sure GPU-Aware communication is enabled and run the benchmark

mpirun -n 2 -mca pml ucx ../build/libexec/osu-micro-benchmarks/mpi/pt2pt/osu_bw \
-m $((16%1024%x1024)) D D

Notes: - Try different pairs of GPUs. - Run the command “rocm-smi —showtopo” to see the link type between
the pairs of GPUs. - How does the bandwidth vary for xGMI connected GPUs vs PCIE connected GPUs?

Ghost Exchange example

This example takes an MPI Ghost Exchange code that runs on the CPU and ports it to the GPU and
GPU-aware MPI.

module load amdclang openmpi

git clone https://github.com/amd/HPCTrainingExamples.git

cd HPCTrainingExamples/MPI-examples/GhostExchange/GhostExchange ArrayAssign/Orig
mkdir build && cd build

cmake ..

make

mpirun -n 8 --mca pml ucx ./GhostExchange \

-x 4 -y 2 -i 20000 -j 20000 -h 2 -t -c -I 1000

We can improve this performance by using process placement so that we are using all the memory channels.

On MI2100 nodes, we have 2 NUMA per node. So we can assign 4 ranks per NUMA when running with 8
ranks:

mpirun -n 8 --mca pml ucx --bind-to core --map-by ppr:4:numa --report-bindings \

./GhostExchange -x 4 -y 2 -i 20000 -j 20000 -h 2 -t -c -I 1000

On MI300A node, we have 4 NUMA per node. So we can assign 2 ranks per NUMA when running with 8
ranks:

mpirun -n 8 --mca pml ucx --bind-to core --map-by ppr:2:numa --report-bindings \
./GhostExchange -x 4 -y 2 -i 20000 -j 20000 -h 2 -t -c -I 1000

For the port to the GPU, we are going to take advantage of Managed Memory (or single memory space on
MI3004)

export HSA_XNACK=1
cd ../Verl
mkdir build && cd build
cmake ..
make
mpirun -n 8 --mca pml ucx --bind-to core --map-by ppr:4:numa \
-x HIP_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 \
./GhostExchange -x 4 -y 2 -i 20000 -j 20000 -h 2 -t -c -I 1000

Alternatively, on MI300A, we can run with:
mpirun -n 8 --mca pml ucx --bind-to core --map-by ppr:2:numa \
-x HIP_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 \
./GhostExchange -x 4 -y 2 -i 20000 -j 20000 -h 2 -t -c -I 1000

The MPI buffers are only used on the GPU, so we can just allocate them there and save memory on the CPU.
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export HSA_XNACK=1

cd ../Ver3

mkdir build && cd build

cmake ..

make

mpirun -n 8 --mca pml ucx --bind-to core --map-by ppr:4:numa \
-x HIP_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 \

./GhostExchange -x 4 -y 2 -i 20000 -j 20000 -h 2 -t -c -I 1000
Alternatively, on MI300A, we can run with:

mpirun -n 8 --mca pml ucx --bind-to core --map-by ppr:2:numa \
-x HIP_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 \
./GhostExchange -x 4 -y 2 -i 20000 -j 20000 -h 2 -t -c -I 1000

Memory allocations can be expensive for the GPU. This next version just allocates the MPI buffers once in
the main routine.

export HSA_XNACK=1
cd ../Ver3
mkdir build && cd build
cmake ..
make
mpirun -n 8 --mca pml ucx --bind-to core --map-by ppr:4:numa \
-x HIP_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 \
./GhostExchange -x 4 -y 2 -i 20000 -j 20000 -h 2 -t -c -I 1000cd

Alternatively, on MI300A, we can run with:
mpirun -n 8 --mca pml ucx --bind-to core --map-by ppr:2:numa \

-x HIP_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 \
./GhostExchange -x 4 -y 2 -i 20000 -j 20000 -h 2 -t -c -I 1000
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Kokkos examples

Stream Triad
Step 1: Build a separate Kokkos package

NOTE: these exercises have been tested on MI210 and MI300A accelerators using a container environment.
To see details on the container environment (such as operating system and modules available) please see
README.md on this repo.

cd $HOME/HPCTraining/Examples
git clone https://github.com/kokkos/kokkos Kokkos_build
cd Kokkos_build

Build Kokkos with OpenMP backend

mkdir build_openmp && cd build_openmp
cmake -DCMAKE_INSTALL_PREFIX=${HOME}/Kokkos_OpenMP -DKokkos_ENABLE_SERIAL=0n \
-DKokkos_ENABLE_OPENMP=0n ..

make -j 8

make install

cd ..

Build Kokkos with HIP backend

mkdir build_hip && cd build_hip

cmake -DCMAKE_INSTALL_PREFIX=${HOME}/Kokkos_HIP -DKokkos_ENABLE_SERTIAL=0N \
-DKokkos_ENABLE_HIP=0N -DKokkos_ARCH_ZEN=0ON -DKokkos_ARCH_VEGA90A=0N \
-DCMAKE_CXX_COMPILER=hipcc ..

make -j 8; make install
cd ..

Set Kokkos_DIR to point to external Kokkos package to use

export Kokkos_DIR=${HOME}/Kokkos_HIP

Step 2: Modify Build

Get example

git clone --recursive https://github.com/Essentials0fParallelComputing/Chapter13 Chapterl3
cd Chapter13/Kokkos/StreamTriad
cd Orig

Test serial version with
mkdir build && cd build; cmake ..; make; ./StreamTriad

If the run fails (SEGV), try reducing the size of the arrays, by reducing the value of the nsize variable in
StreamTriad.cc.

Add to CMakeLists.txt

(add) find_package (Kokkos REQUIRED)
add_executables(StreamTriad ....)
(add) target_link_libraries(StreamTriad Kokkos::kokkos)
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Retest with
cmake ..; make
and run ./StreamTriad again

Check Verl for solution. These modifications have already been made in Verl version.

Step 3: Add Kokkos views for memory allocation of arrays
(peek at verd/StreamTriad.cc to see the end result)

Add include file
#include <Kokkos_Core.hpp>
Add initialize and finalize

Kokkos: :initialize(argc, argv); A

} Kokkos::finalize();

Replace static array declarations with Kokkos views

int nsize=80000000;

Kokkos: :View<double *> a( "a", nsize);
Kokkos: :View<double *> b( "b", nsize);
Kokkos: :View<double *> c( "c", nsize);

Rebuild and run

CXX=hipcc cmake ..
make
./StreamTriad

Step 4: Add Kokkos execution pattern - parallel_for Change for loops to Kokkos parallel fors.
At start of loop

Kokkos: :parallel_for(nsize, KOKKOS_LAMBDA (int i) {

At end of loop, replace closing brace with

HE

Rebuild and run. Add environment variables as Kokkos message suggests:

export OMP_PROC_BIND=spread
export OMP_PLACES=threads
export OMP_PROC_BIND=true

How much speedup do you observe?

