
System Profiling with

Omnitrace

Presenter: Sam Antao

LUMI Comprehensive Course

Oct 31st, 2024

2 |

[Public]

Background – AMD Profilers

Objective Where should I focus my time ? How well am I using the GPU ? Why am I seeing this performance ?

Approach Timelines/Traces/Profiles/Causal-Profiles Roofline Hardware counters

AMD Tools rocprof

Oct 31st, 2024 LUMI Comprehensive Training

3 |

[Public]

Background – AMD Profilers

Objective Where should I focus my time ? How well am I using the GPU ? Why am I seeing this performance ?

Approach Timelines/Traces/Profiles/Causal-Profiles Roofline Hardware counters

AMD Tools Omnitrace Omniperf

Oct 31st, 2024 LUMI Comprehensive Training

4 |

[Public]

AMD Profilers with Timeline Profiling Support

Oct 31st, 2024 LUMI Comprehensive Training

Counter collection with user
input files

Raw collection of GPU counters and traces

Counter results printed to a CSV

CPU to GPU copy HIP API HSA API GPU Kernels

Trace collection support for

Hardware
Counters

Traces and
timelines

ROC-profiler (rocprof)

Traces visualized with PerfettoVisualization

1000

Hardware counters
(rocprof)

Binary rewrite
Pre-instruments executable

Trace
collection

Adds to
rocprof

Omnitrace

OpenMP® KokkosMPI p-threads

Sampling

PAPI Profile

Runtime instrumentation
with standard executable

DynInst Perf uProf

rocm-smi

5 |

[Public]

Omnitrace: Application Profiling, Tracing, and Analysis

Language Support

CPU Metrics

ROCm Tool
(formerly AMD Research Tool)

Data Collection Modes

Data Analysis

Parallelism Support

GPU Metrics

MPI PthreadsOpenMP® HSAHIP Kokkos

C/C++ Fortran Python OpenCL TM

Repository: https://rocm.docs.amd.com/projects/omnitrace/en/latest/

High-level summary Comprehensive trace Critical trace analysis

Part of official ROCm starting from 6.2

Dynamic instrumentation Statistical/process sampling Causal Profiling

HW counters HIP APIHSA API HSA traceHIP trace Memory & thermal

HW counters Memory accessTiming metrics I/ONetwork more…

Refer to current documentation for recent updates

Oct 31st, 2024 LUMI Comprehensive Training

New features constantly

being added

https://rocm.docs.amd.com/projects/omnitrace/en/latest/
https://rocm.docs.amd.com/projects/omnitrace/en/latest/

6 |

[Public]

Omnitrace functioning Modes

For problems, create an issue here: https://github.com/AMDResearch/omnitrace/issues
Documentation: https://amdresearch.github.io/omnitrace/

Characterize performance Sample every invocation

Dynamic binary instrumentation

Large overheads

Runtime Instrumentation

Statistical sampling Process sampling

Periodic sampling of entire application

Sampling Instrumentation

$ omnitrace [omnitrace-options] -- <CMD> <ARGS>

Basic command-line syntax:

For more information or help use -h/--help/? flags:

Can also execute on systems using a job scheduler. For example, with

SLURM, an interactive session can be used as:

$ omnitrace -h

$ srun [options] omnitrace [omnitrace-options] -- <CMD> <ARGS>

Oct 31st, 2024 LUMI Comprehensive Training

https://github.com/AMDResearch/omnitrace/issues
https://amdresearch.github.io/omnitrace/

7 |

[Public]

|------------------------------|-----------------|--|
ENVIRONMENT VARIABLE	VALUE	CATEGORIES
OMNITRACE_ROCM_EVENTS		custom, hardware_counters, libomnitrace, omnitrace, rocm, rocprofiler
OMNITRACE_SAMPLING_GPUS	0	custom, libomnitrace, omnitrace, process_sampling, rocm, rocm_smi
OMNITRACE_USE_RCCLP	false	backend, custom, libomnitrace, omnitrace, rccl, rocm
OMNITRACE_USE_ROCM_SMI	true	backend, custom, libomnitrace, omnitrace, process_sampling, rocm, rocm_smi
OMNITRACE_USE_ROCPROFILER	true	backend, custom, libomnitrace, omnitrace, rocm, rocprofiler
OMNITRACE_USE_ROCTRACER	true	backend, custom, libomnitrace, omnitrace, rocm, roctracer
OMNITRACE_USE_ROCTX	true	backend, custom, libomnitrace, omnitrace, rocm, roctracer, roctx
--	-----------	--

Shows all runtime settings that may be tuned for rocm

Omnitrace Configuration Options

$ omnitrace-avail --categories [options]

Get more information about run-time settings, data collection capabilities, and available
hardware counters. For more information or help use -h/--help flags:

Collect information for Omnitrace-related settings using shorthand -c for --categories:

$ omnitrace-avail -h

$ omnitrace-avail -c rocm

Oct 31st, 2024 LUMI Comprehensive Training

8 |

[Public]

Omnitrace Configuration File

$ omnitrace-avail --categories [options]

Get more information about run-time settings, data collection capabilities, and available
hardware counters. For more information or help use -h/--help flags:

Collect information for omnitrace-related settings using shorthand -c for --categories:

For brief description, use the options:

$ omnitrace-avail -h

$ omnitrace-avail -c omnitrace

$ omnitrace-avail -bd

Create a config file

Create a config file in $HOME:

To add description of all variables and settings, use:

Modify the config file $HOME/.omnitrace.cfg as desired to

enable and change settings:

<snip>
OMNITRACE_TRACE = true
OMNITRACE_PROFILE = true
OMNITRACE_USE_SAMPLING = false
OMNITRACE_USE_ROCTRACER = true
OMNITRACE_USE_ROCM_SMI = true
OMNITRACE_USE_MPIP = true
OMNITRACE_USE_PID = true
OMNITRACE_USE_ROCPROFILER = true
OMNITRACE_USE_ROCTX = true
<snip>

Declare which config file to use by setting the environment:

$ omnitrace-avail -G $HOME/.omnitrace.cfg

$ omnitrace-avail -G $HOME/.omnitrace.cfg --all

$ export OMNITRACE_CONFIG_FILE=/path-
to/.omnitrace.cfg

Contents of the config file

Oct 31st, 2024 LUMI Comprehensive Training

9 |

[Public]

Generating a new executable/library with instrumentation built-in:

Binary Rewrite

Binary Rewrite
$ omnitrace-instrument [omnitrace-options] –o <new-name-
of-exec> -- <CMD> <ARGS>

This new binary will have instrumented functions

$ omnitrace-instrument -o Jacobi_hip.inst -- ./Jacobi_hip

Path to new instrumented binary

Subroutine Instrumentation
Default instrumentation is main function and functions of 1024

instructions and more (for CPU)

To instrument routines with 50 or more cycles, add option "-i 500"

(more overhead)

Oct 31st, 2024 LUMI Comprehensive Training

10 |

[Public]

Generating a new executable/library with instrumentation built-in:

Run the instrumented binary:​

Run Instrumented Binary

Binary Rewrite
$ omnitrace-instrument [omnitrace-options] –o <new-name-
of-exec> -- <CMD> <ARGS>

$ omnitrace-instrument -o Jacobi_hip.inst -- ./Jacobi_hip

Subroutine Instrumentation
Default instrumentation is main function and functions of 1024

instructions and more (for CPU)

To instrument routines with 50 or more cycles, add option "-i 50"

(more overhead)

Oct 31st, 2024 LUMI Comprehensive Training

Binary rewrite is recommended for runs with multiple ranks as

Omnitrace produces separate output files for each rank

Generates traces for application run

$ mpirun -np 1 omnitrace-run -- ./Jacobi_hip.inst -g 1 1

11 |

[Public]

Kernel Durations

$ cat omnitrace-Jacobi_hip.inst-output/2024-01-01_13.57/wall_clock-0.txt

If you do not see a wall_clock.txt dumped by Omnitrace, try modify the config file
$HOME/.omnitrace.cfg and enable OMNITRACE_PROFILE (or prepend to your mpirun command):

…

OMNITRACE_PROFILE = true
…

Call Stack

Durations

Oct 31st, 2024 LUMI Comprehensive Training

12 |

[Public]

Kernel Durations – Flat Profile

OMNITRACE_PROFILE = true
OMNITRACE_FLAT_PROFILE = true

Edit in your omnitrace.cfg (or prepend to your mpirun command):

Use flat profile to see aggregate duration of kernels and

functions

Oct 31st, 2024 LUMI Comprehensive Training

13 |

[Public]

Visualizing Trace (1/3)

Use Perfetto
Copy perfetto-trace-0.proto to your laptop, go to https://ui.perfetto.dev/, click "Open trace file", select perfetto-trace-0.proto

Traces of CPU functions

CPU metrics

Oct 31st, 2024 LUMI Comprehensive Training

https://ui.perfetto.dev/

14 |

[Public]

Visualizing Trace (2/3)

Zoomed in

Oct 31st, 2024 LUMI Comprehensive Training

Use Perfetto
Zoom in to investigate regions of interest

15 |

[Public]

Flow Events

Select metrics of interest to view

close together

GPU characteristics

Oct 31st, 2024 LUMI Comprehensive Training

Use Perfetto
Zoom in to investigate regions of interest

Visualizing Trace (3/3)

16 |

[Public]

