
HIP and ROCm

Presenter: Sam Antao

LUMI Comprehensive Training

Oct 29th, 2024

2

[Public]

Thanks to all the AMD staff for their contributions

to this presentation

• Suyash Tandon

• Justin Chang

• Julio Maia

• Noel Chalmers

• Paul T. Bauman

• Nicholas Curtis

• Nicholas Malaya

• Alessandro Fanfarillo

• Jose Noudohouenou

• Chip Freitag

• Damon McDougall

• Noah Wolfe

• Jakub Kurzak

• Samuel Antao

• George Markomanolis

• Bob Robey

• Gina Sitaraman

• and many more DC GPU colleagues…

Oct 29th, 2024 LUMI Comprehensive Training

3

[Public]

Agenda 1. AMD GPU programming concepts

2. HIP API calls and GPU kernel code

3. ROCm and ROCm libraries

4. Error checking, device management, and asynchronous

computing

5. Shared memory and thread synchronization

Oct 29th, 2024 LUMI Comprehensive Training

4

[Public]

LUMI Comprehensive Training

1. AMD GPU programming concepts

Oct 29th, 2024

5

[Public]

Device Kernels: Grid Hierarchy

• In HIP, kernels are executed on a "grid" of threads that run on a GPU
❖ 1D, 2D, and 3D grids are supported, but most work maps well to 1D

❖ The grid is what you map your problem to

• Each dimension of the grid is partitioned into equal sized "blocks" of threads

• Each block is made up of multiple "threads"

• The grid and its associated blocks are just
organizational constructs, the threads are

the things that do the work

• If you’re familiar with CUDA already,

the grid+block structure is very similar in HIP

Oct 29th, 2024

Thread blocks Grid of thread blocks

Threads

AMD NVIDIA

Grid Grid

Workgroup Thread Block

Thread Thread

Wavefront (64) Warp (32)

LUMI Comprehensive Training

TERMINOLOGY

6

[Public]

The Grid: blocks of threads in 1D

Threads in grid have access to:

• Their respective block (workgroup): blockIdx.x

• Their respective thread ID in a block: threadIdx.x

• Their block’s dimension (# of threads in the block): blockDim.x

• The grid’s dimension (# of blocks in the grid): gridDim.x

Oct 29th, 2024 LUMI Comprehensive Training

Grid of blocks

 lock of threads
Thread

int id = blockDim.x * blockIdx.x + threadIdx.x;

 = 4 * 2 + 3

 = 11

Block 0 Block 2Block 1 ...

0 1 2 3 0 1 2 3 0 1 2 3 ...

Global thread ID

For example, thread 3 of block 2

would have a global thread ID of 11

Each color is a block of threads

Each small square is a thread

7

[Public]

The Grid: blocks of threads in 2D

• The concept is the same in 1D and 2D

• In 2D each block and thread now has a two-

dimensional index

Threads in grid have access to:

• Their respective block IDs: blockIdx.x, blockIdx.y

• Their respective thread IDs in a block: threadIdx.x,

threadIdx.y

• Etc.

Oct 29th, 2024 LUMI Comprehensive Training

8

[Public]

LUMI Comprehensive Training

2. HIP API calls and GPU kernel code

Oct 29th, 2024

9

[Public]

What is HIP?

Oct 29th, 2024 LUMI Comprehensive Training

AMD’s Heterogeneous-compute Interface for

Portability, or HIP, is a C++ runtime API and kernel

language that allows developers to create portable

applications that can run on AMD’s accelerators as well

as CUDA devices

• Open-source

• Syntactically similar to CUDA. Most CUDA API calls

can be converted in place: cuda -> hip

• Supports a strong subset of CUDA runtime
functionality

Portable HIP C++ (Host & Device Code)

#include “cuda.h”
#include

“hip_runtime.h”

nvcc hipcc

Nvidia GPU AMD GPU

10

[Public]

HIP API
Device Management:

• hipSetDevice(), hipGetDevice(), hipGetDeviceProperties()

Memory Management

• hipMalloc(), hipMemcpy(), hipMemcpyAsync(), hipFree()

Streams

• hipStreamCreate(), hipDeviceSynchronize(), hipStreamSynchronize(), hipStreamDestroy()

Events

• hipEventCreate(), hipEventRecord(), hipStreamWaitEvent(), hipEventElapsedTime()

Device Kernels

• __global__, __device__

Device code

• threadIdx, blockIdx, blockDim, __shared__, 200+ math functions covering entire CUDA math library.

Error handling

• hipGetLastError(), hipGetErrorString()

Oct 29th, 2024 LUMI Comprehensive Training

https://rocm.docs.amd.com/projects/HIP/en/latest/.doxygen/docBin/html/index.html

https://rocm.docs.amd.com/projects/HIP/en/latest/.doxygen/docBin/html/index.html

11

[Public]

Example: simple discrete GPU multiply

#include <stdio.h>

#include <math.h>

#include "hip/hip_runtime.h"

__global__ void multiply(double *A, int n)

{

 int id = blockDim.x * blockIdx.x + threadIdx.x;

 if (id < n) A[id] = 2.0 * A[id];

}

int main(int argc, char *argv[]){

 int N = 1024 * 1024;

 size_t bytes = N * sizeof(double);

 double *h_A = (double*)malloc(bytes);

 for(int i=0; i<N; i++){

 h_A[i] = (double)rand()/(double)RAND_MAX;