Step 5: Add Kokkos timers
Add Kokkos calls

Kokkos: :Timer timer;
timer.reset(); // for timer start
time_sum += timer.seconds();

Remove
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#include <timer.h>

struct timespec tstart;
cpu_timer_start(&tstart);

time_sum += cpu_timer_stop(tstart);

6. Run and measure performance with OpenMP
Find out how many virtual cores are on your CPU
1scpu

First run with a single processor:

Average runtime

Then run the OpenMP version:

Average runtime

Portability Exercises
1. Rebuild Stream Triad using Kokkos build with HIP
Set Kokkos DIR to point to external Kokkos build with HIP

export Kokkos_DIR=${HOME}/Kokkos_HIP/1ib/cmake/Kokkos_ HIP
cmake ..
make

2. Run and measure performance with AMD Radeon GPUs
HIP build with ROCm

Ver4 - Average runtime is msecs
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C++4 Standard Parallelism on AMD GPUs

Here are some instructions on how to compile and run some tests that exploit C++ standard parallelism.
NOTE: these exercises have been tested on MI210 and MI300A accelerators using a container environment.
To see details on the container environment (such as operating system and modules available) please see
README.md on this repo.

git clone https://github.com/amd/HPCTrainingExamples.git

hipstdpar__saxpy_ foreach example

export HSA_XNACK=1
module load amdclang

cd ~/HPCTrainingExamples/HIPStdPar/CXX/saxpy_foreach

make
export AMD_LOG_LEVEL=3

. /saxpy
clean

hipstdpar__saxpy__transform example

export HSA_XNACK=1
module load amdclang

cd ~/HPCTrainingExamples/HIPStdPar/CXX/saxpy_transform

make

export AMD_LOG_LEVEL=3
. /saxpy

clean

hipstdpar__saxpy_ transform_ reduce example

export HSA_XNACK=1
module load amdclang

cd ~/HPCTrainingExamples/HIPStdPar/CXX/saxpy_transform_reduce
make

export AMD_LOG_LEVEL=3

. /saxpy
clean
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Traveling Salesperson Problem
#!/bin/bash

git clone https://github.com/pkestene/tsp

cd tsp

git checkout 51587

wget —q https://raw.githubusercontent.com/ROCm/roc-stdpar/main/data/patches/tsp/TSP.patch

patch -pl < TSP.patch
cd stdpar

export HSA_XNACK=1

module load amdclang

export STDPAR_CXX=$CXX

export ROCM_GPU="rocminfo |grep -m 1 -E gfx[~0]{1} | sed -e 's/ *Name: *//'"
export STDPAR_TARGET=${ROCM_GPU}

export AMD_LOG_LEVEL=3 #optional

make tsp_clang_stdpar_gpu
./tsp_clang_stdpar_gpu 13 #or more. ..

make clean
cd ../..
rm -rf tsp

hipstdpar__shallowwater__orig.sh
cd ~/HPCTrainingExamples/HIPStdPar/CXX/ShallowWater_Orig

mkdir build && cd build
cmake ..

make

./ShallowWater

cd ..
rm -rf build

hipstdpar__shallowwater__verl.sh
cd ~/HPCTrainingExamples/HIPStdPar/CXX/ShallowWater_Verl

mkdir build && cd build
cmake ..

make

./ShallowWater

cd ..
rm -rf build
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ROCgdb

NOTE: these exercises have been tested on MI210 and MI300A accelerators using a container environment.
To see details on the container environment (such as operating system and modules available) please see
README.md on this repo.

We show a simple example on how to use the main features of the ROCm debugger rocgdb .

Saxpy Debugging

Let us consider the saxpy kernel in the HIP examples:

cd HPCTrainingExamples/HIP/saxpy

Get an allocation of a GPU and load software modules:

salloc -N 1 --gpus=1
module load rocm

You can see some information on the GPU you will be running on by doing:
rocm-smi

To introduce an error in your program, comment out the hipMalloc calls at line 71 and 72, then compile
with:

mkdir build && cd build
cmake ..
make VERBOSE=1

Running the program, you will see the expected runtime error:

. /saxpy
Memory access fault by GPU node-2 (Agent handle: 0x2284d90) on address (nil). Reason: Unknown.
Aborted (core dumped)

To run the code with the rocgdb debugger, do:
rocgdb saxpy
Note that there are also two options for graphical user interfaces that can be turned on by doing:

rocgdb -tui saxpy
cgdb -d rocgdb saxpy

For the latter command above, you need to have cgdb installed on your system.

In the debugger, type run (or just r ) and you will get an error similar to this one:

Thread 3 "saxpy" received signal SIGSEGV, Segmentation fault.
[Switching to thread 3, lane O (AMDGPU Lane 1:2:1:1/0 (0,0,0)[0,0,0])]
0x00007ffff7ec1094 in saxpy() at saxpy.cpp:57

57 y[i] += a*x[i];

Note that the cmake build type is set to RelWithDebInfo (see line 8 in CMakeLists.txt). With this build
type, the debugger will be aware of the debug symbols. If that was not the case (for instance if compiling in
Release mode), running the code with the debugger you would get an error message without line info,
and also a warning like this one:

Reading symbols from saxpy...
(No debugging symbols found in saxpy)
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The error report is at a thread on the GPU. We can display information on the threads by typing
info threads (or i th ). It is also possible to move to a specific thread with thread <ID> (or

t <ID> ) and see the location of this thread with where . For instance, if we are interested in the thread
with ID 1:

ith
th 1

where

You can add breakpoints with break (or b ) followed by the line number. For instance to put a breakpoint
right after the hipMalloc linesdo b 72 .

When possible, it is also advised to compile without optimization flags (so using -00 ) to avoid seeing
breakpoints placed on lines different than those specified with the breakpoint command.

You can also add a breakpoint directly at the start of the GPU kernel with b saxpy . To run to the next

breakpoint, type continue (or c ).

To list all the breakpoints that have been inserted type info break (or i b ):

(gdb) i b

Num Type Disp Enb Address What

1 breakpoint keep y  0x000000000020b334 in main() at /HPCTrainingExamples/HIP/saxpy/saxpy.hip:74
2 breakpoint keep y  0x000000000020b350 in main() at /HPCTrainingExamples/HIP/saxpy/saxpy.hip:78

A breakpoint can be removed with delete <Num> (or d <Num> ): note that <Num> is the breakpoint
ID displayed above. For instance, to remove the breakpoint at line 74, you have to do d 1
To proceed to the next line you can do next (or n ). To step into a function, do step (or s )and to

get out do finish . Note that if a breakpoint is at a kernel, doing n or s will switch between different
threads. To avoid this behavior, it is necessary to disable the breakpoint at the kernel with disable <Num>

It is possible to have information on the architecture (below shown on MI250):

(gdb) info agents
Id State Target Id Architecture Device Name Cores Threads Location
*1 A AMDGPU Agent (GPUID 64146) gfx90a Aldebaran/MI200 [Instinct MI250X/MI250] 416 3328 29:00.0

We can also get information on the thread grid:
(gdb) info dispatches
Id Target Id Grid Workgroup Fence Kernel Function
* 1 AMDGPU Dispatch 1:1:1 (PKID 0) [256,1,1] [128,1,1] Bl|Aal|Ra saxpy(int, float const*, int, float*, int)

For the rocgdb documentation, please see: /opt/rocm-<version>/share/doc/rocgdb .
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Rocprof

NOTE: these exercises have been tested on MI210 and MI300A accelerators using a container environment.
To see details on the container environment (such as operating system and modules available) please see
README.md on this repo.