Hardware Counters – List All

$ omnitrace-avail --all

A very small subset of the counters shown here

CPU Hardware Counters

GPU Hardware Counters

Environment

Variables

Components, Categories

Oct 31st, 2024 LUMI Comprehensive Training

17 |

[Public]

Configure Omnitrace to Collect GPU Hardware Counters

Full list of GPU metrics at https://github.com/ROCm/rocprofiler/blob/amd-staging/test/tool/metrics.xml

Modify config file

Modify the config file $HOME/.omnitrace.cfg to add desired metrics and for concerned GPU#ID:

To profile desired metrics for all participating GPUs:

Note: currently experiencing issues with ROCm 6.2.1, fix coming soon

…
OMNITRACE_ROCM_EVENTS = FetchSize:device=0, VALUUtilization:device=0, MemUnitBusy:device=0
…

…
OMNITRACE_ROCM_EVENTS = FetchSize, VALUUtilization, MemUnitBusy
…

Oct 31st, 2024 LUMI Comprehensive Training

https://github.com/ROCm/rocprofiler/blob/amd-staging/test/tool/metrics.xml

18 |

[Public]

Execution with Hardware Counters

After modifying .cfg file to set up OMNITRACE_ROCM_EVENTS with GPU metrics run:
$ mpirun -np 1 omnitrace-run -- ./Jacobi_hip.inst -g 1 1

Oct 31st, 2024 LUMI Comprehensive Training

GPU hardware

counters

19 |

[Public]

Visualization with Hardware Counters

GPU hardware counters

CPU activity

GPU activity

ROCTX Regions

Oct 31st, 2024 LUMI Comprehensive Training

20 |

[Public]

OMNITRACE_USE_SAMPLING = true; OMNITRACE_SAMPLING_FREQ = 100 (100 samples per second)

Alternatively run with omnitrace-sample

Scroll down all the way in Perfetto to see the sampling output

Each sample shows the

call stack at that time

Oct 31st, 2024 LUMI Comprehensive Training

Sampling CPU Call-Stack (1/2)

21 |

[Public]

Sampling CPU Call-Stack (2/2)

Zoom in call-stack sampling

Sampling data is annotated with (S)

Oct 31st, 2024 LUMI Comprehensive Training

22 |

[Public]

User API

Omnitrace provides an API to control the instrumentation

API Call Description

int omnitrace_user_start_trace(void) Enable tracing on this thread and all

subsequently created threads

int omnitrace_user_stop_trace(void) Disable tracing on this thread and all

subsequently created threads

int omnitrace_user_start_thread_trace(void) Enable tracing on this specific thread. Does

not apply to subsequently created threads

int omnitrace_user_stop_thread_trace(void) Disable tracing on this specific thread. Does

not apply to subsequently created threads

int omnitrace_user_push_region(void) Start user defined region

int omnitrace_user_pop_region(void) End user defined region, FILO (first in last

out) is expected

All the API calls: https://amdresearch.github.io/omnitrace/user_api.html

Oct 31st, 2024 LUMI Comprehensive Training

https://amdresearch.github.io/omnitrace/user_api.html

23 |

[Public]

OpenMP®

We use the example omnitrace/examples/openmp/

Build the code with CMake:

Use the openmp-lu binary, which can be executed with:

Create a new instrumented binary:

Execute the new binary:

$ cmake -B build

$ export OMP_NUM_THREADS=4
$ srun –n 1 –c 4 ./openmp-lu

$ srun -n 1 omnitrace-instrument -o openmp-lu.inst --
./openmp-lu

$ srun -n 1 –c 4 omnitrace-run -- ./openmp-lu.inst

Oct 31st, 2024 LUMI Comprehensive Training

24 |

[Public]

OpenMP® Visualization

Oct 31st, 2024 LUMI Comprehensive Training

25 |

[Public]

Python

Python documentation: https://amdresearch.github.io/omnitrace/python.html

The omnitrace Python package is installed in

/path/omnitrace_install/lib/pythonX.Y/site-packages/omnitrace

Setup the environment:

We use the Fibonacci example in

omnitrace/examples/python/source.py

Execute the python program with:

Profiled data is dumped in output directory:

$ export PYTHONPATH=/path/omnitrace/lib/python/site-
packages/:${PYTHONPATH}

$ omnitrace-python ./external.py

$ cat omnitrace-source-output/timestamp/wall_clock.txt

Oct 31st, 2024 LUMI Comprehensive Training

26 |

[Public]

Visualizing Python Perfetto Tracing

Oct 31st, 2024 LUMI Comprehensive Training

27 |

[Public]

Summary

• Omnitrace - powerful tool to understand CPU + GPU activity on AMD GPUs

• Ideal for an initial look at how an application runs

• Easy to visualize traces in Perfetto

• Leverages several other tools and combines their data into a comprehensive output files

• Some tools used are AMDµProf, rocprofiler, rocm-smi, roctracer, perf, etc.

