
Introduction to ROC-Profiler

(rocprof)

Presenter: Sam Antao

LUMI Comprehensive Training

October 30, 2024

2 |

[Public]

Background – AMD Profilers

A
tt

ai
n

ab
le

 F
LO

P
s/

s

1000

100

Counter collection with
user input files

Raw collection of GPU counters and traces

Counter results printed
to a CSV

CPU copy HIP API HSA API GPU Kernels

Trace collection support for

Traces visualized with Perfetto

Hardware
Counters

Visualisation

Traces and
timelines

ROC-profiler (rocprof)

CPU

Comprehensive trace collection

GPU

CPU copy HIP API HSA API GPU Kernels

Traces visualized with Perfetto

Trace
collection

Visualisation

Supports

Omnitrace

OpenMP® KokkosMPI multi-GPUp-threads

Analysis

Automated collection of hardware counters

Visualisation

Speed of
Light

Memory
chart

Rooflines
Kernel

comparison

With Grafana or standalone GUI

Performance
Analysis

Visualisation

Supports

Omniperf

3 |

[Public]

Background – AMD Profilers

Objective Where should I focus my time ? How well am I using the GPU ? Why am I seeing this performance ?

Approach Timelines/Traces/Profiles/Causal-Profiles Roofline Hardware counters

AMD Tools rocprof

4 |

[Public]

Background – AMD Profilers

Objective Where should I focus my time ? How well am I using the GPU ? Why am I seeing this performance ?

Approach Timelines/Traces/Profiles/Causal-Profiles Roofline Hardware counters

AMD Tools Omnitrace Omniperf

5 |

[Public]

Driver

User level

6.0.3

6.1.36.0.35.7.3 6.2.1 …

Dec 2023

…

Mar 2024 Jun 2024 Sep 2024 … …

Meant to support older
version of apps and

frameworks

Facilitate transition

GPU address sanitizer
(beta)

Data pre-processing
capabilities
 (MIVisionX)

Default version

Officially supported

Recommended for
debugging

Improved sparse matrix
operations

Latest Pytorch and other
AI frameworks require

this version

Introduced many
performance

improvements

Many stability and performance
improvements for performance libraries

Improved support for lower precisions

Best tunned for AI inference workloads

Integration of profiling tools
Autocast (mixed-precision)

Native OpenXLA support

We’ll likely be abusing the driver soon

GPU-Aware MPI

ROCPROF V3
ROCm on LUMI

6 |

[Public]

What is ROC-Profiler (v1-v2-v3)?

• ROC-profiler (also referred to as rocprof) is the command line front-end for AMD's GPU profiling libraries

• Repo: https://github.com/ROCm-Developer-Tools/rocprofiler

• rocprof contains the central components allowing application traces and counter collection
• Under constant development

• Distributed with ROCm

• The output of rocprofv1 can be visualized in the Chrome browser with Perfetto (https://ui.perfetto.dev/)

• There are ROCProfiler V1 and V2 (roctracer and rocprofiler into single library, same API)

• ROC-profiler-SDK is a profiling and tracing library for HIP and ROCm application. The new API improved thread
safety and includes more efficient implementations and provides a tool library to support on writing your tool
implementations. It is still in beta release.

• rocprofv3 uses this tool library to profile and trace applications.

https://github.com/ROCm-Developer-Tools/rocprofiler
https://ui.perfetto.dev/

7 |

[Public]

rocprof (v1): Getting Started + Useful Flags

• To get help:
${ROCM_PATH}/bin/rocprof -h

• Useful housekeeping flags:
• --timestamp <on|off> - turn on/off gpu kernel timestamps

• --basenames <on|off> - turn on/off truncating gpu kernel names (i.e., removing template parameters and argument types)

• -o <output csv file> - Direct counter information to a particular file name

• -d <data directory> - Send profiling data to a particular directory

• -t <temporary directory> - Change the directory where data files typically created in /tmp are placed. This allows you to
save these temporary files.

• Flags directing rocprofiler activity:
• -i input<.txt|.xml> - specify an input file (note the output files will now be named input.*)

• --hsa-trace - to trace GPU Kernels, host HSA events (more later) and HIP memory copies.