We discuss an example on how to use the tools from rocprof .

Initial Setup
First, setup the environment:

salloc --cpus-per-task=8 --mem=0 --ntasks-per-node=4 --gpus=1
module load rocm

Download the examples repo and navigate to the HIPIFY exercises:
cd ~/HPCTrainingExamples/HIPIFY/mini-nbody/hip/

Update the bash scripts with $ROCM_PATH

sed -i 's/\/opt\/rocm/${ROCM_PATH}/g' *.sh

Compile and run the nbody-orig.hip program (the script below will do both, for several values of

nBodies ):

./HIP-nbody-orig.sh

To compile explicitly without make you can do (considering for example nbody-orig ):
hipcc -I../ -DSHMOO nbody-orig.hip -o nbody-orig

And then run with:

./nbody-orig <nBodies>

The procedure for compiling and running a single example applies to the other programs in the directory.
The default value for nBodies is 30000 for all the examples.

Run ROCprof and Inspect the Output
Run rocprof to obtain the hotspots list (considering for example nbody-orig ):
rocprof --stats --basenames on nbody-orig 65536

In the above command, the --basenames on flag removes the kernel arguments from the output, for ease
of reading. Throughout this example, we will always use 65536 as a value for nBodies , since nBodies
is used to define the number of work groups in the thread grid:

nBlocks = (nBodies + BLOCK_SIZE - 1) / BLOCK_SIZE

Check results.csv to find, for each invocation of each kernel, details such as grid size ( grd ), workgroup
size ( wgr ), LDS used ( 1ds ), scratch used if register spilling happened ( scr ), number of SGPRs and

VGPRs used, etc. Note that grid size is equal to the total number of work-items (threads), not the number
of work groups. This is the output that is useful if you allocate shared memory dynamically, for instance.

Additionally, you can check the statistics result file called results.stats.csv , displayed one line per
kernel, sorted in descending order of durations.

You can trace HIP, GPU and Copy activity with --hip-trace :
rocprof --hip-trace nbody-orig 65536
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The output is the file results.hip_stats.csv , which lists the HIP API calls and their durations, sorted
in descending order. This can be useful to find HIP API calls that may be bottlenecks.

You can also profile the HSA API by adding the --hsa-trace option. This is useful if you are profiling
OpenMP target offload code, for instance, as the compiler implements all GPU offloading via the HSA layer:

rocprof --hip-trace --hsa-trace nbody-orig 65536

In addition to results.hip_stats.csv , the command above will create the file results.hsa_stats.csv
which contains the statistics information for HSA calls.

Visualization with Perfetto

The results.json JSON file produced by rocprof can be downloaded to your local machine and

viewed in Perfetto Ul. This file contains the timeline trace for this application, but shows only GPU, Copy
and HIP API activity.

Once you have downloaded the file, open a browser and go to https://ui.perfetto.dev/. Click on
Open trace file in the top left corner. Navigate to the results.json you just downloaded. Use
WASD to navigate the GUI
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Figure 1: image

To read about the GPU hardware counters available, inspect the output of the following command:
less $ROCM_PATH/lib/rocprofiler/gfx_metrics.xml

In the output displayed, look for the section associated with the hardware on which you are running (for
instance gfx90a).

Create a rocprof_counters.txt file with the counters you would like to collect, for instance:
touch rocprof_counters.txt
and write this in rocprof_counters.txt as an example:

pmc : Wavefronts VALUInsts
pmc : SALUInsts SFetchInsts GDSInsts
pmc : MemUnitBusy ALUStalledByLDS

Execute with the counters we just added, including the timestamp on option which turns on GPU kernel
timestamps:

rocprof --timestamp on -i rocprof_counters.txt mnbody-orig 65536

You'll notice that rocprof runs 3 passes, one for each set of counters we have in that file.

View the contents of rocprof_counters.csv for the collected counter values for each invocation of each
kernel:

cat rocprof\_counters.csv
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Omniperf Examples

Exercise 1: Launch Parameter Tuning

Simple kernel implementing a version of yAx, to demonstrate effects of Launch Parameters on kernel execution
time.

Note: This exercise was tested on a system with MI210s, on a recent commit of Omniperf version 2.0.0

and ROCm 6.0.0 . Any Omniperf version 2.0.0 or greater is incompatible with versions of
ROCm less than 6.0.0

Client-side installation instructions are available in the official omniperf documentation, and provide all
functionality demonstrated here.

If your system has an older version of Omniperf, please refer to the archived READMEs in this directory and
use a ROCm version lesser than 6.0.0 .
Background: Acronyms and terms used in this exercise

e yAx: a vector-matrix-vector product, yAx, where y and x are vectors, and A is a matrix

o FP(32/16): 32- or 16-bit Floating Point numeric types

e FLOPs: Floating Point Operations Per second

« HBM: High Bandwidth Memory is globally accessible from the GPU, and is a level of memory above

the L2 cache

Initial Roofline Analysis:

The roofline model is a way to gauge kernel performance in terms of maximum achievable bandwidth and
floating-point operations. It can be used to determine how efficiently a kernel makes use of the available
hardware. It is a key tool in initially determining which kernels are performing well, and which kernels should
be able to perform better. Below are roofline plots for the yAx kernel in problem.cpp:

Roofline Type Roofline Legend Roofline Plot
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/" /  aosmcrons  — L2
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o ail2
* ai_hbm

Kernel Names and Markers

Performance (GFLOP/sec)

0.01 0.1 1 10 100 1000

FP32/FP64 Arithmetic Intensity (FLOPs/Byte)
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Roofline Type Roofline Legend Roofline Plot
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These plots were generated by running:
omniperf profile -n problem_roof_only --roof-only --kernel-names -- ./problem.exe

The plots will appear as PDF files in the ./workloads/problem_roof_only/MI200 directory, if generated
on MI200 hardware.

We see that the kernel’s performance is not near the achievable bandwidth possible on the hardware, which
makes it a good candidate to consider optimizing.
Exercise instructions:

From the roofline we were able to see that there is room for improvement in this kernel. One of the first
things to check is whether or not we have reasonable launch parameters for this kernel.

