
Tools in action
An example with Pytorch

Sam Antao

LUMI Comprehensive Training

Oct. 31st 2024

2 |

[Public]

slides on LUMI in /project/project_465001362/Slides/AMD/

hands-on exercises: https://hackmd.io/@sfantao/lumi-training-ams-2024#Pytorch-example

hands-on source code: /project/project_465001362/Exercises/AMD/Pytorch

LUMI Comprehensive Training - Oct. 31st 2024

https://hackmd.io/@sfantao/lumi-training-ams-2024

3 |

[Public]

Agenda 1. Intro to Pytorch and its dependencies

2. Controlling affinity

3. Profiling – rocprof and omnitools.

4. Debugging

LUMI Comprehensive Training - Oct. 31st 2024

All suggestions presented here are transversal to any AI or HPC application!

Python applications can leverage the same tooling as non-python applications!

Scripting examples are suggestions and can always be adapted!

4 |

[Public]

Pytorch highlight

LUMI Comprehensive Training - Oct. 31st 2024

• Official page: https://pytorch.org/

• Code: https://github.com/pytorch/pytorch

• Python -based framework for machine learning

• Auto-differentiation on tensor types

• GPU-enabled

• ROCm support for MI250x (and others)

• Hipification as part of the build system

• C/C++ libraries with proper bindings for Python

• Python code does NOT need changing – using the same CUDA

conventions

• Other related packages:

• Torch vision/audio, many others

• APEX – multiprecision library
• https://github.com/ROCmSoftwarePlatform/apex

https://pytorch.org/

5 |

[Public]

Pytorch install – our base environment

LUMI Comprehensive Training - Oct. 31st 2024

module purge

module load CrayEnv

module load PrgEnv-cray/8.5.0

module load craype-accel-amd-gfx90a

module load cray-python

This path provides more recent ROCm modules.

module use /appl/local/containers/test-modules

module load rocm/6.1.3.lua

Setup the GPU environment

and the Cray

Python environment

Recent Pytorch builds need

recent user-level ROCm

versions.

We will be using 6.1.3 as it the oldest version

for Pytorch 2.4.1 official releases

6 |

[Public]

Pytorch install – running the examples

LUMI Comprehensive Training - Oct. 31st 2024

• For simplicity and improve the demonstration we leverage interactive runs on existing node allocation

• We run beforehand:

N=1 ; salloc -p standard-g \

--threads-per-core 1 \

--exclusive \

-N $N \

--gpus $((N*8)) \

-t 4:00:00 --mem 0

• This is a good way to experiment and converge to the correct job description.

• Don’t forget to release your allocations once you are done!

• Once you consolidate your job description you can leverage batch jobs.
• Salloc options translate directly to sbatch options.

We are reserving N nodes, in

this case only one node,

using one of the two

available hardware threads

per core. We we’ll be using
the 8 GCDs available in each

node.

7 |

[Public]

Pytorch install – system python

LUMI Comprehensive Training - Oct. 31st 2024

• Native install from Pytorch python wheels

pip3 install -t $PWD/pip-installs --pre torch==2.4.1+rocm6.1 --index-url https://download.pytorch.org/whl/

PYTHONPATH=$PWD/pip-installs \

srun --jobid=$jobid -n1 --gpus 8 \

python -c 'import torch; print("I have this many devices:", torch.cuda.device_count())’

> I have this many devices: 8

Example 01

Package install version can

mix the Pytorch version as

well as the ROCm it was build

against.

Where do we want to install

things - don’t use your home

folder!

This is where Pytorch project

posts the wheel files - browse

it to see what versions and

ROCm combinations are

available.

Make the frershly install Pytorch

available to your Python runs

Should yield the number of

GCDs in the node.

8 |

[Public]

Pytorch install – virtual environments

LUMI Comprehensive Training - Oct. 31st 2024

• Virtual environments are convenient to manage python package installation in ones user-space

python -m venv --system-site-packages cray-python-virtualenv

source cray-python-virtualenv/bin/activate

pip3 install --pre torch==2.4.1+rocm6.1 --index-url https://download.pytorch.org/whl/
srun --jobid=$jobid -n1 --gpus 8 \

python -c 'import torch; print("I have this many devices:", torch.cuda.device_count())'

Example 02

Leverage the venv module to

create the virtual environment

We are happy to leverage

system’s already installed

packages

The folder where the virtual

environment will be installed

Activate the environment. It will be

leveraged by the install and run.