 }

double *d_A;

 hipMalloc(&d_A, bytes);

 hipMemcpy(d_A, h_A, bytes, hipMemcpyHostToDevice);

 int thr_per_blk = 256;

 int blk_in_grid = ceil(float(N) / thr_per_blk);

 multiply<<<blk_in_grid,thr_per_blk>>>(d_A, N);

 hipMemcpy(h_A, d_A, bytes, hipMemcpyDeviceToHost);

 free(h_A);

 hipFree(d_A);

 printf("__SUCCESS__\n");

 return 0;

}

Oct 29th, 2024 LUMI Comprehensive Training

12

[Public]

Example: simple discrete GPU multiply

#include <stdio.h>

#include <math.h>

#include "hip/hip_runtime.h"

__global__ void multiply(double *A, int n)

{

 int id = blockDim.x * blockIdx.x + threadIdx.x;

 if (id < n) A[id] = 2.0 * A[id];

}

int main(int argc, char *argv[]){

 int N = 1024 * 1024;

 size_t bytes = N * sizeof(double);

 double *h_A = (double*)malloc(bytes);

 for(int i=0; i<N; i++){

 h_A[i] = (double)rand()/(double)RAND_MAX;

 }

double *d_A;

 hipMalloc(&d_A, bytes);

 hipMemcpy(d_A, h_A, bytes, hipMemcpyHostToDevice);

 int thr_per_blk = 256;

 int blk_in_grid = ceil(float(N) / thr_per_blk);

 multiply<<<blk_in_grid,thr_per_blk>>>(d_A, N);

 hipMemcpy(h_A, d_A, bytes, hipMemcpyDeviceToHost);

 free(h_A);

 hipFree(d_A);

 printf("__SUCCESS__\n");

 return 0;

}

Include header for HIP runtime

Oct 29th, 2024
LUMI Comprehensive Training

13

[Public]

Example: simple discrete GPU multiply

#include <stdio.h>

#include <math.h>

#include "hip/hip_runtime.h"

__global__ void multiply(double *A, int n)

{

 int id = blockDim.x * blockIdx.x + threadIdx.x;

 if (id < n) A[id] = 2.0 * A[id];

}

int main(int argc, char *argv[]){

 int N = 1024 * 1024;

 size_t bytes = N * sizeof(double);

 double *h_A = (double*)malloc(bytes);

 for(int i=0; i<N; i++){

 h_A[i] = (double)rand()/(double)RAND_MAX;

 }

double *d_A;

 hipMalloc(&d_A, bytes);

 hipMemcpy(d_A, h_A, bytes, hipMemcpyHostToDevice);

 int thr_per_blk = 256;

 int blk_in_grid = ceil(float(N) / thr_per_blk);

 multiply<<<blk_in_grid,thr_per_blk>>>(d_A, N);

 hipMemcpy(h_A, d_A, bytes, hipMemcpyDeviceToHost);

 free(h_A);

 hipFree(d_A);

 printf("__SUCCESS__\n");

 return 0;

}

GPU kernel

Oct 29th, 2024 LUMI Comprehensive Training

14

[Public]

Example: simple discrete GPU multiply

#include <stdio.h>

#include <math.h>

#include "hip/hip_runtime.h"

__global__ void multiply(double *A, int n)

{

 int id = blockDim.x * blockIdx.x + threadIdx.x;

 if (id < n) A[id] = 2.0 * A[id];

}

int main(int argc, char *argv[]){

 int N = 1024 * 1024;

 size_t bytes = N * sizeof(double);

 double *h_A = (double*)malloc(bytes);

 for(int i=0; i<N; i++){

 h_A[i] = (double)rand()/(double)RAND_MAX;

 }

double *d_A;

 hipMalloc(&d_A, bytes);

 hipMemcpy(d_A, h_A, bytes, hipMemcpyHostToDevice);

 int thr_per_blk = 256;

 int blk_in_grid = ceil(float(N) / thr_per_blk);

 multiply<<<blk_in_grid,thr_per_blk>>>(d_A, N);

 hipMemcpy(h_A, d_A, bytes, hipMemcpyDeviceToHost);

 free(h_A);

 hipFree(d_A);

 printf("__SUCCESS__\n");

 return 0;

}

Allocate and initialize host memory buffer

Oct 29th, 2024 LUMI Comprehensive Training

15

[Public]

Example: simple discrete GPU multiply

#include <stdio.h>

#include <math.h>

#include "hip/hip_runtime.h"

__global__ void multiply(double *A, int n)

{

 int id = blockDim.x * blockIdx.x + threadIdx.x;

 if (id < n) A[id] = 2.0 * A[id];

}

int main(int argc, char *argv[]){

 int N = 1024 * 1024;

 size_t bytes = N * sizeof(double);

 double *h_A = (double*)malloc(bytes);

 for(int i=0; i<N; i++){

 h_A[i] = (double)rand()/(double)RAND_MAX;