To get started, build and run the problem code:

make
./problem.exe

(simulated output)
yAx time: 2911 milliseconds

The runtime of the problem should be very slow, due to sub-optimal launch parameters. Let’s confirm this
hypothesis by looking at the omniperf profile. Start by running;:

omniperf profile -n problem --no-roof -- ./problem.exe

This command requires omniperf to run your code a few times to collect all the necessary hard-
ware counters. - -n problem names the workload, meaning that the profile will appear in the

./workloads/problem/MI200/ directory, if you are profiling on an MI200 device. - --no-roof turns
off the roofline, which will save some profiling time by avoiding the collection of achievable bandwidths and
FLOPs on the device. - Everything after the -- is the command that will be profiled.

After the profiling data is collected, we can view the profile by using this command:
omniperf analyze -p workloads/problem/MI200 --dispatch 1 --block 7.1.0 7.1.1 7.1.2

This allows us to view nicely formatted profiling data directly in the command line. The command
given here has a few arguments that are noteworthy: - -p workloads/problem/MI200 must point to
the output directory of your profile run. For the above omniperf profile command, this will be
workloads/problem/MI200 . - --dispatch 1 (filters kernel statistics by dispatch ID. In this case kernel

0 was a “warm-up” kernel, and kernel 1 is what the code reports timings for. - --block displays only the
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requested metrics, in this case we want metrics specific to Launch Parameters: - 7.1.0 is the Grid Size -
7.1.1 is the Workgroup Size - 7.1.2 is the Total Wavefronts Launched

The output of the omniperf analyze command should look something like this:

Analysis mode = cli
[analysis] deriving Omniperf metrics...

0. Top Stats
.1 Top Kernels

o

| | Kernel_Name Count | Sum(ns) Mean(ns) | Median(ns) | Pct |

| 0 | yax(doublex*, doublex, doublex, int, int, 1.00 | 751342314.00 | 751342314.00 | 751342314.00 | 100.00 |

| |
| | | | | |
| |
| | doublex) [clone .kd] | | | | | |

| Dispatch_ID | Kernel_Name | GPU_ID |
| | |
| 1 | yax(double*, double*, double*, int, int, double*) [clone .kd] | 2 |

| 0

7. Wavefront
7.1 Wavefront Launch Stats

| Metric_ID | Metric | Avg | Min | Max | Unit

| 7.1.0 : Grid Size : 256.00 : 256.00 : 256.00 : Work items |
| 7.1.1 : Workgroup Size : 64.00 : 64.00 : 64.00 : Work items |
| 7.1.2 : Total Wavefronts : 4.00 : 4.00 : 4.00 : Wavefronts |

Looking through this data we see: - Workgroup Size ( 7.1.1 ) is 64 threads, which corresponds with the
size of a wavefront. - Total Wavefronts ( 7.1.2 ) shows that we are launching only 4 Wavefronts.

We can definitely get better performance by adjusting the launch parameters of our kernel. Either try out
some new values for the launch bounds, or run the provided solution to see its performance:

cd solution
make
./solution.exe

(simulated output)
yAx time: 70 ms

We get much better performance with the new launch parameters. Note that in general it can be difficult to
find the most optimal launch parameters for a given kernel due to the many factors that impact performance,
so determining launch parameters experimentally is usually necessary.

We should also confirm that our updated launch parameters are reported by omniperf, we need to run:

omniperf profile -n solution --no-roof -- ./solution.exe

This command is the same as before, except the workload name has changed to solution . Once the
profile command has completed, run:
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omniperf analyze -p workloads/solution/MI200 --dispatch 1 --block 7.1.0 7.1.1 7.1.2

Again, this command largely uses the same arguments as before, except for the workload name. The output
should look something like this:

Analysis mode = cli
[analysis] deriving Omniperf metrics...

0. Top Stats
0.1 Top Kernels

Count | Sum(ns) | Mean(ns) | Median(ns) Pct |
| | |

1.00 | 69512860.00 | 69512860.00 | 69512860.00
|

| | Kernel_Name

|
| 0 | yax(double*, double*, double*, int, int,
| | double*) [clone .kd]

100.00 |

| Dispatch_ID | Kernel_Name | GPU_ID |
| | |
| 1 | yax(double*, double*, double*, int, int, double*) [clone .kd] | 2 |

7. Wavefront
7.1 Wavefront Launch Stats

| Metric_ID | Metric | Avg | Min | Max | Unit |
| 7.1.0 : Grid Size : 131072.00 : 131072.00 : 131072.00 : Work items |
| 7.1.1 : Workgroup Size : 64.00 : 64.00 : 64.00 : Work items |
| 7.1.2 : Total Wavefronts : 2048.00 : 2048.00 : 2048.00 : Wavefronts |

Looking through this data we see: - Workgroup Size ( 7.1.1 ) corresponds to the first argument of the block
launch parameter - Total Wavefronts ( 7.1.2 ) corresponds to the first index of the grid launch parameter -
Grid size ( 7.1.0 ) is Workgroup Size ( 7.1.1 ) times Total Wavefronts ( 7.1.2 )

Omniperf Command Line Comparison Feature

On releases newer than Omniperf 1.0.10, the comparison feature of omniperf can be used to quickly
compare two profiles. To use this feature, use the command:

omniperf analyze -p workloads/problem/MI200 -p solution/workloads/solution/MI200 --dispatch 1 --block 7

This feature sets the first -p argument as the baseline, and the second as the comparison workload. In
this case, problem is set as the baseline and is compared to solution. The output should look like:

Analysis mode = cli
[analysis] deriving Omniperf metrics...

0. Top Stats
0.1 Top Kernels

| | Kernel_Name Count | Count Abs Diff | Sum(ns) | Sum(ns)
| | |

0.00 | 751342314.00 | 69512860.0 (-90.75%)
|

1.00 | 1.0 (0.0%)

|
|
| 0 | yax(doublex, double*, double*, int, int, |
| | doublex) [clone .kd] |
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| | Kernel_Name | Mean(ns) | Median(ns) | Median(ns) | Pct | Pct |
_____ | | | | | |

| 0 | yax(doublex, doublex, doublex, int, int, | 69512860.0 (-90.75%) | 751342314.00 | 69512860.0 (-90.75%) | 100.00 | 100.0 (0.0%)

| | doublex) [clone .kd] | | | | | |

0.2 Dispatch List

| | Dispatch_ID | Kernel_Name GPU_ID |

I o1 1 | yax(double*, double*, double*, int, int, doublex) [clone .kd] 2|

7. Wavefront

7.1 Wavefront Launch Stats

| Metric_ID | Metric | Avg | Avg | Abs Diff | Min | Min | Max | Max | Unit |
| 7.1.0 : Grid Size } 256.00 } 131072.0 (51100.0%) : 130816.00 } 256.00 : 131072.0 (51100.0%) : 256.00 } 131072.0 (51100.0%) : Work items |
| 7.1.1 : Workgroup Size } 64.00 } 64.0 (0.0%) : 0.00 } 64.00 : 64.0 (0.0%) : 64.00 } 64.0 (0.0%) : Work items

| 7.1.2 : Total Wavefronts } 4.00 } 2048.0 (51100.0%) : 2044.00 } 4.00 : 2048.0 (51100.0%) : 4.00 } 2048.0 (51100.0%) : Wavefronts

Note that the comparison workload shows the percentage difference from the baseline. This feature can be
used to quickly compare filtered stats to make sure code changes fix known issues.

