
Introduction to Omniperf

Presenter:  Sam Antao

LUMI Comprehensive Training

Oct 31st, 2024



2 |

[Public]

Contributors

▪ Cole Ramos

▪ Suyash Tandon 

▪ Xiaomin Lu 

▪ Noah Wolfe 

▪ George Markomanolis

▪ Austin Ellis 

▪ Gina Sitaraman

▪ Johanna Potyka

▪ Quentarius Moore

Oct 31st, 2024 LUMI Comprehensive Training



3 |

[Public]

Background – AMD Profilers

A
tt

ai
n

ab
le

 F
LO

P
s/

s

1000

100

Counter collection with 
user input files

Raw collection of GPU counters and traces 

Counter results printed 
to a CSV

CPU copy HIP API HSA API GPU Kernels

Trace collection support for

Traces visualized with Perfetto

Hardware 
Counters

Visualisation

Traces and 
timelines

ROC-profiler (rocprof)

CPU

Comprehensive trace collection

GPU

CPU copy HIP API HSA API GPU Kernels

Traces visualized with Perfetto

Trace 
collection

Visualisation

Supports

Omnitrace

OpenMP® KokkosMPI multi-GPUp-threads

Analysis

Automated collection of hardware counters

Visualization

Speed of 
Light

Memory 
chart

Rooflines
Kernel 

comparison

With Grafana or standalone GUI 

Performance 
Analysis

Visualisation

Supports

Omniperf

Oct 31st, 2024 LUMI Comprehensive Training



4 |

[Public]

Open-source Client-side Installation is Easy

Download the latest version from here: https://github.com/ROCM/omniperf/releases 

wget https://github.com/AMDResearch/omniperf/releases/download/v2.0.1/omniperf-v2.0.1.tar.gz

tar zxvf  omniperf-v2.0.1.tar.gz

cd omniperf-v2.0.1/
python3 -m pip install -t ${INSTALL_DIR}/python-libs -r requirements.txt
mkdir build
cd build
export PYTHONPATH=$INSTALL_DIR/python-libs:$PYTHONPATH
cmake -DCMAKE_INSTALL_PREFIX=${INSTALL_DIR}/2.0.1 \

 -DPYTHON_DEPS=${INSTALL_DIR}/python-libs \
 -DMOD_INSTALL_PATH=${INSTALL_DIR}/modulefiles ..

make install
export PATH=$INSTALL_DIR/2.0.1/bin:$PATH

Full documentation: https://rocm.github.io/omniperf/ 

•

Oct 31st, 2024 LUMI Comprehensive Training

https://github.com/ROCM/omniperf/releases


5 |

[Public]

Omniperf modes

Kernels Dispatches

Target application is launched using AMD ROC-profiler

IP Blocks

Profile

Immediate access to metrics Lightweight standalone GUI

Profiled data is loaded to omniperf CLI

Analyze

Database

Grafana GUI is based on MongoDB
Interact with saved workload 

database

Profiled data is imported to Grafana database

For problems, create an issue here: https://github.com/AMDResearch/omniperf/issues
Documentation: https://amdresearch.github.io/omniperf

Basic command-line syntax:

Profile: 

Analyze:

To use a lightweight standalone GUI with CLI analyzer:

Database:

For more information or help use -h/--help/? flags:

$ omniperf profile -n workload_name [profile options]     
 [roofline options] -- <CMD> <ARGS>

$ omniperf profile --help

$ omniperf analyze -p 
<path/to/workloads/workload_name/mi200/>

$ omniperf analyze -p 
<path/to/workloads/workload_name/mi200/> --gui

$ omniperf database <interaction type> [connection options]

Oct 31st, 2024 LUMI Comprehensive Training

https://github.com/AMDResearch/omniperf/issues
https://amdresearch.github.io/omniperf