• --hip-trace - to trace HIP API calls

• --roctx-trace - to trace roctx markers

• --kfd-trace - to trace GPU driver calls

• Advanced usage
• -m <metric file> - Allows the user to define and collect custom metrics. See rocprofiler/test/tool/*.xml on GitHub for

examples.

https://github.com/ROCm-Developer-Tools/rocprofiler/tree/amd-master/test/tool

8 |

[Public]

rocprof (v1): : Kernel Information

• rocprof can collect kernel(s) execution stats

$ /opt/rocm/bin/rocprof --stats --basenames on <app with arguments>

• This will output two csv files:

• results.csv: information per each call of the kernel

• results.stats.csv: statistics grouped by each kernel

• Content of results.stats.csv to see the list of GPU kernels with their durations and percentage of total GPU time:

• In a spreadsheet viewer, it is easier to read:

9 |

[Public]

rocprof (v1): + Perfetto: Collecting and Visualizing App Traces
• rocprof can collect traces

$ /opt/rocm/bin/rocprof --hip-trace <app with arguments>

This will output a .json file that can be visualized using the Chrome browser and Perfetto (https://ui.perfetto.dev/)

Copy activity (H2D and D2H)

HIP API Activity

GPU activity

https://ui.perfetto.dev/

10 |

[Public]

rocprofv3: Getting Started + Useful Flags

• To get help:

${ROCM_PATH}/bin/rocprofv3 -h

• Useful housekeeping flags:

• --hip-trace For Collecting HIP Traces (runtime + compiler)

• --hip-runtime-trace For Collecting HIP Runtime API Traces

• --hip-compiler-trace For Collecting HIP Compiler generated code Traces

• --marker-trace For Collecting Marker (ROCTx) Traces

• --memory-copy-trace For Collecting Memory Copy Traces

• --stats For Collecting statistics of enabled tracing types

• --hsa-trace For Collecting HSA Traces (core + amd + image + finalizer)

• --hsa-core-trace For Collecting HSA API Traces (core API)

• --hsa-amd-trace For Collecting HSA API Traces (AMD-extension API)

• --hsa-image-trace For Collecting HSA API Traces (Image-extenson API)

• --hsa-finalizer-trace For Collecting HSA API Traces (Finalizer-extension API)

11 |

[Public]

rocprofv3: Getting Started + Useful Flags (II)

• Useful housekeeping flags:
• -s, --sys-trace For Collecting HIP, HSA, Marker (ROCTx), Memory copy, Scratch memory, and Kernel

 dispatch traces
• -M, --mangled-kernels Do not demangle the kernel names
• -T, --truncate-kernels Truncate the demangled kernel names
• -L, --list-metrics List metrics for counter collection
• -i INPUT, --input INPUT Input file for counter collection
• -o OUTPUT_FILE, --output-file OUTPUT_FILE
 For the output file name
• -d OUTPUT_DIRECTORY, --output-directory OUTPUT_DIRECTORY
 For adding output path where the output files will be saved
• --output-format {csv,json,pftrace} [{csv,json,pftrace} ...]
 For adding output format (supported formats: csv, json, pftrace)
• --log-level {fatal,error,warning,info,trace}
 Set the log level
• --kernel-names KERNEL_NAMES [KERNEL_NAMES ...]
 Filter kernel names
• --preload [PRELOAD ...]

 Libraries to prepend to LD_PRELOAD (usually for sanitizers)

• rocprofv3 requires double-hyphen (--) before the application to be executed, e.g.

 $ rocprofv3 [<rocprofv3-option> ...] -- <application> [<application-arg> ...]
 $ rocprofv3 --hip-trace -- ./myapp -n 1

• Instructions: https://rocm.docs.amd.com/projects/rocprofiler-sdk/en/docs-6.2.1/how-to/using-rocprofv3.html

12 |

[Public]

rocprofv3: Kernel Information

• rocprof can collect kernel(s) execution stats

$ /opt/rocm/bin/rocprofv3 --stats --kernel-trace –T -- <app with arguments>

• This will output four csv files (XXXXX are numbers):