Install and run as before. No need to specify install

location – the environment is doing it for you.

https://download.pytorch.org/whl/

9 |

[Public]

Pytorch install – conda environment

LUMI Comprehensive Training - Oct. 31st 2024

• Conda environment adds the package-manager functionality to a virtual environment

• One can tune the Python version to use as we won’t be leveraging the system one anymore.

• No module load cray-python needed!

curl -LO https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh

bash ./Miniconda3-* -b -p miniconda3 -s

source $PWD/miniconda3/bin/activate base

conda create -y -n pytorch python=3.11

source $PWD/miniconda3/bin/activate pytorch

pip3 install --pre torch==2.4.1+rocm6.1 --index-url https://download.pytorch.org/whl/
srun --jobid=$jobid -n1 --gpus 8 \

python -c 'import torch; print("I have this many devices:", torch.cuda.device_count())'

Example 03

Download and install a minimal

conda (miniconda).

Activate the conda environment

Create and activate a conda environment

to install Pytorch based on Python 3.11

Install and run as before - Conda package manager

doesn’t have ROCm enabled Pytorch installs

10 |

[Public]

Pytorch install – conda environment install from source

LUMI Comprehensive Training - Oct. 31st 2024

• Installing Pytorch from source is not recommended on LUMI

• Too old default ROCm to build against.

• It might be useful in some cases: builds with symbols for debugging.

We need a recent enough compiler – we’ll use gcc

module load PrgEnv-gnu/8.5.0 gcc/10.3.0

Clone a given version of Pytorch and all its third_party components

git clone -b v2.4.1 --recursive \

https://github.com/pytorch/pytorch pytorch-source

Createand activate conda environment to manage the install
conda create -y -n pytorch-from-source python=3.11

source $wd/miniconda3/bin/activate pytorch-from-source

Install requirements for Pytorch and some build tools.
pip install -r $wd/pytorch-source/requirements.txt

conda install -y cmake ninja

Sometimes we need to solve some library clashes between conda and the system. We force the
removal of the conda libstdc++ so that we use the system one.

rm -rf $wd/miniconda3/envs/pytorch-from-source/lib/libstdc++.so

Point to our ROCM instalation that is not in a default path.

grep -rl /opt/rocm | \

xargs sed -I "s#/opt/rocm#$ROCM_PATH#g”

Hipify source

nice python3 tools/amd_build/build_amd.py

Build with debug symbols

CC=$(which gcc) \

CXX=$(which g++) \

CMAKE_PREFIX_PATH=$CONDA_PREFIX:$CMAKE_PREFIX_PATH \

LDFLAGS="-L$ROCM_PATH/deps -lstdc++ -ltinfo" \

USE_KINETO=0 BUILD_TEST=0 \

PYTORCH_ROCM_ARCH=gfx90a \

REL_WITH_DEB_INFO=1 \

nice python3 setup.py bdist_wheel

pip install $wd/pytorch-source/dist/torch-*.whl

Build with

debug

symbols

Enable/disable

the packages

you care about.

https://github.com/pytorch/pytorch%20/

11 |

[Public]

Pytorch install – Singularity containers

LUMI Comprehensive Training - Oct. 31st 2024

• Control better the Pytorch environment

• Less strain on the filesystem

• All application installation is loaded as a single file

• Enable more recent ROCm versions

• Transferable and arguably more portable

• Some containers available under:
• /appl/local/containers/sif-images/

• Any cons?

• Updating the environment and installing more

packages may require rebuild the container

• Containers can’t currently be build on LUMI:
• Needs containers to be built elsewhere and copied to the system

• Submitting jobs has to be done more carefully.

SIF=<myimage.sif>

srun --jobid=$jobid -n1 \
singularity exec \
 -B /var/spool/slurmd \
 -B /opt/cray \
 -B /usr/lib64/libcxi.so.1 \
 -B $wd:/workdir \
 $SIF /workdir/run-me.sh

Make relevant pieces of

native environment visible
inside the container

Make my work

directory visible
inside the

container

The container

image

Use helper script

to spin the
application

12 |

[Public]

Pytorch install – Singularity containers

LUMI Comprehensive Training - Oct. 31st 2024

SIF=/appl/local/containers/sif-images/lumi-pytorch-rocm-6.1.3-python-3.12-pytorch-v2.4.1.sif

rm -rf $wd/run-me.sh

cat > $wd/run-me.sh << EOF

#!/bin/bash -e

Start conda environment inside the container

\$WITH_CONDA

Run application

python -c 'import torch; print("I have this many devices:", torch.cuda.device_count())'

EOF

chmod +x $wd/run-me.sh

srun --jobid=$jobid -n1 --gpus 8 \

singularity exec \

-B /var/spool/slurmd \

-B /opt/cray \

-B /usr/lib64/libcxi.so.1 \

-B $wd:/workdir \

$SIF /workdir/run-me.sh

Example 04

The container image to use:

Pytorch 2.4.1 on top of ROCm 6.1.3

One could leverage a script to

describe what is going to be

executed inside the container.