 }

double *d_A;

 hipMalloc(&d_A, bytes);

 hipMemcpy(d_A, h_A, bytes, hipMemcpyHostToDevice);

 int thr_per_blk = 256;

 int blk_in_grid = ceil(float(N) / thr_per_blk);

 multiply<<<blk_in_grid,thr_per_blk>>>(d_A, N);

 hipMemcpy(h_A, d_A, bytes, hipMemcpyDeviceToHost);

 free(h_A);

 hipFree(d_A);

 printf("__SUCCESS__\n");

 return 0;

}

Allocate GPU buffer and copy values

from CPU buffer to GPU buffer

Oct 29th, 2024 LUMI Comprehensive Training

Not needed for unified

memory

16

[Public]

Example: simple discrete GPU multiply

#include <stdio.h>

#include <math.h>

#include "hip/hip_runtime.h"

__global__ void multiply(double *A, int n)

{

 int id = blockDim.x * blockIdx.x + threadIdx.x;

 if (id < n) A[id] = 2.0 * A[id];

}

int main(int argc, char *argv[]){

 int N = 1024 * 1024;

 size_t bytes = N * sizeof(double);

 double *h_A = (double*)malloc(bytes);

 for(int i=0; i<N; i++){

 h_A[i] = (double)rand()/(double)RAND_MAX;

 }

double *d_A;

 hipMalloc(&d_A, bytes);

 hipMemcpy(d_A, h_A, bytes, hipMemcpyHostToDevice);

 int thr_per_blk = 256;

 int blk_in_grid = ceil(float(N) / thr_per_blk);

 multiply<<<blk_in_grid,thr_per_blk>>>(d_A, N);

 hipMemcpy(h_A, d_A, bytes, hipMemcpyDeviceToHost);

 free(h_A);

 hipFree(d_A);

 printf("__SUCCESS__\n");

 return 0;

}

Launch GPU

 kernel

Oct 29th, 2024 LUMI Comprehensive Training

17

[Public]

Example: simple discrete GPU multiply

#include <stdio.h>

#include <math.h>

#include "hip/hip_runtime.h"

__global__ void multiply(double *A, int n)

{

 int id = blockDim.x * blockIdx.x + threadIdx.x;

 if (id < n) A[id] = 2.0 * A[id];

}

int main(int argc, char *argv[]){

 int N = 1024 * 1024;

 size_t bytes = N * sizeof(double);

 double *h_A = (double*)malloc(bytes);

 for(int i=0; i<N; i++){

 h_A[i] = (double)rand()/(double)RAND_MAX;

 }

double *d_A;

 hipMalloc(&d_A, bytes);

 hipMemcpy(d_A, h_A, bytes, hipMemcpyHostToDevice);

 int thr_per_blk = 256;

 int blk_in_grid = ceil(float(N) / thr_per_blk);

 multiply<<<blk_in_grid,thr_per_blk>>>(d_A, N);

 hipMemcpy(h_A, d_A, bytes, hipMemcpyDeviceToHost);

 hipFree(d_A);

 free(h_A);

 printf("__SUCCESS__\n");

 return 0;

}

Copy data from GPU buffer

to CPU buffer and free memory

Oct 29th, 2024 LUMI Comprehensive Training

Not needed for unified

memory

18

[Public]

Example: simple discrete GPU multiply

Oct 29th, 2024 LUMI Comprehensive Training

➢ Device memory management

 // Allocate memory on the device

 double *d_A;

 hipMalloc(&d_A, bytes);

 // Copy values of host array (h_A) to device array (d_A)

 hipMemcpy(d_A, h_A, bytes, hipMemcpyHostToDevice);

 ...

 // Copy values of device array (d_A) to host array (h_A)

 hipMemcpy(h_A, d_A, bytes, hipMemcpyDeviceToHost);

 ...

 // Free device memory

 hipFree(d_A);

19

[Public]

__global__ void multiply(double *A, int n)

{

 int id = blockDim.x * blockIdx.x + threadIdx.x;

 if (id < n) A[id] = 2.0 * A[id];

}

Indicates this is a HIP kernel function

launched from host

Example: simple discrete GPU multiply

GPU kernels do not return anything

Kernel arguments

Define global thread ID

Ensure we do not access memory that

does not belong to us

for (int id=0; id<n; id++){

 a[id] = 2.0 * a[id];

}

CPU Implementation

Oct 29th, 2024 LUMI Comprehensive Training

➢ Kernel

20

[Public]

int thr_per_blk = 256;

int blk_in_grid = ceil(float(N) / thr_per_blk);

/* Launch multiply kernel */

multiply<<<blk_in_grid, thr_per_blk>>>(d_A, N);

× –

kernel_name<<< BLOCKS_IN_GRID, THREADS_PER_BLOCK,

 [OPTIONAL] BYTES_OF_SHARED_MEMORY, [OPTIONAL] STREAM_ID >>>

 (ARG1, ARG2, ...);

NOTE: GPU kernel launches are asynchronous with respect to the host.

Example: simple discrete GPU multiply
Type dim3 BLOCKS_IN_GRID(<nblocksx>,

 <nblocksy>,

 <nblocksz>)

Ex:

Oct 29th, 2024 LUMI Comprehensive Training

➢ Launching the kernel

21

[Public]

Software to

hardware mapping

Oct 29th, 2024 LUMI Comprehensive Training

Blocks and threads allow a natural mapping of kernels to hardware:
• Upon kernel launch, a grid of thread blocks is launched to compute the kernel on the compute units (CUs)

Threads within a thread block (workgroup):
• Execute on the same CU in chunks of 64 threads called wavefronts (or waves).