• Helps users analyze overlaps between CPU/GPU compute and communication

Oct 31st, 2024 LUMI Comprehensive Training

28 |

[Public]

Hands-on exercises

https://hackmd.io/@sfantao/lumi-training-ams-2024#Omnitrace

We welcome you to explore our HPC Training Examples repo:

 https://github.com/amd/HPCTrainingExamples

A table of contents for the READMEs if available at the top-level README in the repo

Relevant exercises for this presentation located in Omnitrace directory.

Link to instructions on how to run the tests: Omnitrace/README.md and subdirectories

Oct 29th, 2024 LUMI Comprehensive Training

https://hackmd.io/@sfantao/lumi-training-ams-2024
https://github.com/amd/HPCTrainingExamples
https://github.com/amd/HPCTrainingExamples/blob/main/README.md
https://github.com/amd/HPCTrainingExamples/blob/main/HIP/README.md

29 |

[Public]

DISCLAIMERS AND ATTRIBUTIONS
The information contained herein is for informational purposes only and is subject to change without notice. While every precaution has been taken
in the preparation of this document, it may contain technical inaccuracies, omissions and typographical errors, and AMD is under no obligation to
update or otherwise correct this information. Advanced Micro Devices, Inc. makes no representations or warranties with respect to the accuracy or
completeness of the contents of this document, and assumes no liability of any kind, including the implied warranties of noninfringement,
merchantability or fitness for particular purposes, with respect to the operation or use of AMD hardware, software or other products described
herein. No license, including implied or arising by estoppel, to any intellectual property rights is granted by this document. Terms and limitations
applicable to the purchase or use of AMD’s products are as set forth in a signed agreement between the parties or in AMD's Standard Terms and
Conditions of Sale. GD-18​

THIS INFORMATION IS PROVIDED ‘AS IS.” AMD MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE
CONTENTS HEREOF AND ASSUMES NO RESPONSIBILITY FOR ANY INACCURACIES, ERRORS, OR OMISSIONS THAT MAY
APPEAR IN THIS INFORMATION. AMD SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY, OR FITNESS FOR ANY PARTICULAR PURPOSE. IN NO EVENT WILL AMD BE LIABLE TO ANY PERSON FOR
ANY RELIANCE, DIRECT, INDIRECT, SPECIAL, OR OTHER CONSEQUENTIAL DAMAGES ARISING FROM THE USE OF ANY
INFORMATION CONTAINED HEREIN, EVEN IF AMD IS EXPRESSLY ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

© 2024 Advanced Micro Devices, Inc. All rights reserved.

AMD, the AMD Arrow logo, Radeon , Instinct , EPYC, Infinity Fabric, ROCm , and combinations thereof are trademarks of Advanced
Micro Devices, Inc. Other product names used in this publication are for identification purposes only and may be trademarks of their
respective companies.
The OpenMP name and the OpenMP logo are registered trademarks of the OpenMP Architecture Review Board
Windows is a registered trademark of Microsoft Corporation in the US and/or other countries.
Git and the Git logo are either registered trademarks or trademarks of Software Freedom Conservancy, Inc., corporate home of the Git
Project, in the United States and/or other countries

Oct 31st, 2024 LUMI Comprehensive Training

	Slide 1: System Profiling with Omnitrace
	Slide 2: Background – AMD Profilers
	Slide 3: Background – AMD Profilers
	Slide 4: AMD Profilers with Timeline Profiling Support
	Slide 5: Omnitrace: Application Profiling, Tracing, and Analysis
	Slide 6: Omnitrace functioning Modes
	Slide 7: Omnitrace Configuration Options
	Slide 8: Omnitrace Configuration File
	Slide 9: Binary Rewrite
	Slide 10: Run Instrumented Binary
	Slide 11: Kernel Durations
	Slide 12: Kernel Durations – Flat Profile
	Slide 13: Visualizing Trace (1/3)
	Slide 14: Visualizing Trace (2/3)
	Slide 15: Visualizing Trace (3/3)
	Slide 16: Hardware Counters – List All
	Slide 17: Configure Omnitrace to Collect GPU Hardware Counters
	Slide 18: Execution with Hardware Counters
	Slide 19: Visualization with Hardware Counters
	Slide 20: Sampling CPU Call-Stack (1/2)
	Slide 21: Sampling CPU Call-Stack (2/2)
	Slide 22: User API
	Slide 23: OpenMP®
	Slide 24: OpenMP® Visualization
	Slide 25: Python™
	Slide 26: Visualizing Python™ Perfetto Tracing
	Slide 27: Summary
	Slide 28: Hands-on exercises
	Slide 29: DISCLAIMERS AND ATTRIBUTIONS
	Slide 30