This script has to load the container

Conda environment. A special

variable is set in the container to

facilitate that.

Run as before.

Invoke singularity to start the

container and execute the script

created above.

13 |

[Public]

Controlling device visibility

LUMI Comprehensive Training - Oct. 31st 2024

• Controlling visibility

• HIP_VISIBLE_DEVICES=0,1,2,3 python -c 'import torch; print(torch.cuda.device_count())'

• ROCR_VISIBLE_DEVICES=0,1,2,3 python -c 'import torch; print(torch.cuda.device_count())’

• SLURM sets ROCR_VISIBLE_DEVICES

• Implications of both ways of setting visibility – blit kernels and/or DMA

• Considerations:
• Does my app expects GPU visibility to be set in the environment?

• Does my app expects arguments to define target GPUs

• Does my app make any assumption on the device based on other information:

• MPI rank

• CPU-range

• Auto-determined

• How many processes using the same GPU:

• Contention vs occupancy

• Runtime scheduling limits

• Increased scheduling complexity

• Imbalance

Most Pytorch applications and driver scripts assume the GPU to be used corresponds to the local rank!!!

14 |

[Public]

Testing affinity

LUMI Comprehensive Training - Oct. 31st 2024

• What CPUs I have available and their NUMA domain?

• lscpu

• What GPUs I have

• rocm-smi –showtopo

NUMA node0 CPU(s): 0-15,64-79

NUMA node1 CPU(s): 16-31,80-95

NUMA node2 CPU(s): 32-47,96-111

NUMA node3 CPU(s): 48-63,112-127

GPU[0] : (Topology) Numa Node: 3

GPU[0] : (Topology) Numa Affinity: 3

GPU[1] : (Topology) Numa Node: 3

GPU[1] : (Topology) Numa Affinity: 3

GPU[2] : (Topology) Numa Node: 1
GPU[2] : (Topology) Numa Affinity: 1

GPU[3] : (Topology) Numa Node: 1

GPU[3] : (Topology) Numa Affinity: 1

GPU[4] : (Topology) Numa Node: 0

GPU[4] : (Topology) Numa Affinity: 0
GPU[5] : (Topology) Numa Node: 0

GPU[5] : (Topology) Numa Affinity: 0

GPU[6] : (Topology) Numa Node: 2

GPU[6] : (Topology) Numa Affinity: 2

GPU[7] : (Topology) Numa Node: 2
GPU[7] : (Topology) Numa Affinity: 2

15 |

[Public]

Testing affinity

LUMI Comprehensive Training - Oct. 31st 2024

• ORNL topology - https://docs.olcf.ornl.gov/systems/crusher_quick_start_guide.html

16 |

[Public]

Testing affinity

LUMI Comprehensive Training - Oct. 31st 2024

• Check what SLURM is giving us:

srun -c 7 -N 2 -n 16 --gpus 16 \

bash -c 'echo "$SLURM_PROCID -- GPUS $ROCR_VISIBLE_DEVICES -- $(taskset -p $$)”’ \