• Share Local Data Share (LDS) memory and L1 cache

• Can synchronize

About wavefronts:
• Wavefronts execute on SIMD units (located inside the CU)

• If a wavefront stalls (e.g., data dependency) CUs can quickly context switch to another wavefront

A good practice is to make the block size a multiple of 64 and have several wavefronts (e.g., 256 threads)

22

[Public]

LUMI Comprehensive Training

3. ROCm and ROCm libraries

Oct 29th, 2024

23

[Public]

ROCm

ROCm is an open-source platform for GPU computing (including drivers,

development tools, APIs, and libraries) on AMD GPUs.

• ROCm drivers allow the OS to communicate with the GPU hardware.

• ROCm libraries provide optimized routines for scientific computing and machine learning tasks, such

as BLAS, FFT, etc.

• ROCm is powered by AMD’s HIP programming environment and runtime.

is supported on AMD & certain GPUs.

For the full list, please visit https://rocm.docs.amd.com/en/latest/release/gpu_os_support.html#linux-supported-gpus

Oct 29th, 2024 LUMI Comprehensive Training

https://rocm.docs.amd.com/en/latest/release/gpu_os_support.html

24

[Public]

Driver

User level

5.2.3

5.4.35.3.35.2.3 5.5.3 5.6.3

Aug 2022

5.7.1

Nov 2022 Feb 2023 Jul 2023 Aug 2023 Oct 2023

Default version officially

support

First newer version

added by the user
support team

Several users were

working at this level

Most training courses

used this level

Introduced to support

Pytorch 2.x

Hipgraph beta

Container included

cherry-picked fixes
from ROCm 5.6 not yet

available

Most AI users were at this level

as it provided better support for
AI frameworks (Pytorch, Triton,

etc) and half precision

workloads

Know issue with GPU memory
accounting

Not functional

Abusing driver support

ROCm on LUMI (past)

Oct 29th, 2024 LUMI Comprehensive Training

25

[Public]

Driver

User level

6.0.3

6.1.36.0.35.7.3 6.2.1 …

Dec 2023

…

Mar 2024 Jun 2024 Sep 2024 … …

Meant to support older

version of apps and
frameworks

Facilitate transition

GPU address sanitizer
(beta)

Data pre-processing
capabilities

 (MIVisionX)

Default version

Officially supported

Recommended for
debugging

Improved sparse matrix
operations

Latest Pytorch and

other AI frameworks
require this version

Introduced many
performance

improvements

Many stability and performance

improvements for performance libraries

Improved support for lower precisions

Best tunned for AI inference workloads

Integration of profiling tools
Autocast (mixed-precision)

Native OpenXLA support

We’ll likely be abusing the driver soon

GPU-Aware MPI

ROCm on LUMI

Oct 29th, 2024 LUMI Comprehensive Training

26

[Public]

ROCm 6.2 release specific modifications

With the release of ROCm 6.2 (https://github.com/ROCm/ROCm/releases) Omnitrace and Omniperf are included

in the ROCm stack, but they still need to be installed.

One LUMI, we are including both version of Omnitrace and Omniperf:

❖The built-in versions included in the ROCm 6.2.2 software stack (installed with sudo apt-get as above)

❖ These can be used loading the modules: module use /appl/local/containers/test-modules
 module load rocm/6.2.2 omnitrace/1.12.0-rocm6.2.x omniperf/2.1.0

❖The latest versions from AMD Research that would be used for ROCm releases < 6.2 (install from source)

❖ These can be used by loading their dedicated modules: module use /appl/local/containers/test-modules
 module load rocm/6.0.3 omnitrace/1.12.0-rocm6.0.x
 module load omniperf/2.1.0

Oct 29th, 2024 LUMI Comprehensive Training

https://github.com/ROCm/ROCm/releases

27

[Public]

ROCm GPU libraries

Oct 29th, 2024 LUMI Comprehensive Training

ROCm provides several GPU math libraries

• Typically, two versions:

• roc* -> AMD GPU library, usually written in HIP

• hip* -> Thin interface between roc* and Nvidia cu* library

When developing an application meant to target both CUDA
and AMD devices, use the hip* libraries (portability)

When developing an application meant to target only AMD

devices, may prefer the roc* library API (performance).

• Some roc* libraries perform better by using addition APIs not

available in the cu* equivalents

hipBLAS

rocBLAS cuBLAS

28

[Public]

AMD math library equivalents: “decoder ring”

Oct 29th, 2024 LUMI Comprehensive Training

Basic Linear Algebra

Subroutines
CUBLAS ROCBLAS

Fast Fourier TransformsCUFFT ROCFFT

C++ Parallel AlgorithmsTHRUST ROCTHRUST

Optimized Parallel

Primitives
CUB ROCPRIM

CURAND ROCRAND
Random Number

Generation

29

[Public]

AMD math library equivalents: “decoder ring”

Oct 29th, 2024 LUMI Comprehensive Training

Sparse BLAS, SpMV, etc. CUSPARSE ROCSPARSE

Linear SolversCUSOLVER ROCSOLVER

AMGX ROCALUTION

HTTPS://GITHUB.COM/ROCM/HIP/BLOB/AMD-STAGING/DOCS/HOW-TO/HIP_PORTING_GUIDE.MD

Solvers and preconditioners

for sparse linear systems

See the link below for the full list:

https://github.com/ROCm/HIP/blob/amd-staging/docs/how-to/hip_porting_guide.md

30

[Public]