6 |

[Public]

omniperf profile Arguments to Reduce Profiling Overhead

• Runtime Filtering
--kernel, --ipblocks, --dispatch

Oct 31st, 2024 LUMI Comprehensive Training

Note: the –k/--kernel flag takes a 

search string in omniperf profile



7 |

[Public]

omniperf profile Arguments to Generate Roofline PDFs

• Runtime Filtering
--kernel, --ipblocks, --dispatch

• Standalone Roofline Analysis
--roof-only, --kernel-names

FP32/FP64 FP16/INT8

The above plots are saved as PDF output when the --roof-only option is used 

Oct 31st, 2024 LUMI Comprehensive Training



8 |

[Public]

omniperf profile Argument to Turn Off Roofline Benchmarking

• Runtime Filtering
--kernel, --ipblocks, --dispatch

• Standalone Roofline Analysis
--roof-only, --kernel-names

• No roofline analysis
--no-roof

FP32/FP64 FP16/INT8

--no-roof will skip the roofline microbenchmark and omit roofline from output

Oct 31st, 2024 LUMI Comprehensive Training



9 |

[Public]

Omniperf profiling

We use the example sample/vcopy.cpp from the Omniperf installation folder:

Compile with hipcc:

Profile with Omniperf:

A new directory will be created called workloads/vcopy_all

$ wget https://github.com/AMDResearch/omniperf/raw/main/sample/vcopy.cpp

$ hipcc --offload-arch=gfx90a –o vcopy vcopy.cpp

$ omniperf profile –n vcopy_all -- ./vcopy 1048576 256
…
-------------
Profile only
-------------

omniperf ver:  1.0.4
Path:  /pfs/lustrep4/scratch/project_462000075/markoman/omniperf-
1.0.4/build/workloads
Target:  mi200
Command:  ./vcopy 1048576 256
Kernel Selection:  None
Dispatch Selection:  None
IP Blocks: All Note: Omniperf executes the code as many times as 

required to collect all HW metrics. Use kernel/dispatch 

filters especially when trying to collect roofline analysis. 

Oct 31st, 2024 LUMI Comprehensive Training



10 |

[Public]

omniperf analyze Arguments to Start With

• List top kernels or view list of metrics
--list-kernels, --list-metrics

Output from the --list-kernel and --list-metric options, showing top kernels and available metrics

Oct 31st, 2024 LUMI Comprehensive Training



11 |

[Public]

omniperf analyze Arguments to Filter Kernels and GPUs

• List top kernels or view list of metrics
--list-kernels, --list-metrics

• Filter available kernels, dispatches, gpu-ids
--kernel, --dispatch, --gpu-id

Filtered output from the --kernel option isolating kernel at index 0

Oct 31st, 2024 LUMI Comprehensive Training

Note: the -k/--kernel flag takes an 

index given by --list-kernels in 
omniperf analyze, and aggregates 

stats by kernel name



12 |

[Public]

omniperf analyze Argument to Only Show Specific Statistics

• List top kernels or view list of metrics
--list-kernels, --list-metrics

• Filter available kernels, dispatches, gpu-ids
--kernel, --dispatch, --gpu-id

• Filter by metric id(s)
--metric

Filtering output to isolate data table at index 5

Oct 31st, 2024 LUMI Comprehensive Training



13 |

[Public]

omniperf analyze Arguments to Change Units and Normalization

• List top kernels or view list of metrics
--list-kernels, --list-metrics

• Filter available kernels, dispatches, gpu-ids
--kernel, --dispatch, --gpu-id

• Filter by metric id(s)
--metric

• Change normalization unit, time unit, or decimal
--normal-unit, --time-unit, --decimal

Output showing the default normalization and time unit

Oct 31st, 2024 LUMI Comprehensive Training



14 |

[Public]

omniperf analyze Arguments to Compare Workloads

• Baseline Analysis

--path <workload1_path> --path <workload2_path>

Oct 31st, 2024 LUMI Comprehensive Training



15 |

[Public]

omniperf analyze Argument to Launch Standalone GUI

• Baseline Analysis

--path <workload1_path> --path <workload2_path>

• Launch a standalone HTML page from terminal
--gui <port>

The above webpage is launched when the --gui option is used

Terminal output from the --gui option with full port forwarding info

Oct 31st, 2024 LUMI Comprehensive Training



Key Insights from Omniperf Analyzer

LUMI Comprehensive Training



17 |

[Public]