| sort -n -k1

0 -- GPUS 0,1,2,3,4,5,6,7 -- pid 54249's current affinity mask: fe

1 -- GPUS 0,1,2,3,4,5,6,7 -- pid 54250's current affinity mask: fe00

2 -- GPUS 0,1,2,3,4,5,6,7 -- pid 54251's current affinity mask: fe0000

3 -- GPUS 0,1,2,3,4,5,6,7 -- pid 54252's current affinity mask: fe000000

4 -- GPUS 0,1,2,3,4,5,6,7 -- pid 54253's current affinity mask: fe00000000

5 -- GPUS 0,1,2,3,4,5,6,7 -- pid 54254's current affinity mask: fe0000000000

6 -- GPUS 0,1,2,3,4,5,6,7 -- pid 54255's current affinity mask: fe000000000000

7 -- GPUS 0,1,2,3,4,5,6,7 -- pid 54256's current affinity mask: fe00000000000000

8 -- GPUS 0,1,2,3,4,5,6,7 -- pid 110083's current affinity mask: fe

9 -- GPUS 0,1,2,3,4,5,6,7 -- pid 110084's current affinity mask: fe00

10 -- GPUS 0,1,2,3,4,5,6,7 -- pid 110085's current affinity mask: fe0000

11 -- GPUS 0,1,2,3,4,5,6,7 -- pid 110086's current affinity mask: fe000000

12 -- GPUS 0,1,2,3,4,5,6,7 -- pid 110087's current affinity mask: fe00000000

13 -- GPUS 0,1,2,3,4,5,6,7 -- pid 110088's current affinity mask: fe0000000000

14 -- GPUS 0,1,2,3,4,5,6,7 -- pid 110089's current affinity mask: fe000000000000

15 -- GPUS 0,1,2,3,4,5,6,7 -- pid 110090's current affinity mask: fe00000000000000

Careful! Allocations do not follow GPU ranking!!
Example 05

17 |

[Public]

Testing affinity

LUMI Comprehensive Training - Oct. 31st 2024

• Check what SLURM is giving us:

srun -N 2 -n 16 --gpus 16 \

--cpu-bind=mask_cpu:0xfe000000000000,0xfe00000000000000,0xfe0000,0xfe000000,0xfe,0xfe00,0xfe00000000,0xfe0000000000 \

bash -c 'echo "$SLURM_PROCID -- GPUS $ROCR_VISIBLE_DEVICES -- $(taskset -p $$)”’ \

| sort -n -k1

0 -- GPUS 0,1,2,3,4,5,6,7 -- pid 13819's current affinity mask: fe000000000000

1 -- GPUS 0,1,2,3,4,5,6,7 -- pid 13820's current affinity mask: fe00000000000000

2 -- GPUS 0,1,2,3,4,5,6,7 -- pid 13821's current affinity mask: fe0000

3 -- GPUS 0,1,2,3,4,5,6,7 -- pid 13822's current affinity mask: fe000000

4 -- GPUS 0,1,2,3,4,5,6,7 -- pid 13823's current affinity mask: fe

5 -- GPUS 0,1,2,3,4,5,6,7 -- pid 13824's current affinity mask: fe00

6 -- GPUS 0,1,2,3,4,5,6,7 -- pid 13825's current affinity mask: fe00000000

7 -- GPUS 0,1,2,3,4,5,6,7 -- pid 13826's current affinity mask: fe0000000000

8 -- GPUS 0,1,2,3,4,5,6,7 -- pid 94670's current affinity mask: fe000000000000

9 -- GPUS 0,1,2,3,4,5,6,7 -- pid 94671's current affinity mask: fe00000000000000

10 -- GPUS 0,1,2,3,4,5,6,7 -- pid 94672's current affinity mask: fe0000

11 -- GPUS 0,1,2,3,4,5,6,7 -- pid 94673's current affinity mask: fe000000

12 -- GPUS 0,1,2,3,4,5,6,7 -- pid 94674's current affinity mask: fe

13 -- GPUS 0,1,2,3,4,5,6,7 -- pid 94675's current affinity mask: fe00

14 -- GPUS 0,1,2,3,4,5,6,7 -- pid 94676's current affinity mask: fe00000000

15 -- GPUS 0,1,2,3,4,5,6,7 -- pid 94677's current affinity mask: fe0000000000

Great! CPUs are properly bound to the GPUs! Example 05

18 |

[Public]

Pytorch example app – MNIST distributed learning

LUMI Comprehensive Training - Oct. 31st 2024

• Popular computer vision training dataset

• AI training iterate over epochs and a given sample batch is considered in each epoch

• Provided example runs over 3 epochs (properly trained models need much more than than!)

• MNIST training considers number images with different formats.

Neural network

configuration

Epoch

Resulting model

3x

19 |

[Public]

Pytorch example app – MNIST distributed learning

LUMI Comprehensive Training - Oct. 31st 2024

• What provides distributed capability:

• Pytorch Distribute Data Parallel (DDP) – Batches of different data run concurrently

• Other more sophisticated methods available

• Frameworks like Deepspeed and Horovod can also enable distributed training.

import torch.distributed as dist

…

dist.init_process_group(

backend='nccl’,

init_method='env://’,

world_size=int(os.environ['WORLD_SIZE']),

rank=int(os.environ['RANK']))

• … Epoch 0 Loss 0.148397 Global batch size 2048 on 16 ranks

• … Epoch 1 Loss 0.147906 Global batch size 2048 on 16 ranks

• … Epoch 2 Loss 0.147717 Global batch size 2048 on 16 ranks

Examples 06

Let’s use RCCL collectives library.