Example: BLAS

• rocBLAS – sudo apt-get install rocblas

• Source code: https://github.com/ROCm/rocBLAS

• Documentation: https://rocm.docs.amd.com/projects/rocBLAS/en/latest/index.html

• Basic linear algebra functionality

• axpy, gemv, trsm, etc

• Use this if you need ad-hoc performance on AMD devices

• hipBLAS -

• Source code: https://github.com/ROCm/hipBLAS

• Documentation: https://rocm.docs.amd.com/projects/hipBLAS/en/latest/

• Use this if you need portability between AMD and NVIDIA

• It is just a thin wrapper:

• It can dispatch calls to rocBLAS for AMD devices

• It can dispatch calls to cuBLAS for NVIDIA devices

LUMI Comprehensive TrainingOct 29th, 2024

hipBLAS

rocBLAS cuBLAS

https://github.com/ROCm/rocBLAS
https://rocm.docs.amd.com/projects/rocBLAS/en/latest/index.html
https://github.com/ROCm/hipBLAS
https://rocm.docs.amd.com/projects/hipBLAS/en/latest/

31

[Public]

Querying system

• rocminfo: Queries and displays information on the system’s hardware
• More info at: https://github.com/ROCm/rocminfo

Querying ROCm version:

• If you install ROCm in the standard location (/opt/rocm) version info is at: /opt/rocm/.info/version-dev

• rocm-smi: Queries and sets AMD GPU frequencies, power usage, and fan speeds

• sudo privileges are needed to set frequencies and power limits

• sudo privileges are not needed to query information

• Get more info by running rocm-smi -h or looking at:

https://github.com/ROCm/rocm_smi_lib/tree/master/python_smi_tools

Oct 29th, 2024 LUMI Comprehensive Training

$ /opt/rocm/bin/rocm-smi

========================ROCm System Management Interface========================

==

GPU Temp AvgPwr SCLK MCLK Fan Perf PwrCap VRAM% GPU%

1 38.0c 18.0W 1440Mhz 945Mhz 0.0% manual 220.0W 0% 0%

==

==============================End of ROCm SMI Log ==============================

https://github.com/ROCm/rocminfo
https://github.com/ROCm/rocm_smi_lib/tree/master/python_smi_tools

32

[Public]

LUMI Comprehensive Training

4. Error checking, device management, and
asynchronous computing

Oct 29th, 2024

33

[Public]

Error Checking

There are two main types of HIP errors to check for:

• Errors returned from HIP API calls

→ HIP API calls return a hipError_t status

• Errors from HIP kernels

→ Synchronous errors: related to kernel launch

→ Asynchronous errors: related to kernel execution

Let’s look at how to check for these errors…

LUMI Comprehensive TrainingOct 29th, 2024

34

[Public]

Error checking – API errors

The hipError_t value should be checked for all HIP API calls!

The easiest method is wrapping the API calls in a macro, which can be reused in all your HIP codes.

/* Macro for checking GPU API return values */

#define gpuCheck(call) \

do{ \

 hipError_t gpuErr = call; \

 if(hipSuccess != gpuErr){ \

 printf("GPU API Error - %s:%d: '%s'\n", __FILE__, __LINE__, hipGetErrorString(gpuErr)); \

 exit(1); \

 } \

}while(0)

int main(int argc, char *argv[]){

 ...

 gpuCheck(hipMalloc(&d_A, bytes));

 ...

}

LUMI Comprehensive TrainingOct 29th, 2024

35

[Public]

Error checking – kernel errors
...

/* Launch multiply kernel */

multiply<<<blk_in_grid, thr_per_blk>>>(d_A, N);

/* Check for kernel launch errors */

gpuCheck(hipGetLastError());

/* Check for kernel execution errors */

gpuCheck (hipDeviceSynchronize());

...

Why are kernel errors handled differently?

• HIP kernels do not have a return value.

• When a kernel is launched, execution is

immediately given back to the host process.

So how do we handle kernel errors?

• Errors related to the kernel launch (e.g., invalid execution parameters)

→ Manually check for the last error that occurred using hipGetLastError()

→ These are known as synchronous errors

• Errors related to kernel execution (e.g., invalid memory access) can happen at any time while the kernel is running

→ Must synchronize the device to make sure we catch these errors (hipDeviceSychronize()).

→ These are known as asynchronous errors

NOTE: Device synchronization can cause reduced performance so should be reserved for debugging.

LUMI Comprehensive TrainingOct 29th, 2024

36

[Public]

Blocking vs Nonblocking API functions

• Launching a kernel is non-blocking for the host

• After sending instructions/data, the host continues to do more work while the device executes the kernel

• However, hipMemcpy is blocking for the host

• The data pointed to in the arguments can be safely accessed/modified after the function returns

• To make asynchronous copies, we need to allocate non-pageable (pinned) host memory using

hipHostMalloc and copy using hipMemcpyAsync

 hipHostMalloc(h_a, Nbytes, hipHostMallocDefault);

hipMemcpyAsync(d_a, h_a, Nbytes, hipMemcpyHostToDevice, stream);

• It is not safe to access/modify the arguments of hipMemcpyAsync without some sort of synchronization.