More Kernel Filtering

For this exercise, it is appropriate to filter the omniperf analyze command with the --dispatch 1

argument. This --dispatch 1 argument filters the data shown to only include the kernel invocation with
dispatch ID 1, or the second kernel run during profiling.

However, there is another way to filter kernels that may be more applicable in real use-cases. Typically real
codes launch many kernels, and only a few of them take most of the overall kernel runtime. To see a ranking
of the top kernels that take up most of the kernel runtime in your code, you can run:

omniperf analyze -p workloads/problem/MI200 --list-stats

This command will output something like:

Analysis mode = cli
[analysis] deriving Omniperf metrics...

Detected Kernels (sorted descending by duration)

| | Kernel_Name

|
| 0 | yax(double*, double*, double*, int, int, double*) [clone .kd] |

Dispatch list

| | Dispatch_ID | Kernel_Name | GPU_ID |
| | |
| 0| 0 | yax(double*, double*, double*, int, int, double*) [clone .kd] | 2 |
| | |
| 11 1 | yax(double*, double*, double*, int, int, double*) [clone .kd] | 2 |
Using Omniperf versions greater than 2.0.0 , --list-stats will list all kernels launched by your code,

in order of runtime (largest runtime first). The number displayed beside the kernel in the output can be used
to filter omniperf analyze commands. Note that this will display aggregated stats for kernels of
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the same name, meaning that the invocations could differ in terms of launch parameters, and vary widely
in terms of work completed. This filtering is accomplished with the -k argument:

omniperf analyze -p workloads/problem/MI200 -k O --block 7.1.0 7.1.1 7.1.2

Which should show something like:

/N - - __ O ______/_l
Frr b NN N/ N
[ 1 Y T NV 2 B B
N/ D s Y O D A VR B B O
I_1
Analysis mode = cli
[analysis] deriving Omniperf metrics...
0. Top Stats
0.1 Top Kernels
| | Kernel_Name | Count | Sum(ns) | Mean(ns) | Median(ns) | Pct | S |
| | | | | | |
| 0 | yax(double*, double*, double*, int, int, | 2.00 | 1501207023.00 | 750603511.50 | 750603511.50 | 100.00 | =* |
| | doublex) [clone .kd] | | | | | | |
| | Dispatch_ID | Kernel_Name | GPU_ID |
| | |
| 0| 0 | yax(double*, double*, doublex, int, int, doublex*) [clone .kd] | 2 |
| | |
| 11 1 | yax(double*, double*, double*, int, int, double*) [clone .kd] | 2 |

7. Wavefront
7.1 Wavefront Launch Stats

| Metric_ID | Metric | Avg | Min | Max | Unit

| 7.1.0 : Grid Size : 256.00 : 256.00 : 256.00 : Work items |
| 7.1.1 : Workgroup Size : 64.00 : 64.00 : 64.00 : Work items |
| 7.1.2 : Total Wavefronts : 4.00 : 4.00 : 4.00 : Wavefronts |

Note that the ‘count’ field in Top Stat is 2 here, where filtering by dispatch ID displays a count of 1, indicating
that filtering with -k returns aggregated stats for two kernel invocations in this case. Also note that the
“Top Stats” table will still show all the top kernels but the rightmost column titled “S” (think “Selected”)
will have an asterisk beside the kernel for which data is being displayed. Also note that the dispatch list
displays two entries rather than the one we see when we filter by --dispatch 1

Solution Roofline

We’ve demonstrated better performance than problem.cpp in solution.cpp, but could we potentially do better?

To answer that we again turn to the roofline model:
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s 41506 GFLOP/s ~ —— HBM-FP32

/ / 21080 GFLOP/s L2rPs2

—— L1-FP32
" —— LDS-FP32
10 Peak VALU-FP32
) s Peak MFMA-FP32
& o el
o e ail2
Qo 2 -
z * ai_hbm
O 1000
Kernel Names and Markers o
g 5
5
. . . B
K 2
5
& 100
:
L]
10
0.01 0.1 1 10 100 1000
FP32/FP64 Arithmetic Intensity (FLOPs/Byte)
2 166963 GFLOP/s —— HBM-FP16
100K s S — L2
——— L1-FP16
¥ —— LDS-FP16
3 Peak MFMA-FP16
- e aill
g 0k o a2
g « ahom
§ HBM-I8
o 2 1218
Kernel Names and Markers 3 1000 — 118
5 —— LDS-I8
o 7 . E Peak MFMA8
bl
G 2
X
100
s 5035 GBfs
L] yax(double®, double®, double*, int, int, double*) . .
? 1388 GBIs
10
0.01 0.1 1 10 100 1000
FP].G/INTS Arithmetic Intensity (FLOPs/Byte)
These plots were generated with:
omniperf profile -n solution_roof_only --roof-only --kernel-names -- ./solution.exe

The plots will appear as PDF files in the ./workloads/solution_roof_only/MI200 directory, if generated
on MI200 hardware.

We see that the solution is solidly in the bandwidth-bound regime, but even still there seems to be room for
improvement. Further performance improvements will be a topic for later exercises.

Roofline Comparison
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Roofline Type Problem Roofline Solution Roofline
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We see that the solution has drastically increased performance over the problem code, as shown by the
solution points moving up closer to the line plotted by the bandwidth limit.

Note: on statically generated roofline images, it is possible for the L1, L2, or HBM points to overlap and
hide one another.
Summary and Take-aways

Launch parameters should be the first check in optimizing performance, due to the fact that they are usually
easy to change, but can have a large performance impact if they aren’t tuned to your workload. It is difficult
to predict the optimal launch parameters for any given kernel, so some experimentation may be required to
achieve the best performance.

Exercise 2: LDS Occupancy Limiter

Simple kernel implementing a version of yAx, to demonstrate the downside of allocating a large amount of
LDS, and the benefit of using a smaller amount of LDS due to occupancy limits.