High level Metrics

• System Info

Oct 31st, 2024 LUMI Comprehensive Training

Detailed system info for each app is collected by default



18 |

[Public]

High level Metrics

• System Info

• System Speed-of-Light

Calls attention to high level performance stats to preview overall application performance

Oct 31st, 2024 LUMI Comprehensive Training



19 |

[Public]

High level Metrics

• System Info

• System Speed-of-Light

• Kernel Stats

Preview performance of top N kernels and individual kernel invocations (dispatches)

Oct 31st, 2024 LUMI Comprehensive Training



20 |

[Public]

High level Metrics

• System Info

• System Speed-of-Light

• Kernel Stats

• Memory Chart Analysis

Illustrate data movement and performance on key components of target architecture

Oct 31st, 2024 LUMI Comprehensive Training



21 |

[Public]

High level Metrics

• System Info

• System Speed-of-Light

• Kernel Stats

• Memory Chart Analysis

• Roofline Analysis

Derived Empirical Roofline analysis broken into two major instruction mixes. Showing application performance relative to measured maximum 
achievable performance

Oct 31st, 2024 LUMI Comprehensive Training



22 |

[Public]

Background – What is roofline?

A
tt

ai
n

ab
le

 F
LO

P
s/

s

Arithmetic Intensity (FLOPs/Byte)

1010.1

1000

100

10

Peak FLOPs/s
Unattainable performance
(greater than peak FLOPs/s)

Compute Bound

• Attainable FLOPs/s =

• 𝑚𝑖𝑛 ቊ
𝑃𝑒𝑎𝑘 𝐹𝐿𝑂𝑃𝑠/𝑠
𝐴𝐼 ∗ 𝑃𝑒𝑎𝑘 𝐺𝐵/𝑠

• Machine Balance:

• Where 𝐴𝐼 =
𝑃𝑒𝑎𝑘 𝐹𝐿𝑂𝑃𝑠/𝑠

𝑃𝑒𝑎𝑘 𝐺𝐵/𝑠

• Five Performance Regions:

• Unattainable Compute

• Unattainable Bandwidth

• Compute Bound

• Bandwidth Bound

• Poor Performance

Oct 31st, 2024 LUMI Comprehensive Training



23 |

[Public]

Overview - AMD Instinct  MI200 Architecture

HBM Memory HBM Memory

Memory Controller

L2 Cache (L2)

Graphics Compute Die (GCD)

Data Fabric

SIMD0
Scalar 
Unit

SGPR

Local Data Share (LDS)

VGPR

Vector L1 Data Cache (vL1D)

Compute Unit

SIMD1 SIMD2 SIMD3

VGPR VGPR VGPR

SIMD0
Scalar 
Unit

SGPR

Local Data Share (LDS)

VGPR

Vector L1 Data Cache (vL1D)

Compute Unit

SIMD1 SIMD2 SIMD3

VGPR VGPR VGPR

SIMD0
Scalar 
Unit

SGPR

Local Data Share (LDS)

VGPR

Vector L1 Data Cache (vL1D)

Compute Unit

SIMD1 SIMD2 SIMD3

VGPR VGPR VGPR

… …

(Peer GCD)

Remote 
Socket
(CPU, GPU)

(GCD1) (GCD2)

Oct 31st, 2024 LUMI Comprehensive Training



24 |

[Public]

Empirical Hierarchical Roofline on MI200 - Overview

Peak MFMA GFLOP/sec

Peak VALU GFLOP/sec

Peak HBM BW

Peak L2 BW

Peak vL1D BW

Peak LDS BW

Workload Perf:
(GFLOP/sec, AI)

Oct 31st, 2024 LUMI Comprehensive Training



25 |

[Public]

▪ Empirical Roofline Benchmarking
⁃ Measure achievable Peak FLOPS

⁃ VALU: F32, F64
⁃ MFMA: F16, BF16, F32, F64

⁃ Measure achievable Peak BW
⁃ LDS
⁃ Vector L1D Cache
⁃ L2 Cache
⁃ HBM 

▪ Internally developed micro benchmark algorithms
⁃ Peak VALU FLOP: axpy
⁃ Peak MFMA FLOP: Matrix multiplication based on MFMA intrinsic
⁃ Peak LDS/vL1D/L2 BW: Pointer chasing
⁃ Peak HBM BW: Streaming copy