Oct 29th, 2024 LUMI Comprehensive Training

 Side Note: H2D/D2H bandwidth increases significantly when host memory is pinned
• It is good practice to use pinned host memory where data is frequently transferred to/from the device

37

[Public]

Streams

• A stream in HIP is a queue of tasks (e.g. kernels, memcpys, events).

• Tasks enqueued in a stream complete in order on that stream.

• Tasks being executed in different streams are allowed to overlap and share device resources.

• Streams are created via:

hipStream_t stream;

hipStreamCreate(&stream);

• And destroyed via:

hipStreamDestroy(stream);

• Passing 0 or NULL as the hipStream_t argument to a function instructs the function to execute on a

stream called the ‘NULL Stream’:

• No task on the NULL stream will begin until all previously enqueued tasks in all other streams have completed.

• Blocking calls like hipMemcpy run on the NULL stream.

Oct 29th, 2024 LUMI Comprehensive Training

38

[Public]

Streams

• Suppose we have 4 small kernels to execute:

myKernel1<<<dim3(1), dim3(256), 0, 0>>>(256, d_a1);

myKernel2<<<dim3(1), dim3(256), 0, 0>>>(256, d_a2);

myKernel3<<<dim3(1), dim3(256), 0, 0>>>(256, d_a3);

myKernel4<<<dim3(1), dim3(256), 0, 0>>>(256, d_a4);

• Even though these kernels use only one block each, they’ll execute in serial on the NULL stream:

Oct 29th, 2024 LUMI Comprehensive Training

NULL

Stream
myKernel1 myKernel2 myKernel3 myKernel4

Time

39

[Public]

Streams

• With streams we can effectively share the GPU’s compute resources:
myKernel1<<<dim3(1), dim3(256), 0, stream1>>>(256, d_a1);

myKernel2<<<dim3(1), dim3(256), 0, stream2>>>(256, d_a2);

myKernel3<<<dim3(1), dim3(256), 0, stream3>>>(256, d_a3);

myKernel4<<<dim3(1), dim3(256), 0, stream4>>>(256, d_a4);

Note 1: Kernels must modify different parts of memory to avoid data races.

Note 2: With large kernels, overlapping computations may not help performance.

Oct 29th, 2024 LUMI Comprehensive Training

NULL

Stream

Stream1

Stream2

Stream3

Stream4

myKernel1

myKernel2

myKernel3

myKernel4

40

[Public]

Streams

• There is another use for streams besides concurrent kernels:

• Overlapping kernels with data movement.

• AMD GPUs have separate engines for:

• Host->Device memcpys

• Device->Host memcpys

• Compute kernels.

• These three different operations can overlap without dividing the GPU’s resources.

• The overlapping operations should be in separate, non-NULL, streams.

• The host memory should be pinned.

Oct 29th, 2024 LUMI Comprehensive Training

41

[Public]

Streams

Suppose we have 3 kernels which require moving data to and from the device:

hipMemcpy(d_a1, h_a1, Nbytes, hipMemcpyHostToDevice));

hipMemcpy(d_a2, h_a2, Nbytes, hipMemcpyHostToDevice));

hipMemcpy(d_a3, h_a3, Nbytes, hipMemcpyHostToDevice));

myKernel1<<<blocks, threads, 0, 0>>>(N, d_a1);

myKernel2<<<blocks, threads, 0, 0>>>(N, d_a2);

myKernel3<<<blocks, threads, 0, 0>>>(N, d_a3);

hipMemcpy(h_a1, d_a1, Nbytes, hipMemcpyDeviceToHost);

hipMemcpy(h_a2, d_a2, Nbytes, hipMemcpyDeviceToHost);

hipMemcpy(h_a3, d_a3, Nbytes, hipMemcpyDeviceToHost);

Oct 29th, 2024 LUMI Comprehensive Training

NULL Stream

42

[Public]

Streams

Changing to asynchronous memcpys and using streams:

hipMemcpyAsync(d_a1, h_a1, Nbytes, hipMemcpyHostToDevice, stream1);

hipMemcpyAsync(d_a2, h_a2, Nbytes, hipMemcpyHostToDevice, stream2);

hipMemcpyAsync(d_a3, h_a3, Nbytes, hipMemcpyHostToDevice, stream3);

myKernel1<<<blocks, threads, 0, stream1>>>(N, d_a1);

myKernel2<<<blocks, threads, 0, stream2>>>(N, d_a2);

myKernel3<<<blocks, threads, 0, stream3>>>(N, d_a3);

hipMemcpyAsync(h_a1, d_a1, Nbytes, hipMemcpyDeviceToHost, stream1);

hipMemcpyAsync(h_a2, d_a2, Nbytes, hipMemcpyDeviceToHost, stream2);

hipMemcpyAsync(h_a3, d_a3, Nbytes, hipMemcpyDeviceToHost, stream3);

Oct 29th, 2024 LUMI Comprehensive Training

NULL Stream

Stream1

Stream2

Stream3

myKernel

1
myKernel

2
myKernel

3

HToD1

HToD2

HToD3

DToH1

DToH2

DToH3

43

[Public]

LUMI Comprehensive Training

5. Shared memory and thread syncronization

Oct 29th, 2024

44

[Public]

Synchronization

How do we coordinate execution on device streams with host execution? Need some synchronization points.