Note: This exercise was tested on a system with MI210s, on omniperf version 2.0.0 and ROCm 6.0.2
Omniperf 2.0.0 is incompatible with ROCm versions lesser than 6.0.0
Background: Acronyms and terms used in this exercise

o Wavefront: A collection of threads, usually 64.

o Workgroup: A collection of Wavefronts (at least 1), which can be scheduled on a Compute Unit (CU)

e LDS: Local Data Store is Shared Memory that is accessible to the entire workgroup on a Compute Unit
(CU)

e CU: The Compute Unit is responsible for executing the User’s kernels

e SPI: Shader Processor Input, also referred to as the Workgroup Manager, is responsible for scheduling
workgroups on Compute Units

e Occupancy: A measure of how many wavefronts are executing on the GPU on average through the
duration of the kernel

e PoP: Percent of Peak refers to the ratio of an achieved value and a theoretical or actual maximum. In

terms of occupancy, it is how many wavefronts on average were on the device divided by how many can
fit on the device.

e yAx: a vector-matrix-vector product, yAx, where y and x are vectors, and A is a matrix

o FP(32/16): 32- or 16-bit Floating Point numeric
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e FLOPs: Floating Point Operations Per second

« HBM: High Bandwidth Memory is globally accessible from the GPU, and is a level of memory above
the L2 cache

Initial Roofline Analysis

In this exercise we're using a problem code that is slightly different than where we left off in Exercise 1.
Regardless, to get started we need to get a roofline by running:

omniperf profile -n problem_roof_only --roof-only --kernel-names -- ./problem.exe

The plots will appear as PDF files in the ./workloads/problem_roof_only/MI200 directory, if generated
on MI200 hardware.

For convenience, the resulting plots on a representative system are below:

Roofline Type Roofline Legend Roofline Plot
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We see that there looks to be room for improvement here. We’ll use omniperf to see what the current limiters
are.

Exercise Instructions:
First, we should get an idea of the code’s runtime:

make
./problem.exe

(simulated output)

yAx time: 140 ms
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This problem.cpp uses LDS allocations to move the x vector closer to the compute resources, a common
optimization. However, we see that it ends up slower than the previous solution that didn’t use LDS at all.
In kernels that request a lot of LDS, it is common to see that the LDS usage limits the occupancy of the
kernel. That is, more wavefronts cannot be resident on the device, because all of them need more LDS than
is available. We need to confirm this hypothesis, let’s start by running:

omniperf profile -n problem --no-roof -- ./problem.exe

The usage of omniperf profile arguments can be found here, or by running omniperf profile --help

This omniperf profile command will take a minute or two to run, as omniperf must run your code a
few times to collect all the hardware counters.

Note: For large scientific codes, it can be useful to profile a small representative workload if
possible, as profiling a full run may take prohibitively long.

Once the profiling run completes, let’s take a look at the occupancy stats related to LDS allocations:

omniperf analyze -p workloads/problem/MI200 --dispatch 1 --block 2.1.15 6.2.7

The metrics we're looking at are: - 2.1.15 Wavefront occupancy — a measure of how many wavefronts, on
average, are active on the device - 6.2.7 SPI: Insufficient CU LDS — indicates whether wavefronts are not
able to be scheduled due to insufficient LDS

The SPI section ( 6.2 ) generally shows what resources limit occupancy, while Wavefront occupancy (
2.1.15 ) shows how severely occupancy is limited in general. As of Omniperf version 2.0.0 , the SPI
‘insufficient’ fields are a percentage showing how frequently a given resource prevented the SPI from scheduling
a wavefront. If more than one field is nonzero, the relative magnitude of the nonzero fields correspond to
the relative severity of the corresponding occupancy limitation (a larger percentage means a resource limits
occupancy more than another resource with a smaller percentage), but it is usually impossible to closely
correlate the SPI ‘insufficient’ percentage with the overall occupancy limit. This could mean you reduce
a large percentage in an ‘insufficient’ resource field to zero, and see overall occupancy only increase by a
comparatively small amount.

Background: A note on occupancy’s relation to performance

Occupancy has a fairly complex relation to achieved performance. In cases where the device is not saturated
(where resources are available, but are unused) there is usually performance that can be gained by increasing
occupancy, but not always. For instance, adversarial data access patterns (see exercise 4-Strided Access)
can cause occupancy increases to result in degraded performance, due to overall poorer cache utilization.
Typically adding to occupancy gains performance up to a point beyond which performance degrades, and
this point may have already been reached by an application before optimizing.

The output of the omniperf analyze command should look similar to this:

/2 N G R A
L N Y I N2 U I
[ T 0 M A2 O R
VYN O O O B B Y
I_1
Analysis mode = cli
[analysis] deriving Omniperf metrics...
0. Top Stats
0.1 Top Kernels
| | Kernel_Name | Count | Sum(ns) | Mean(ns) | Median(ns) | Pct |
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| 0 | yax(double*, double*, double*, int, int, | 1.00 | 176224652.00 | 176224652.00 | 176224652.00 | 100.00 |

| | doublex) [clone .kd] | | | | |

0.2 Dispatch List

| | Dispatch_ID | Kernel_Name | GPU_ID |
|- | |--
| 0| 1 | yax(double*, double*, double*, int, int, double*) [clone .kd] | 8 |

2. System Speed-of-Light
2.1 Speed-of-Light

| Metric_ID | Metric | Avg | Unit | Peak | Pct of Peak |
| | | | I
| 2.1.15 | Wavefront Occupancy | 103.00 | Wavefronts | 3328.00 | 3.10 |

6. Workgroup Manager (SPI)
6.2 Workgroup Manager - Resource Allocation

| Metric_ID | Metric | Avg | Min | Max | Unit |
| | | | |
| 6.2.7 | Insufficient CU LDS | 79.01 | 79.01 | 79.01 | Pct |

Looking through this data we see: - Wavefront occupancy ( 2.1.15 ) is 3%, which is very low - Insufficient
CULDS ( 6.2.7 ) contains a fairly large percentage, which indicates our occupancy is currently limited by
LDS allocations.

There are two solution directories, which correspond to two ways that this occupancy limit can be addressed.

First, we have solution-no-1ds , which completely removes the LDS usage. Let’s build and run this
solution:

cd solution-no-1lds
make
./solution.exe

(simulated output)
yAx time: 70 ms

We see that the runtime is much better for this solution than the problem, let’s see if removing LDS did
indeed increase occupancy:

omniperf profile -n solution --no-roof -- ./solution.exe

(output omitted)

Once the profile command completes, run:

omniperf analyze -p workloads/solution/MI200 --dispatch 1 --block 2.1.15 6.2.7

The output should look something like:
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Analysis mode = cli
[analysis] deriving Omniperf metrics...