Well be learning about the distributed

setting from the environment

Capture some env vars to adjust my

distributed training

20 |

[Public]

Pytorch example app – MNIST distributed learning – RCCL

LUMI Comprehensive Training - Oct. 31st 2024

• RCCL should be set to use only high-speed-interfaces - Slingshot

• The problem one might see on startup:

•
 NCCL error in: /workdir/pytorch-
example/pytorch/torch/csrc/distributed/c10d/ProcessGroupNCCL.cpp:1269, unhandled
system error, NCCL version 2.12.12

• Check error origin by setting RCCL specific debug environment variables:

export NCCL_DEBUG=INFO

NCCL INFO NET/Socket : Using [0]nmn0:10.120.116.65<0> [1]hsn0:10.253.6.67<0>
[2]hsn1:10.253.6.68<0> [3]hsn2:10.253.2.12<0> [4]hsn3:10.253.2.11<0>
NCCL INFO /long_pathname_so_that_rpms_can_package_the_debug_info/data/driver/rccl/src/init.cc:1292

• The fix:
export NCCL_SOCKET_IFNAME=hsn0,hsn1,hsn2,hsn3

Node has interfaces other than Slingshot

These are the correct ones.

Point RCCL to use all 4 high-speed

interfaces. It will know how to bind them

based on the node topology.

21 |

[Public]

Pytorch example app – MNIST distributed learning - script

LUMI Comprehensive Training - Oct. 31st 2024

• What can/should I include in my start script:

if [\$SLURM_LOCALID -eq 0] ; then

rocm-smi

fi

export MIOPEN_USER_DB_PATH="/tmp/$(whoami)-miopen-cache-\$SLURM_NODEID"

export MIOPEN_CUSTOM_CACHE_DIR=\$MIOPEN_USER_DB_PATH

Report affinity

echo "Rank \$SLURM_PROCID --> \$(taskset -p \$\$)"

Start conda environment inside the container

\$WITH_CONDA

Set interfaces to be used by RCCL.

export NCCL_SOCKET_IFNAME=hsn0,hsn1,hsn2,hsn3

Set environment for the app

export MASTER_ADDR=\$(python /workdir/get-master.py "\$SLURM_NODELIST")

export MASTER_PORT=29500

export WORLD_SIZE=\$SLURM_NPROCS

export RANK=\$SLURM_PROCID

export ROCR_VISIBLE_DEVICES=\$SLURM_LOCALID

Run app

cd /workdir/mnist

python -u mnist_DDP.py --gpu --modelpath /workdir/mnist/model

Example 06Smoke test to confirm GPUs are available

Just-in-time compiles are a common technique in these

applications. MIOpen leverages this functionality. Let’s cache

those builds in node-local storage instead of the default home

folder. ROCm 6.2 may not need this.

Activate the container Conda environment that provides Pytorch

Point RCCL to use the high-speed network interfaces

Translate SLURM environment into something that Pytorch DDP

understands

Run my model training

22 |

[Public]

Pytorch example app – MNIST distributed learning - rocprof

LUMI Comprehensive Training - Oct. 31st 2024

• Rocprof profiler client is the easiest way to get started with GPU profiling.

• It is available as part of the ROCm stack and, therefore, available in the containers

• It is seldomly useful to profile every single process/rank of your app:

• Profilling more than needed = more potential profiling overhead

• Misleading conclusions

Example 07

Pick representative

process/rank
Profile

Interpret and identify

what is actionable

pcmd=''
if [$RANK -eq 2] ; then

pcmd='rocprof --hip-trace'
fi

$pcmd python -u mnist_DDP.py --gpu --modelpath /workdir/mnist/model

Command to prepend to my application instantiation

We want to profile only for one rank – in this case rank #2

More than one rank to be profiled? Use, –o myresults.$RANK.csv, to make sure sure there are no races generating

the profile files

Run command as before except to the prepended profiling command

23 |

[Public]

Pytorch example app – MNIST distributed learning - rocprof

LUMI Comprehensive Training - Oct. 31st 2024

• Bound by RCCL communication!