• hipDeviceSynchronize();

• Heavy-duty sync point.

• Blocks host until all work in all device streams has reported complete.

• hipStreamSynchronize(stream);

• Blocks host until all work in stream has reported complete.

Can a stream synchronize with another stream? For that we need ‘Events’:

https://rocm.docs.amd.com/projects/HIP/en/latest/.doxygen/docBin/html/group___event.html

Oct 29th, 2024 LUMI Comprehensive Training

https://rocm.docs.amd.com/projects/HIP/en/latest/.doxygen/docBin/html/group___event.html

45

[Public]

HIP stream example

In real stream overlapping, the communication and computation time will not be the same

For a real example of overlapping compute and communication in HIP

git clone https://github.com/AMD/HPCTrainingExamples

cd HPCTrainingExamples/HIP/Stream_Overlap

Oct 29th, 2024 LUMI Comprehensive Training

https://github.com/AMD/HPCTrainingExamples

46

[Public]

Device management
Multiple GPUs in system? Multiple host threads/MPI ranks? What device are we running on?

• Host can query number of devices visible to system:

 int numDevices = 0;

 hipGetDeviceCount(&numDevices);

• Host tells the runtime to issue instructions to a particular device:

 int deviceID = 0;

 hipSetDevice(deviceID);

• Host can query what device is currently selected and device properties:

 hipGetDevice(&deviceID);
 hipDeviceProp_t props;

 hipGetDeviceProperties(&props, deviceID);

The host can manage several devices by swapping the currently selected device during runtime.

Different processes can use different devices or over-subscribe (share) the same device.

Oct 29th, 2024 LUMI Comprehensive Training

47

[Public]

Function qualifiers

hipcc makes two compilation passes through source code. One to compile host code, and one to compile
device code.

• __global__ functions:
• These are entry points to device code, called from the host

• Code in these regions will execute on SIMD units

• __device__ functions:
• Can be called from __global__ and other __device__ functions.

• Cannot be called from host code.

• Not compiled into host code – essentially ignored during host compilation pass

• __host__ __device__ functions:
• Can be called from __global__, __device__, and host functions.

• Will execute on SIMD units when called from device code!

Oct 29th, 2024 LUMI Comprehensive Training

48

[Public]

Memory declarations in device code

• Malloc/free not supported in device code.

• Variables/arrays can be declared on the stack.

• Stack variables declared in device code are allocated in registers and are private to each thread.

• Threads can all access common memory via device pointers, but otherwise do not share memory.
• Important exception: __shared__ memory

• Stack variables declared as __shared__:
• Allocated once per block in LDS memory

• Shared and accessible by all threads in the same block

• Access is faster than device global memory (but slower than register)

• Must have size known at compile time

Oct 29th, 2024 LUMI Comprehensive Training

49

[Public]

Shared memory

__global__ void reverse(double *d_a) {

 __shared__ double s_a[256]; //array of doubles, shared in this block

 int tid = threadIdx.x;

 s_a[tid] = d_a[tid]; //each thread fills one entry

 //all wavefronts must reach this point before any wavefront is allowed to continue.

 __syncthreads();

 d_a[tid] = s_a[255-tid]; //write out array in reverse order

}

int main() {

 …

 reverse<<<dim3(1), dim3(256), 0, 0>>>(d_a); //Launch kernel

 …

}

Oct 29th, 2024 LUMI Comprehensive Training

50

[Public]

Thread synchronization

_syncthreads():
• Blocks a wavefront from continuing execution until all wavefronts have reached __syncthreads()
• Memory transactions made by a thread before __syncthreads() are visible to all other threads in the block after

__syncthreads()
• Can have a noticeable overhead if called repeatedly

Best practice: Avoid deadlocks by checking that all threads in a block execute the same
__syncthreads() instruction.

• Note 1: So long as at least one thread in the wavefront encounters __syncthreads(), the
whole wavefront is considered to have encountered __syncthreads().

• Note 2: Wavefronts can synchronize at different __syncthreads() instructions, and if a
wavefront exits a kernel completely, other wavefronts waiting at a __syncthreads() may be
allowed to continue.

Oct 29th, 2024 LUMI Comprehensive Training

51

[Public]

Hands-on exercises

https://hackmd.io/@sfantao/lumi-training-ams-2024#HIP-Exercises

https://hackmd.io/@sfantao/lumi-training-ams-2024#Hipify

We welcome you to explore our HPC Training Examples repo:

 https://github.com/amd/HPCTrainingExamples

A table of contents for the READMEs if available at the top-level README in the repo

Relevant exercises for this presentation located in HIP directory.