Empirical Hierarchical Roofline on MI200 – Roofline Benchmarking

Oct 31st, 2024 LUMI Comprehensive Training



26 |

[Public]

Low level Metrics

Section Title Comments

Command Processor (CPC/CPF) Packet processor data

Shader Processor Input (SPI) Connecting packet processor and CUs

Wavefront Stats Kernel launch stats

Compute Unit – Instruction Mix
Breakdown of instructions issued

Compute Unit – Compute Pipeline

Texture Addressor & Texture Data (TA/TD) Fetch & receive reqs for lookup in vL1D RAM 

Local Data Share (LDS)

Cache level stats

Instruction Cache

Scalar L1 Data Cache

Vector L1 Data Cache

L2 Cache

L2 Cache (per channel)

Oct 31st, 2024 LUMI Comprehensive Training



27 |

[Public]

Tips for Long-Running Benchmarks

• Filtering by kernel name and metrics during omniperf profile will cut down on profiling time

• omniperf profile –k “<kernel name>” filters a single kernel name

• omniperf profile –k “<kernel1>” “<kernel2>” filters two kernel names.

• Note: surrounding a kernel name in quotes allows spaces to appear in your kernel search string

• Also Note: omniperf applies the wildcard automatically, so only a unique substring of kernel names are required

• Finally, Note: omniperf analyze –k does not take a kernel name, but an index 

• Index to kernel name mapping is given by omniperf analyze --list-stats

• If you know which metrics you want to collect ahead of time, you can cut down how many rocprof runs are 
required

• omniperf profile --block SQ SQC –n <workload name> -- ./benchmark.sh (SQC – Shader Sequencer 

Controller)

• omniperf profile --help displays all block strings you can filter by

• Omniperf documentation: https://rocm.github.io/omniperf/performance_model.html Goes over some of the meaning 

behind lower-level hardware units and metrics.

Oct 31st, 2024 LUMI Comprehensive Training

https://rocm.github.io/omniperf/performance_model.html


Example – DAXPY with a loop in the kernel

LUMI Comprehensive Training



29 |

[Public]

DAXPY – with a loop in the kernel

Oct 31st, 2024 LUMI Comprehensive Training



30 |

[Public]

Roofline

• Performance: almost 330 GFLOPs

Oct 31st, 2024 LUMI Comprehensive Training



31 |

[Public]

Kernel execution time and L1D Cache Accesses

Oct 31st, 2024 LUMI Comprehensive Training



32 |

[Public]

DAXPY – with a loop in the kernel - Optimized

Oct 31st, 2024 LUMI Comprehensive Training



33 |

[Public]

Roofline - Optimized

• Performance: almost 2 TFLOPs

Oct 31st, 2024 LUMI Comprehensive Training



34 |

[Public]

Kernel execution time and L1D Cache Accesses - Optimized

6.2 times faster!

Oct 31st, 2024 LUMI Comprehensive Training



35 |

[Public]

Hands-on exercises 

https://hackmd.io/@sfantao/lumi-training-ams-2024#Omniperf   

We welcome you to explore our HPC Training Examples repo: 

   https://github.com/amd/HPCTrainingExamples

A table of contents for the READMEs if available at the top-level README in the repo

Relevant exercises for this presentation located in Omniperf directory.

Link to instructions on how to run the tests: Omniperf/README.md and subdirectories

   

Oct 29th, 2024 LUMI Comprehensive Training

https://hackmd.io/@sfantao/lumi-training-ams-2024
https://github.com/amd/HPCTrainingExamples
https://github.com/amd/HPCTrainingExamples/blob/main/README.md
https://github.com/amd/HPCTrainingExamples/blob/main/HIP/README.md


36 |

[Public]

Questions?