0. Top Stats
0.1 Top Kernels

| | Kernel_Name | Count | Sum(ns) | Mean(ns) | Median(ns) | Pct |
| o : yax(doublex*, doublex, double*, int, int, : 1.00 : 69513618.00 : 69513618.00 : 69513618.00 : 100.00 |
| | doublex) [clone .kd] | | | | | |
0.2 Dispatch List

| | Dispatch_ID | Kernel_Name | GPU_ID |

| 0 : 1 : yax(double*, double*, double*, int, int, doublex*) [clone .kd] : 8 |

2. System Speed-of-Light

2.1 Speed-of-Light

| Metric_ID | Metric | Avg | Unit | Peak | Pct of Peak |

| 2.1.15 : Wavefront Occupancy : 451.15 : Wavefronts : 3328.00 : 13.56 |

6. Workgroup Manager (SPI)

6.2 Workgroup Manager - Resource Allocation

| Metric_ID | Metric | Avg | Min | Max | Unit |

| 6.2.7 : Insufficient CU LDS : 0.00 : 0.00 : 0.00 : Pct |

Looking through this data we see: - Wave occupancy ( 2.1.15 ) is 10% higher than in problem.cpp -
Insufficient CU LDS ( 6.2.7 ) is now zero, indicating solution-no-1ds is not occupancy limited by LDS
allocations.

Can we get some runtime advantage from using smaller LDS allocations?

This is the solution implemented in the solution directory:

cd ../solution
make
./solution.exe

(simulated output)
yAx time: 50 ms

This solution, rather than removing the LDS allocation, simply reduces the amount of LDS requested to
address the occupancy limit. This gives us the benefit of having some data pulled closer than it was in
solution-no-1ds which is validated through the speedup we see. But is this solution still occupancy
limited by LDS?

omniperf profile -n solution --no-roof -- ./solution.exe

(output omitted)

Once the profile command completes, run:
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omniperf analyze -p workloads/solution/MI200 --dispatch 1 --block 2.1.15 6.2.7

The output should look something like:

Analysis mode = cli
[analysis] deriving Omniperf metrics...

o

. Top Stats
.1 Top Kernels

o

| | Kernel_Name Count | Sum(ns) | Mean(ns) Median(ns) Pct |

| | |
| | | | | |

| 0 | yax(doublex*, double*, double*, int, int, | 1.00 | 51238856.00 | 51238856.00 | 51238856.00 | 100.00 |
| | doublex) [clone .kd] | | | | | |

0.2 Dispatch List

| Dispatch_ID | Kernel_Name | GPU_ID |
| | |
| 1 | yax(double*, double*, double*, int, int, double*) [clone .kd] | 8 |

| o

N

. System Speed-of-Light
2.1 Speed-of-Light

| Metric_ID | Metric | Avg | Unit | Peak | Pct of Peak |
| | | | |
| 2.1.15 | Wavefront Occupancy | 494.05 | Wavefronts | 3328.00 | 14.85 |

6. Workgroup Manager (SPI)
6.2 Workgroup Manager - Resource Allocation

| Metric_ID | Metric | Avg | Min | Max | Unit |
| | | | |
| 6.2.7 | Insufficient CU LDS | 0.00 | 0.00 | 0.00 | Pct |

Looking at this data we see: - Wave Occupancy ( 2.1.15 ) is even higher than before - Insufficient CU LDS
( 6.2.7 ) shows we are not occupancy limited by LDS allocations.

Pulling some data from global device memory to LDS can be an effective optimization strategy, if occupancy
limits are carefully avoided.

Solution Roofline
Let’s take a look at the roofline for solution , which can be generated with:

omniperf profile -n solution_roof_only --roof-only -- ./solution.exe

The plots will appear as PDF files in the ./workloads/problem_roof_only/MI200 directory, if generated
on MI200 hardware.

The plots are shown here:
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We see that there is still room to move the solution roofline up towards the bandwidth limit.
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Again, we see that the solution’s optimizations have resulted in the kernel moving up in the roofline, meaning
the solution executes more efficiently than the problem.

Summary and Take-aways

Using LDS can be very helpful in reducing global memory reads where you have repeated use of the same
data. However, large LDS allocations can also negatively impact performance by limiting the amount of
wavefronts that can be resident in the device at any given time. Be wary of LDS usage, and check the SPI
stats to ensure your LDS usage is not negatively impacting occupancy.
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Omnitrace

NOTE: extensive documentation on how to use omnitrace for the GhostExchange_Array example is

now available as README.md files in this exercises repo. While the testing has been done on Frontier in
that documentation, most of the omnitrace tools apply in the same way, hence it could provide additional
training matieral.

Here, we show how to use omnitrace tools considering the example in HPCTrainingExamples/HIP/jacobi

Initial Setup
Setup environment:

module purge
module load omnitrace gcc/13

Next, create a configuration file for omnitrace :
omnitrace-avail -G ~/omnitrace.cfg

If you do not provide a path to the config file, it will generate one in the current directory:
./omnitrace-config.cfg . This config file contains several flags that can be modified to turn on

or off several options that impact the visualization of the traces in Perfetto . You can see what flags can
be included in the config file by doing:

omnitrace-avail --categories omnitrace
To add brief descriptions, use the -bd option:
omnitrace-avail -bd --categories omnitrace

Note that the list of flags displayed by the commands above may not include all actual flags that can be set
in the config.

You can also create a configuration file with description per option. Beware, this is quite verbose:
omnitrace-avail -G ~/omnitrace_all.cfg --all

Next you have to declare that you want to use this configuration file. Note, this is only necessary if you had
provided a custom path and/or filename for the config file when you created it.

export OMNITRACE_CONFIG_FILE=~/omnitrace.cfg

Setup Jacobi Example

Go to the Jacobi code in the examples repo:
cd ~/HPCTrainingExamples/HIP/jacobi
Compile the code:

make

Execute the binary to make sure it runs successfully: <! —Note: To get rid of Read -1, expected 4136, errno = 1

add --mca pml ucx --mca pml_ucx_tls ib,sm,tcp,self,cuda,rocm to the mpirun command line
->

mpirun -np 1 ./Jacobi_hip -g 1 1
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Runtime Instrumentation

Run the code with omnitrace-instrument to perform runtime instrumentation: this will produce a series
of directories whose name is define by the time they were created. In one of these directories, you can find
the wall_clock-<proc_ID>.txt file, which includes information on the function calls made in the code,

such as how many times these calls have been called ( COUNT ) and the time in seconds they took in total (
SUM ):

mpirun -np 1 omnitrace-instrument -- ./Jacobi_hip -g 1 1

The above command produces a folder called instrumentation that contains the available.txt file,
which shows all the functions that can be instrumented. To instrument a specific function, include the
--function-include <fnc> option in the omnitrace-instrument command, for example:

mpirun -np 1 omnitrace-instrument -v 1 -I 'Jacobi_t::Run' 'Jacobilteration' -- ./Jacobi_hip -g 1 1

The output provided by the above command will show that only those functions have been instrumented:

[...]