• XXXXX_agent_info.csv: information for the used hardware APU/GPU and CPU

• XXXXX_kernel_traces.csv: information per each call of the kernel

• XXXXX_kernel_stats.csv: statistics grouped by each kernel

• XXXXX_domain_stats.csv: statistics grouped by domain, such as KERNEL_DISPATCH, HIP_COMPILER_API

• Content of results.stats.csv to see the list of GPU kernels with their durations and percentage of total GPU time:

• In a spreadsheet viewer, it is easier to read:

13 |

[Public]

rocprofv3: Collecting Application Traces

• rocprof can collect a variety of trace event types, and generate timelines in JSON format for use with

Perfetto, currently, however better use the pftrace output format (--output-format pftrace):

• You can combine modes like --stats --hip-trace --hsa-trace --output-format pftrace

Trace Event rocprof Trace Mode

HIP API call --hip-trace

GPU Kernels --kernel-trace

Host <-> Device Memory copies --hip-trace or --memory-copy-trace

CPU HSA Calls --hsa-trace

User code markers --marker-trace

Collect HIP, HSA, Kernels, Memory

Copy, Marker API

--sys-trace

Scratch memory operations --scratch-memory-trace

14 |

[Public]

rocprof + Perfetto: Collecting and Visualizing Application Traces
• rocprof can collect traces

$ /opt/rocm/bin/rocprof --hip-trace --output-format pftrace -- <app with arguments>

This will output a pftrace file that can be visualized using the chrome browser and Perfetto (https://ui.perfetto.dev/)

Copy activity (H2D and D2H)

HIP API Activity

GPU activity

https://ui.perfetto.dev/

15 |

[Public]

Perfetto: Visualizing Application Traces

• Zoom in to see individual events

• Navigate trace using WASD keys

16 |

[Public]

Perfetto: Kernel Information and Flow Events

• Zoom and select a kernel, you can see the link to the HIP call launching the kernel

• Try to open the information for the kernel (button at bottom right)

17 |

[Public]

Perfetto: Kernel Information

Kernel name and args

Workgroup size and

grid size

Duration

18 |

[Public]

Rocprofv3: OpenMP Offloading

• The option --kernel-trace provides information of the OpenMP kernels, good to use --hsa-trace if you want

information from HSA layer

• For example:

mpirun -n 1 rocprofv3 --stats --kernel-trace --output-format pftrace -- <app with arguments>

Content of XXXXX_kernel_stats.csv:

"Name","Calls","TotalDurationNs","AverageNs","Percentage","MinNs","MaxNs","StdDev"

"__omp_offloading_32_7f7a__Z6evolveR5FieldS0_dd_l24",500,45818062,91636.124000,100.00,49840,19483408,868965.767084

Content of XXXXX_kernel_trace.csv

"Kind","Agent_Id","Queue_Id","Kernel_Id","Kernel_Name","Correlation_Id","Start_Timestamp","End_Timestamp","Private_Segment_Size","Group_Segment_Size","

Workgroup_Size_X","Workgroup_Size_Y","Workgroup_Size_Z","Grid_Size_X","Grid_Size_Y","Grid_Size_Z"

"KERNEL_DISPATCH",4,1,1,"__omp_offloading_32_7f7a__Z6evolveR5FieldS0_dd_l24",1,4547852833814530,4547852853297938,0,0,256,1,1,233472,1,1

"KERNEL_DISPATCH",4,1,1,"__omp_offloading_32_7f7a__Z6evolveR5FieldS0_dd_l24",2,4547852853393869,4547852853446789,0,0,256,1,1,233472,1,1

"KERNEL_DISPATCH",4,1,1,"__omp_offloading_32_7f7a__Z6evolveR5FieldS0_dd_l24",3,4547852853461519,4547852853514599,0,0,256,1,1,233472,1,1

…

19 |

[Public]

Perfetto and OpenMP visualization

• Using: --sys-trace --output-format pftrace

• We can use: --kernel-trace --output-format

pftrace

20 |

[Public]

rocprofv3: Collecting Application Traces with rocTX Markers and Regions

• rocprofv3 can collect user defined regions or markers using rocTX

• Annotate code with roctx regions:
#include <rocprofiler-sdk-roctx/roctx.h>
...

roctxRangePush("reduce_for_c");
reduce_function ();
roctxRangePop();

...