Example 07

Collectives

kernels dominate

profile

24 |

[Public]

▪ LUMI, Frontier (and others) directly attaches AMD Instinct MI250x Accelerator to the Slingshot Network

▪ Enable collectives computation on devices

▪ Minimize the role of the CPU in the control path – expose more asynchronous computation opportunities

▪ Lowest latency for network message passing is from GPU HBM memory

▪ CXI plugin is a runtime dependency. Requires: HPE Cray libfabric implementation

▪ https://github.com/rocm/aws-ofi-rccl

▪ 3-4x faster collectives

▪ Included in the LUMI provided containers! If not using the LUMI containers make sure you have that in your

environment:

export NCCL_DEBUG=INFO

export NCCL_DEBUG_SUBSYS=INIT

and search the logs for:

[0] NCCL INFO NET/OFI Using aws-ofi-rccl 1.4.0

To Slingshot Network
CXI

plugin

Comms are important! - RCCL AWS-CXI plugin

25 |

[Public]

Configuring RCCL environment (cont.)

• RCCL should be set configured to use GPU RDMA:

• export NCCL_NET_GDR_LEVEL=PHB

• On upcoming ROCm versions (6.2) this won’t be

needed – it is default.

• Why should I spend time with all this?

• 3-4x better bandwidth utilization with plugin

• 2x better bandwidth utilization with RDMA

• Can scale further!

• Careful using external containers! You may

need to be setting plugin yourself!

LUMI Comprehensive Training - Oct. 31st 2024

26 |

[Public]

Pytorch example app – MNIST distributed learning – Omnitrace

LUMI Comprehensive Training - Oct. 31st 2024

• Obtain more thorough trace information and visualization

• https://github.com/AMDResearch/omnitrace

• Omnitrace install outside the container can be used

• The host/container ROCm levels should match

module use module use /appl/local/containers/test-modules

module load rocm/6.1.3.lua omnitrace/1.12.0-rocm6.1.x

SIF=/appl/local/containers/sif-images/lumi-pytorch-rocm-6.1.3-python-3.12-pytorch-v2.4.1.sif

•

• Configuration file:

• omnitrace-avail -G omnitrace.cfg –all

• export OMNITRACE_CONFIG_FILE=/workdir/omnitrace-config.cfg

• Override environment with command line arguments if needed
Example 08-09

https://github.com/AMDResearch/omnitrace

27 |

[Public]

Pytorch example app – MNIST distributed learning – Omnitrace

LUMI Comprehensive Training - Oct. 31st 2024

• Sample – learn about the native stack trace along side GPU activity

• GPU activity is never sampled even in sampling mode

• Adjust configuration file according to the needs:

OMNITRACE_USE_SAMPLING = true

OMNITRACE_USE_ROCM_SMI = false

OMNITRACE_SAMPLING_CPUS = none

OMNITRACE_SAMPLING_GPUS = 2

• Execution similar to rocprof:
pcmd=''

if [$RANK -eq 2] ; then

pcmd='omnitrace-sample -- '

fi
$pcmd python -u mnist_DDP.py --gpu --modelpath /workdir/mnist/model

• We need to add a few more bindings to singularity:
srun --jobid=$jobid -N $((Nodes)) -n $((Nodes*8)) --gpus $((Nodes*8)) --cpu-bind=mask_cpu:$MYMASKS \

singularity exec \

…\

-B $wd:/workdir \
-B $OMNITRACE_dir/omnitools \

-B /usr/lib64/libpciaccess.so.0 \

$SIF /workdir/run-me.sh

• …and make sure the environment inside the container is set accordingly:
export PATH=$OMNITRACE_dir/bin:$PATH

export LD_LIBRARY_PATH=$OMNITRACE_dir/lib:$LD_LIBRARY_PATH

export PYTHONPATH=$OMNITRACE_dir/lib/python/site-packages:$LD_LIBRARY_PATH

Example 08

Let’s do sampling!

Not interested in sampling GPU hardware metrics (frequency, temperature…)
Not interested in sampling CPU hardware metrics

Targeting GPU #2 only used by Rank #2

Prepend omnitrace sampling driver for rank #2

Make omnitrace available in the container

Omnitrace does PCIe info loading – so we need to enable that

Makes sure all Omnitrace bits are available in my environment.