[omnitrace] [exe] 1 instrumented funcs in Jacobilteration.hip

[omnitrace] [exe] 1 instrumented funcs in JacobiRun.hip

[omnitrace] [exe] 1 instrumented funcs in Jacobi_hip

[omnitrace] [exe] 2 instrumented funcs in librocprofiler-register.so0.0.3.0

[...]

Alternatively, you can use the --print-available functions option as shown below. The --simulate
option will exit after outputting the diagnostics, the - v option is for verbose output:

(NOTE: the output of the next command may be lengthy, you may want to pipe it to a file using » out.txt at
the end of the line to make searching it easier afterwards.)

mpirun -np 1 omnitrace-instrument -v 1 --simulate --print-available functions -- ./Jacobi_hip -g 1 1

Binary Rewrite

You can create an instrumented binary using omnitrace-instrument (notice that this doesn’t take very
long to run):

omnitrace-instrument -o ./Jacobi_hip.inst -- ./Jacobi_hip

Execute the new instrumented binary using the omnitrace-run command inside mpirun . This is the

recommended way to profile MPI applications as omnitrace will separate the output files for each
rank:

mpirun -np 1 omnitrace-run -- ./Jacobi_hip.inst -g 1 1

To see the list of the instrumented GPU calls, make sure to turn on the OMNITRACE_PROFILE flag in your
config file:

OMNITRACE_PROFILE = true

Running the instrumented binary again, you can see that it generated a few extra files. One of those has a
list of instrumented GPU calls and durations of those calls:

cat omnitrace-Jacobi_hip.inst-output/<TIMESTAMP>/roctracer-0.txt

Debugging omnitrace-run

If you get errors when you run an instrumented binary or when you run with runtime instrumentation, add
the following options --monochrome -v 2 --debug and try the following command. This would give you
additional debug information to assist you in figuring out where the problem may lie:
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mpirun -np 1 omnitrace-run --monochrome -v 1 --debug -- ./Jacobi_hip.inst -g 1 1

Visualization

Copy the perfetto-trace-0.proto to your local machine, and using the Chrome browser open the web
page https://ui.perfetto.dev/:

scp -i <path/to/ssh/key> -P <port_number> <username>Qaac6.amd.com:~/<path/to/proto/file>

Click Open trace file and select the .proto file. Below, you can see an example of how a .proto

file would be visualized on Perfetto :

i Perfetto

o I I _
nw U

Current Trace

XXXy

Figure 2: image

Hardware Counters

To see a list of all the counters for all the devices on the node, do:
omnitrace-avail --all

Declare in your configuration file:

OMNITRACE_ROCM_EVENTS = VALUUtilization,FetchSize

Check again:

grep OMNITRACE_ROCM_EVENTS $OMNITRACE_CONFIG_FILE

Run the instrumented binary, and you will observe an output file for each hardware counter specified. You
should also see a row for each hardware counter in the Perfetto trace generated by omnitrace .

Note that you do not have to instrument again after making changes to the config file. Just running the instru-
mented binary picks up the changes you make in the config file. Ensure that the OMNITRACE_CONFIG_FILE
environment variable is pointing to your config file.

mpirun -np 1 omnitrace-run -- ./Jacobi_hip.inst -g 1 1

The output should show something like this:

...]> Outputting 'omnitrace-Jacobi_hip.inst-output/<TIMESTAMP>/rocprof-device-0-VALUUtilization-0.json'
...]> Outputting 'omnitrace-Jacobi_hip.inst-output/<TIMESTAMP>/rocprof-device-0-VALUUtilization-0.txt'
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...]> Outputting 'omnitrace-Jacobi_hip.inst-output/<TIMESTAMP>/rocprof-device-0-FetchSize-0.json'
...]> Outputting 'omnitrace-Jacobi_hip.inst-output/<TIMESTAMP>/rocprof-device-0-FetchSize-0.txt'

If you do not want to see the details for every CPU core, modify the config file to select only what you want
to see, say CPU cores 0-2 only:

OMNITRACE_SAMPLING_CPUS = 0-2
Now running the instrumented binary again will show significantly fewer CPU lines in the profile:

mpirun -np 1 omnitrace-run -- ./Jacobi_hip.inst -g 1 1

Profiling Multiple Ranks

Run the instrumented binary with multiple ranks. You’ll find multiple perfetto-trace—*.proto files,

one for each rank (note that depending on your system it may be necessary to do a salloc prior to the
command below to ensure enough resources ara available):

mpirun -np 2 omnitrace-run -- ./Jacobi_hip.inst -g 2 1

You can visualize them separately in Perfetto , or combine them using cat and visualize them in the
same Perfetto window (trace concatenation is not available in all omnitrace versions):

cat perfetto-trace-0.proto perfetto-trace-1.proto > allprocesses.proto

Sampling
Set the following in your configuration file:

OMNITRACE_USE_SAMPLING = true
OMNITRACE_SAMPLING_FREQ = 100

Execute the instrumented binary and visualize the Perfetto trace:
mpirun -np 1 omnitrace-run -- ./Jacobi_hip.inst -g 1 1

Scroll down to the very bottom to see the sampling output. Those traces will be annotated with a (8) as
well.

Kernel Timings
Open the wall_clock-0.txt file:
cat omnitrace-Jacobi_hip.inst-output/<TIMESTAMP>/wall_clock-0.txt

In order to see the kernel durations aggregated in your configuration file, make sure to set in your config file
or in the environment:

OMNITRACE_PROFILE = true
OMNITRACE_FLAT_PROFILE = true

Execute the code and check the wall_clock-0.txt file again. Instead of updating the config file, you can
also set the environment variables to achieve the same effect.

OMNITRACE_PROFILE=true OMNITRACE_FLAT_PROFILE=true mpirun -np 1 omnitrace-run -- ./Jacobi_hip.inst -g 1 1
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Disclaimer

The information presented in this document is for informational purposes only and may contain technical
inaccuracies, omissions, and typographical errors. The information contained herein is subject to change and
may be rendered inaccurate for many reasons, including but not limited to product and roadmap changes,
component and motherboard version changes, new model and/or product releases, product differences between
differing manufacturers, software changes, BIOS flashes, firmware upgrades, or the like. Any computer system
has risks of security vulnerabilities that cannot be completely prevented or mitigated. AMD assumes no
obligation to update or otherwise correct or revise this information. However, AMD reserves the right to
revise this information and to make changes from time to time to the content hereof without obligation of
AMD to notify any person of such revisions or changes.

THIS INFORMATION IS PROVIDED ‘AS IS” AMD MAKES NO REPRESENTATIONS OR WAR-
RANTIES WITH RESPECT TO THE CONTENTS HEREOF AND ASSUMES NO RESPONSIBILITY
FOR ANY INACCURACIES, ERRORS, OR OMISSIONS THAT MAY APPEAR IN THIS INFORMA-
TION. AMD SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT,
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