• Annotate code with roctx markers:
...

roctxMark("start of some code");

// some_code

roctxMark("end of some code");

...
• Add roctx and roctracer libraries to link line:

-L${ROCM_PATH}/lib –lrocprofiler-sdk-roctx -lroctracer64

• Profile with --roctx-range option:
$ /opt/rocm/bin/rocprofv3 --hip-trace --marker-trace -- <app with arguments>

• Important: There is some difference regarding roctx between rocprof and rocprofv3

Roctx Range

21 |

[Public]

Rocprofv3: Merge traces

• When you have one pftrace per MPI processes you can merge them as follows:

• For example cat XXXXX_results.pftrace > all_ghostexchange.pftrace

• Then visualize the file called all_ghostexchange.pftrace

22 |

[Public]

rocprofv3: Commonly Used GPU Counters

Full list at: https://github.com/ROCm-Developer-Tools/rocprofiler/blob/amd-master/test/tool/metrics.xml

The percentage of ALUs active in a wave. Low VALUUtilization is
likely due to high divergence or a poorly sized grid

VALUUtilization

The percentage of GPUTime vector ALU instructions are
processed. Can be thought of as something like compute
utilization

VALUBusy

The total kilobytes fetched from global memoryFetchSize

The total kilobytes written to global memoryWriteSize

The percentage of GPUTime the memory unit is stalledMemUnitStalled

The ratio of active waves on a CU to the maximum number of
active waves supported by the CU

CU_OCCUPANCY

MeanOccupancyPer
CU

Mean occupancy per active compute unit
MeanOccupancyPe
rActiveCU

Mean occupancy per compute unit

https://github.com/ROCm-Developer-Tools/rocprofiler/blob/amd-master/test/tool/metrics.xml

23 |

[Public]

rocprofv3: Collecting Hardware Counters

• rocprofv3 can collect a number of hardware counters and derived counters

• $ /opt/rocm/bin/rocprofv3 -L

• Specify counters in a counter file. For example:

• $ /opt/rocm/bin/rocprofv3 -i rocprof_counters.txt -- <app with args>

• $ cat rocprof_counters.txt

pmc: VALUUtilization VALUBusy FetchSize WriteSize MemUnitStalled

pmc: GPU_UTIL CU_OCCUPANCY MeanOccupancyPerCU MeanOccupancyPerActiveCU

• A limited number of counters can be collected during a specific pass of code

• Each line in the counter file will be collected in one pass

• You will receive an error suggesting alternative counter ordering if you have too many / conflicting counters on one line

• One directory per pmc line will be created, for example pmc_1 and pmc_2 for the two lines in the file with the counters.

• One agent_info and one counter_collection csv file per MPI process will be created containing all the requested

counters for each invocation of every kernel

24 |

[Public]

rocprof: Profiling Overhead

• As with every profiling tool, there is an overhead

• The percentage of the overhead depends on the profiling options used

• For example, tracing is faster than hardware counter collection

• When collecting many counters, the collection may require multiple passes

• With rocTX markers/regions, tracing can take longer and the output may be large

• Sometimes too large to visualize

• The more data collected, the more the overhead of profiling

• Depends on the application and options used

• rocprofv3 has less overhead than rocprof (v1) on various examples with extensive ROCm calls

25 |

[Public]

Summary

• rocprofv3 is the open source, command line AMD GPU profiling tool distributed with ROCm 6.2 and later

• rocprofv3 provides tracing of GPU kernels, through various options, HIP API, HSA API, Copy activity and

others

• rocprofv3 can be used to collect GPU hardware counters with additional overhead

• Perfetto seems to visualize pftrace files without significant issues

• Other output files are in text/CSV format

26 |

[Public]

Hands-on exercises

https://hackmd.io/@sfantao/lumi-training-ams-2024#Rocprof

We welcome you to explore our HPC Training Examples repo:

 https://github.com/amd/HPCTrainingExamples

A table of contents for the READMEs if available at the top-level README in the repo

Relevant exercises for this presentation located in Rocprof directory.