Link to instructions on how to run the tests: HIP/README.md and subdirectories

Oct 29th, 2024 LUMI Comprehensive Training

https://hackmd.io/@sfantao/lumi-training-ams-2024
https://hackmd.io/@sfantao/lumi-training-ams-2024
https://github.com/amd/HPCTrainingExamples
https://github.com/amd/HPCTrainingExamples/blob/main/README.md
https://github.com/amd/HPCTrainingExamples/tree/main/HIP
https://github.com/amd/HPCTrainingExamples/blob/main/HIP/README.md

52

[Public]

Disclaimer

Oct 29th, 2024 LUMI Comprehensive Training

The information presented in this document is for informational purposes only and may contain technical inaccuracies, omissions, and typographical errors. The

information contained herein is subject to change and may be rendered inaccurate for many reasons, including but not limited to product and roadmap changes,

component and motherboard version changes, new model and/or product releases, product differences between differing manufacturers, software changes, BIOS

flashes, firmware upgrades, or the like. Any computer system has risks of security vulnerabilities that cannot be completely prevented or mitigated. AMD assumes

no obligation to update or otherwise correct or revise this information. However, AMD reserves the right to revise this informat ion and to make changes from time to

time to the content hereof without obligation of AMD to notify any person of such revisions or changes.

THIS INFORMATION IS PROVIDED ‘AS IS.” AMD MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE CONTENTS HEREOF

AND ASSUMES NO RESPONSIBILITY FOR ANY INACCURACIES, ERRORS, OR OMISSIONS THAT MAY APPEAR IN THIS INFORMATION. AMD

SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR ANY PARTICULAR PURPOSE.

IN NO EVENT WILL AMD BE LIABLE TO ANY PERSON FOR ANY RELIANCE, DIRECT, INDIRECT, SPECIAL, OR OTHER CONSEQUENTIAL DAMAGES

ARISING FROM THE USE OF ANY INFORMATION CONTAINED HEREIN, EVEN IF AMD IS EXPRESSLY ADVISED OF THE POSSIBILITY OF SUCH

DAMAGES.

Third-party content is licensed to you directly by the third party that owns the content and is not licensed to you by AMD. ALL LINKED THIRD-PARTY CONTENT IS

PROVIDED “AS IS” WITHOUT A WARRANTY OF ANY KIND. USE OF SUCH THIRD-PARTY CONTENT IS DONE AT YOUR SOLE DISCRETION AND UNDER

NO CIRCUMSTANCES WILL AMD BE LIABLE TO YOU FOR ANY THIRD-PARTY CONTENT. YOU ASSUME ALL RISK AND ARE SOLELY RESPONSIBLE FOR

ANY DAMAGES THAT MAY ARISE FROM YOUR USE OF THIRD-PARTY CONTENT.

© 2024 Advanced Micro Devices, Inc. All rights reserved. AMD, the AMD Arrow logo, AMD CDNA, AMD ROCm, AMD Instinct, and combinations thereof are

trademarks of Advanced Micro Devices, Inc. in the United States and/or other jurisdictions. Other names are for informational purposes only and may be

trademarks of their respective owners.

OpenCL is a trademark of Apple Inc. used by permission by Khronos Group, Inc.

The OpenMP® name and the OpenMP logo are registered trademarks of the OpenMP Architecture Review Board

Git and the Git logo are either registered trademarks or trademarks of Software Freedom Conservancy, Inc., corporate home of the Git Project, in the United States

and/or other countries

	Slide 1: HIP and ROCm
	Slide 2: Thanks to all the AMD staff for their contributions to this presentation
	Slide 3: Agenda
	Slide 4: 1. AMD GPU programming concepts
	Slide 5: Device Kernels: Grid Hierarchy
	Slide 6: The Grid: blocks of threads in 1D
	Slide 7: The Grid: blocks of threads in 2D
	Slide 8: 2. HIP API calls and GPU kernel code
	Slide 9: What is HIP?
	Slide 10: HIP API
	Slide 11: Example: simple discrete GPU multiply
	Slide 12: Example: simple discrete GPU multiply
	Slide 13: Example: simple discrete GPU multiply
	Slide 14: Example: simple discrete GPU multiply
	Slide 15: Example: simple discrete GPU multiply
	Slide 16: Example: simple discrete GPU multiply
	Slide 17: Example: simple discrete GPU multiply
	Slide 18: Example: simple discrete GPU multiply
	Slide 19: Example: simple discrete GPU multiply
	Slide 20: Example: simple discrete GPU multiply
	Slide 21: Software to hardware mapping
	Slide 22: 3. ROCm and ROCm libraries
	Slide 23: ROCm
	Slide 24: ROCm on LUMI (past)
	Slide 25: ROCm on LUMI
	Slide 26: ROCm 6.2 release specific modifications
	Slide 27: ROCm GPU libraries
	Slide 28: AMD math library equivalents: “decoder ring”
	Slide 29: AMD math library equivalents: “decoder ring”
	Slide 30: Example: BLAS
	Slide 31: Querying system
	Slide 32: 4. Error checking, device management, and asynchronous computing
	Slide 33: Error Checking
	Slide 34: Error checking – API errors
	Slide 35: Error checking – kernel errors
	Slide 36: Blocking vs Nonblocking API functions
	Slide 37: Streams
	Slide 38: Streams
	Slide 39: Streams
	Slide 40: Streams
	Slide 41: Streams
	Slide 42: Streams
	Slide 43: 5. Shared memory and thread syncronization
	Slide 44: Synchronization
	Slide 45: HIP stream example
	Slide 46: Device management
	Slide 47: Function qualifiers
	Slide 48: Memory declarations in device code
	Slide 49: Shared memory
	Slide 50: Thread synchronization
	Slide 51: Hands-on exercises
	Slide 52: Disclaimer
	Slide 53