28 |

[Public]

Pytorch example app – MNIST distributed learning – Omnitrace

LUMI Comprehensive Training - Oct. 31st 2024

• Native stack flame graph:

Example 08

29 |

[Public]

Pytorch example app – MNIST distributed learning – Omnitrace

LUMI Comprehensive Training - Oct. 31st 2024

• Sampling the Python and C/C++ parts of the code – omnitrace-python
if [\$RANK -eq 2] ; then

omnitrace-python-3.10 -- mnist_DDP.py --gpu --modelpath /workdir/mnist/model

else

python -u mnist_DDP.py --gpu --modelpath /workdir/mnist/model

fi

Example 9

Match relevant python version
Omnitrace expects the Python script as opposed to the Python executable

30 |

[Public]

Pytorch example app – MNIST distributed learning – Omniperf

LUMI Comprehensive Training - Oct. 31st 2024

• Obtain detailed kernel performance counters

• https://github.com/AMDResearch/omniperf

 module use module use /appl/local/containers/test-modules

 module load rocm/6.1.3.lua omniperf/2.1.0

• Virtual environment is used to extend the existing Python environment inside the container.

• Omniperf needs replaying the application many times
• Could be challenging to profile individual ranks as all need replaying.

if [$RANK -eq 0] ; then

omniperf profile -n myprof --device 0 --roof-only -- $(which python) -u mnist_DDP.py …
else

for i in {1..4} ; do
sleep 10

python -u mnist_DDP.py --gpu --modelpath /workdir/mnist/model

done
fi

Example 10

Collect roofline profile for rank #0 that uses device #0

Replay the app on the other ranks as many times as needed (5 times for roofline)

https://github.com/AMDResearch/omniperf

31 |

[Public]

Pytorch example app – MNIST distributed learning – Omniperf

LUMI Comprehensive Training - Oct. 31st 2024

• Analyze in or outside the container):

• omniperf analyze -p workloads/pytorch/MI200/ --gui
Example 10

Select

kernel of

interest

32 |

[Public]

Pytorch example app – MNIST distributed learning – Omniperf

LUMI Comprehensive Training - Oct. 31st 2024

• Analyze in or outside the container):

• Roofline PDFs
Example 10

Kernel

names

33 |

[Public]

Leveraging framework profiler infrastructure

• AI frameworks typically provide hooks for developers to gather profiling information

• An example with Pytorch:

from torch.profiler import profile, record_function, ProfilerActivity

for epoch in range(args.epochs):

prof = None
if epoch == 3:

print("Starting profile...")
prof = profile(activities=[ProfilerActivity.CPU, ProfilerActivity.CUDA])
prof.start()

for imgs, labels in dataloader:
with torch.amp.autocast('cuda',enabled=args.amp):

imgs, labels = imgs.cuda(), labels.cuda()
outputs = model(imgs)

loss = criterion(outputs, labels)
loss = scaler.scale(loss)
loss.backward()
scaler.step(optimizer)
scaler.update()

if prof:
prof.stop()
prof.export_chrome_trace("trace.json")

Invoke the profiler

Enable profiling for epoch number 3

Finish profiling and generate trace

Trace file can be viewed in Perfetto UI tool

Training for an epoch

Example 11

LUMI Comprehensive Training - Oct. 31st 2024

34 |

[Public]

Pytorch example app – MNIST distributed learning – Rocgdb

LUMI Comprehensive Training - Oct. 31st 2024

• Debugging requires proper driver support
• Can’t run debugger effectively from incompatible containers

• Use system ROCm for roccgdb

• Two main use cases to use
• Connecting into a hanging process
• Progress up to breakpoint or segfault

• ROCm provides rocgdb – you may need your own
gdbserver.

• Using gdbserver is possible
• gdbserver can be issued conveniently as a profile tool
• Launch with:

• gdbserver --once $(hostname):12345 ./my_command
• Attach with

• rocgdb -x gdb.commands ./my_command
• Leverage gdb commands file to automate startup

• target remote target_host:12345

Start process

with rocgdb

Interrupt or wait

for crash

inspect

Start process

with gdbserver

Attach remotely

with rocgdb

inspect

Start process

Attach with

rocgdb

inspect

3 different workflows to choose from!