Link to instructions on how to run the tests: Rocprof/README.md and subdirectories

https://hackmd.io/@sfantao/lumi-training-ams-2024
https://github.com/amd/HPCTrainingExamples
https://github.com/amd/HPCTrainingExamples/blob/main/README.md
https://github.com/amd/HPCTrainingExamples/blob/main/HIP/README.md

27 |

[Public]

Disclaimer
The information presented in this document is for informational purposes only and may contain technical inaccuracies, omissions,

and typographical errors. The information contained herein is subject to change and may be rendered inaccurate for many reasons, including

but not limited to product and roadmap changes, component and motherboard version changes, new model and/or product releases,

product differences between differing manufacturers, software changes, BIOS flashes, firmware upgrades, or the like. Any compute r system has

risks of security vulnerabilities that cannot be completely prevented or mitigated. AMD assumes no obligation to update or otherwise correct

or revise this information. However, AMD reserves the right to revise this information and to make changes from time to time to the content hereof

without obligation of AMD to notify any person of such revisions or changes.

THIS INFORMATION IS PROVIDED ‘AS IS.” AMD MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE CONTENTS

HEREOF AND ASSUMES NO RESPONSIBILITY FOR ANY INACCURACIES, ERRORS, OR OMISSIONS THAT MAY APPEAR IN THIS

INFORMATION. AMD SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS

FOR ANY PARTICULAR PURPOSE. IN NO EVENT WILL AMD BE LIABLE TO ANY PERSON FOR ANY RELIANCE, DIRECT, INDIRECT,

SPECIAL, OR OTHER CONSEQUENTIAL DAMAGES ARISING FROM THE USE OF ANY INFORMATION CONTAINED HEREIN, EVEN IF AMD

IS EXPRESSLY ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Third-party content is licensed to you directly by the third party that owns the content and is not licensed to you by AMD. ALL LINKED THIRD-

PARTY CONTENT IS PROVIDED “AS IS” WITHOUT A WARRANTY OF ANY KIND. USE OF SUCH THIRD-PARTY CONTENT IS DONE AT

YOUR SOLE DISCRETION AND UNDER NO CIRCUMSTANCES WILL AMD BE LIABLE TO YOU FOR ANY THIRD-PARTY CONTENT. YOU

ASSUME ALL RISK AND ARE SOLELY RESPONSIBLE FOR ANY DAMAGES THAT MAY ARISE FROM YOUR USE OF THIRD-PARTY

CONTENT.

© 2024 Advanced Micro Devices, Inc. All rights reserved. AMD, the AMD Arrow logo, ROCm, and combinations thereof are trademarks of Advanced

Micro Devices, Inc. in the United States and/or other jurisdictions. Other names are for informational purposes only and may be trademarks of their

respective owners.

	Slide 1: Introduction to ROC-Profiler (rocprof)
	Slide 2: Background – AMD Profilers
	Slide 3: Background – AMD Profilers
	Slide 4: Background – AMD Profilers
	Slide 5: ROCm on LUMI
	Slide 6: What is ROC-Profiler (v1-v2-v3)?
	Slide 7: rocprof (v1): Getting Started + Useful Flags
	Slide 8: rocprof (v1): : Kernel Information
	Slide 9: rocprof (v1): + Perfetto: Collecting and Visualizing App Traces
	Slide 10: rocprofv3: Getting Started + Useful Flags
	Slide 11: rocprofv3: Getting Started + Useful Flags (II)
	Slide 12: rocprofv3: Kernel Information
	Slide 13: rocprofv3: Collecting Application Traces
	Slide 14: rocprof + Perfetto: Collecting and Visualizing Application Traces
	Slide 15: Perfetto: Visualizing Application Traces
	Slide 16: Perfetto: Kernel Information and Flow Events
	Slide 17: Perfetto: Kernel Information
	Slide 18: Rocprofv3: OpenMP Offloading
	Slide 19: Perfetto and OpenMP visualization
	Slide 20: rocprofv3: Collecting Application Traces with rocTX Markers and Regions
	Slide 21: Rocprofv3: Merge traces
	Slide 22: rocprofv3: Commonly Used GPU Counters
	Slide 23: rocprofv3: Collecting Hardware Counters
	Slide 24: rocprof: Profiling Overhead
	Slide 25: Summary
	Slide 26: Hands-on exercises
	Slide 27: Disclaimer
	Slide 28

