

Materials Locations

Slides will be uploaded soon after talks
 /project/project_465001362/Slides/HPE
 Files *.pdf

Exercise notes and files (should include PDFs or Readme.md with instructions)
 /project/project_465001362/Exercises/HPE

- Copy exercise files into your \$HOME directory
 - If needed, unpack the exercise tar files with

```
tar xf <file>.tar
tar xf <file>.tar.gz
```


Setup

- Reservations are setup for use during the training (on LUMI-C and LUMI-G)
 - Use the following flags in the SLURM commands:

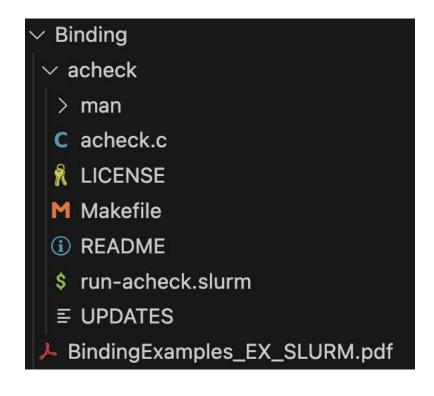
```
-A project_465001362 --reservation=lumic_ams (or --reservation=lumig_ams)
```

 To run the examples either use above options with sbatch/srun/salloc or you can also set SLURM environment variables, e.g.

```
export SLURM_ACCOUNT=project_465001362
export SLURM_RESERVATION=lumig_ams
```

(to be repeated for variables with prefix SLURM_, SBATCH_, SALLOC_)

- For convenience, we provide a script to setup your environment (copy from /project/project_465001362/Exercises/HPE):
 - source lumi_c.sh # LUMI-C
 - source lumi_g.sh # LUMI-G
 - → It will change the prompt accordingly, remember to run `exit` before you switch environment


Exercises - Day 1 Introduction

- Exercise notes and files (should include PDFs or Readme.md with instructions)
 /project/project_465001362/Exercises/HPE/day1
- Directory: **ProgrammingModels**
 - Session 1: Run on the system and get familiar with the SLURM commands
 - Session 2: Try different compilers and flags
- Directory: libsci_acc
 - Session 3:
 Test with LibSci_ACC, check the different interfaces and environment variables

Exercises - Day 2 Introduction

- Exercise notes and files (should include PDFs or Readme.md with instructions)
 /project/project_465001362/Exercises/HPE/day2
- Directories: **Binding**, **gpu_perf_binding**
 - Session 5:
 Try different binding options for CPU execution (look at slides and use envars to change order and display the order) and for GPU execution (gpu_perf_binding, see next slide)
- Directories: debugging (within directories)
 - Session 6: Try the debugging tools in debugging sub-directory

CPU binding: HPE/day2/Binding/

Get the right environment:

source ../../lumi_c.sh

<u>Compile acheck</u>:

- cd acheck && make
 - Default modules produces acheck-cray

Look at the sbatch example

- cat run-acheck.slurm
 - test different bindings
- sbatch run-acheck.slurm

GPU binding: HPE/day2/gpu_perf_binding/

Get the right environment:

- source ../../lumi_g.sh
- source gpu_env.sh

Compile the two applications:

- cd hello_jobstep && make
- cd himeno && make

Start with hello_job_step example

- cd hello_jobstep
- sbatch job.slurm
 - test different bindings
 - gpu_bind variables...

Launchl Himeno from the root directory

- cd himeno
- sbatch job.slurm
 - test different bindings

- gpu_perf_bindinghello_jobstep
 - > himeno
- gitignore
- \$ gpu_env.sh
- README.md
- \$ select_gpu_naive.sh
- select_gpu.sh

Exercises - Day 3 Introduction

- Exercise notes and files (should include PDFs or Readme.md with instructions)
 /project/project_465001362/Exercises/HPE/day3
- Directories: perftools-lite, perftools-lite-gpu
 - Session 7: Follow the Readme.md description and get familiar with the perftoos-lite commands and outputs
 - subdirectory perftools-lite needs lumi_c.sh to be sourced
 - subdirectory perftools-lite-gpu needs lumi_g.sh to be sourced
- Directories: perftools (within directories)
 - Session 8:
 - Follow the Readme.md description (per each directory) and get familiar with the perftools commands and outputs
 - subdirectories perftools, perftools-api, perftools-hwpc, perftools-python, and perftools-apa need lumi_c.sh to be sourced
 - subdirectories perftools-for-hip and perftools-for-omp-offload need lumi_g.sh to be sourced
- Directories: ProgrammingModels

Session 9:

Test the Pi example with MPI or MPI/OpenMP on 4 nodes and 4 tasks Show where the ranks/threads are running by using the appropriate MPICH environment variable Use environment variables to change this order (rank-reordering)

Exercises - Day 4 Introduction

- Exercise notes and files (should include PDFs or Readme.md with instructions)
 /project/project_465001362/Exercises/HPE/day4
- Directory: **node_performance**
 - Session 12:
 Try different compiler optimization levels and see the impact on performance
- Directory: VH1-io
 - Session 13:

For I/O experiment with striping for the example.

ALTERNATIVELY look again at MPI with apprentice If you did not do this yesterday, set PAT_RT_SUMMARY=0

- You get trace data per rank when you do this (huge file)

Set only 2 cycles in the input file (indat)

Use app2 on .ap2 file to see new displays (see help)