If interested in stepping into GPU code you

should avoid gdbserver

39 |

[Public]

Disclaimer
The information presented in this document is for informational purposes only and may contain technical inaccuracies, omissions,

and typographical errors. The information contained herein is subject to change and may be rendered inaccurate for many reasons, including

but not limited to product and roadmap changes, component and motherboard version changes, new model and/or product releases,

product differences between differing manufacturers, software changes, BIOS flashes, firmware upgrades, or the like. Any compute r system has

risks of security vulnerabilities that cannot be completely prevented or mitigated. AMD assumes no obligation to update or otherwise correct

or revise this information. However, AMD reserves the right to revise this information and to make changes from time to time to the content hereof

without obligation of AMD to notify any person of such revisions or changes.

THIS INFORMATION IS PROVIDED ‘AS IS.” AMD MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE CONTENTS

HEREOF AND ASSUMES NO RESPONSIBILITY FOR ANY INACCURACIES, ERRORS, OR OMISSIONS THAT MAY APPEAR IN THIS

INFORMATION. AMD SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS

FOR ANY PARTICULAR PURPOSE. IN NO EVENT WILL AMD BE LIABLE TO ANY PERSON FOR ANY RELIANCE, DIRECT, INDIRECT,

SPECIAL, OR OTHER CONSEQUENTIAL DAMAGES ARISING FROM THE USE OF ANY INFORMATION CONTAINED HEREIN, EVEN IF AMD

IS EXPRESSLY ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Third-party content is licensed to you directly by the third party that owns the content and is not licensed to you by AMD. ALL LINKED THIRD-

PARTY CONTENT IS PROVIDED “AS IS” WITHOUT A WARRANTY OF ANY KIND. USE OF SUCH THIRD-PARTY CONTENT IS DONE AT

YOUR SOLE DISCRETION AND UNDER NO CIRCUMSTANCES WILL AMD BE LIABLE TO YOU FOR ANY THIRD-PARTY CONTENT. YOU

ASSUME ALL RISK AND ARE SOLELY RESPONSIBLE FOR ANY DAMAGES THAT MAY ARISE FROM YOUR USE OF THIRD-PARTY

CONTENT.

© 2022 Advanced Micro Devices, Inc. All rights reserved. AMD, the AMD Arrow logo, ROCm, Radeon, Radeon Instinct and combinations thereof

are trademarks of Advanced Micro Devices, Inc. in the United States and/or other jurisdictions. Other names are for informational purposes only

and may be trademarks of their respective owners.

AWS is a trademark of Amazon.com, Inc. or its affiliates in the United States and/or other countries

LUMI Comprehensive Training - Oct. 31st 2024

40 |

[Public]

Questions?

LUMI Comprehensive Training - Oct. 31st 2024

	Slide 1: Tools in action An example with Pytorch
	Slide 2
	Slide 3: Agenda
	Slide 4: Pytorch highlight
	Slide 5: Pytorch install – our base environment
	Slide 6: Pytorch install – running the examples
	Slide 7: Pytorch install – system python
	Slide 8: Pytorch install – virtual environments
	Slide 9: Pytorch install – conda environment
	Slide 10: Pytorch install – conda environment install from source
	Slide 11: Pytorch install – Singularity containers
	Slide 12: Pytorch install – Singularity containers
	Slide 13: Controlling device visibility
	Slide 14: Testing affinity
	Slide 15: Testing affinity
	Slide 16: Testing affinity
	Slide 17: Testing affinity
	Slide 18: Pytorch example app – MNIST distributed learning
	Slide 19: Pytorch example app – MNIST distributed learning
	Slide 20: Pytorch example app – MNIST distributed learning – RCCL
	Slide 21: Pytorch example app – MNIST distributed learning - script
	Slide 22: Pytorch example app – MNIST distributed learning - rocprof
	Slide 23: Pytorch example app – MNIST distributed learning - rocprof
	Slide 24: Comms are important! - RCCL AWS-CXI plugin
	Slide 25: Configuring RCCL environment (cont.)
	Slide 26: Pytorch example app – MNIST distributed learning – Omnitrace
	Slide 27: Pytorch example app – MNIST distributed learning – Omnitrace
	Slide 28: Pytorch example app – MNIST distributed learning – Omnitrace
	Slide 29: Pytorch example app – MNIST distributed learning – Omnitrace
	Slide 30: Pytorch example app – MNIST distributed learning – Omniperf
	Slide 31: Pytorch example app – MNIST distributed learning – Omniperf
	Slide 32: Pytorch example app – MNIST distributed learning – Omniperf
	Slide 33: Leveraging framework profiler infrastructure
	Slide 34: Pytorch example app – MNIST distributed learning – Rocgdb
	Slide 39: Disclaimer
	Slide 40: Questions?
	Slide 41