Oct 31st, 2024 LUMI Comprehensive Training



37 |

[Public]

DISCLAIMERS AND ATTRIBUTIONS 

The information contained herein is for informational purposes only and is subject to change without notice. While every precaution has been taken 
in the preparation of this document, it may contain technical inaccuracies, omissions and typographical errors, and AMD is under no obligation to 
update or otherwise correct this information.  Advanced Micro Devices, Inc. makes no representations or warranties with respect to the accuracy or 
completeness of the contents of this document, and assumes no liability of any kind, including the implied warranties of noninfringement, 
merchantability or fitness for particular purposes, with respect to the operation or use of AMD hardware, software or other products described 
herein.  No license, including implied or arising by estoppel, to any intellectual property rights is granted by this document.  Terms and limitations 
applicable to the purchase or use of AMD’s products are as set forth in a signed agreement between the parties or in AMD's Standard Terms and 
Conditions of Sale. GD-18​

THIS INFORMATION IS PROVIDED ‘AS IS.” AMD MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE 

CONTENTS HEREOF AND ASSUMES NO RESPONSIBILITY FOR ANY INACCURACIES, ERRORS, OR OMISSIONS THAT MAY 
APPEAR IN THIS INFORMATION. AMD SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT, 

MERCHANTABILITY, OR FITNESS FOR ANY PARTICULAR PURPOSE. IN NO EVENT WILL AMD BE LIABLE TO ANY PERSON FOR 
ANY RELIANCE, DIRECT, INDIRECT, SPECIAL, OR OTHER CONSEQUENTIAL DAMAGES ARISING FROM THE USE OF ANY 
INFORMATION CONTAINED HEREIN, EVEN IF AMD IS EXPRESSLY ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Git and the Git logo are either registered trademarks or trademarks of Software Freedom Conservancy, Inc., corporate home of the Git 
Project, in the United States and/or other countries

© 2023 Advanced Micro Devices, Inc.  All rights reserved.

AMD, the AMD Arrow logo, Radeon , Instinct , EPYC, Infinity Fabric, ROCm , and combinations thereof are trademarks of Advanced 
Micro Devices, Inc. Other product names used in this publication are for identification purposes only and may be trademarks of their 

respective companies.

Oct 31st, 2024 LUMI Comprehensive Training




	Default Section
	Slide 1: Introduction to Omniperf  
	Slide 2: Contributors
	Slide 3: Background – AMD Profilers
	Slide 4: Open-source Client-side Installation is Easy
	Slide 5: Omniperf modes
	Slide 6: omniperf profile Arguments to Reduce Profiling Overhead
	Slide 7: omniperf profile Arguments to Generate Roofline PDFs
	Slide 8: omniperf profile Argument to Turn Off Roofline Benchmarking
	Slide 9: Omniperf profiling
	Slide 10: omniperf analyze Arguments to Start With
	Slide 11: omniperf analyze Arguments to Filter Kernels and GPUs
	Slide 12: omniperf analyze Argument to Only Show Specific Statistics
	Slide 13: omniperf analyze Arguments to Change Units and Normalization
	Slide 14: omniperf analyze Arguments to Compare Workloads
	Slide 15: omniperf analyze Argument to Launch Standalone GUI
	Slide 16: Key Insights from Omniperf Analyzer
	Slide 17: High level Metrics
	Slide 18: High level Metrics
	Slide 19: High level Metrics
	Slide 20: High level Metrics
	Slide 21: High level Metrics
	Slide 22: Background – What is roofline?
	Slide 23: Overview - AMD Instinct™ MI200 Architecture
	Slide 24: Empirical Hierarchical Roofline on MI200 - Overview
	Slide 25: Empirical Hierarchical Roofline on MI200 – Roofline Benchmarking
	Slide 26: Low level Metrics
	Slide 27: Tips for Long-Running Benchmarks
	Slide 28: Example – DAXPY with a loop in the kernel
	Slide 29: DAXPY – with a loop in the kernel
	Slide 30: Roofline
	Slide 31: Kernel execution time and L1D Cache Accesses
	Slide 32: DAXPY – with a loop in the kernel - Optimized
	Slide 33: Roofline - Optimized
	Slide 34: Kernel execution time and L1D Cache Accesses - Optimized
	Slide 35: Hands-on exercises 
	Slide 36: Questions?
	Slide 37: DISCLAIMERS AND ATTRIBUTIONS 
	Slide 38


