
Optimizing HIP

Applications

Sam Antao

LUMI Comprehensive Training

Oct 31st, 2024

2 |

[Public]

Authors and contributors

Bob Robey

Alessandro Fanfarillo

Ossian Oreilly

Noel Chalmers

And other members of the Data Center GPU group

Oct 31st, 2024 LUMI Comprehensive Training

3 |

[Public]

Agenda 1. Overview of Kernel Performance Limiters

2. How to optimize memory bound kernels

3. How to optimize compute bound kernels

4. How to optimize latency bound kernels

LUMI Comprehensive TrainingOct 31st, 2024

4 |

[Public]

GPUs are high throughput devices

• Must expose parallelism to properly utilize them

Oct 31st, 2024 LUMI Comprehensive Training

GPU starvation – under-utilization of resources

Full utilization of resources

5 |

[Public]

Optimization strategy depends on performance limiters

Memory bound

o Low arithmetic intensity, memory units saturated

Compute bound

o High arithmetic intensity, compute units saturated

Latency bound

o Memory units not saturated and/or compute units not saturated

Focus of this presentation – what to do for these different types of kernels?

Oct 31st, 2024 LUMI Comprehensive Training

𝐴𝑟𝑖𝑡ℎ𝑚𝑒𝑡𝑖𝑐 𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 =
𝐴𝑟𝑖𝑡ℎ𝑚𝑒𝑡𝑖𝑐 𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠

𝐵𝑦𝑡𝑒𝑠 𝑚𝑜𝑣𝑒𝑑

[Public]

6

Memory Bandwidth Bound

Oct 31st, 2024 LUMI Comprehensive Training

7 |

[Public]

Data Movement

• Reducing data movement is still very important for GPU performance

• Move data, compute as much as possible with that data

• Reuse data when possible – temporal reuse and spatial reuse

• Stage data in shared memory (LDS) or registers for faster access

• Lower precision data types move fewer bytes, evaluate their use for your algorithm

• Move more data per work-item to improve streaming efficiency

Oct 31st, 2024 LUMI Comprehensive Training

8 |

[Public]

Data Access Considerations

• Coalesced loads/stores improve achieved bandwidth of transfers

• L1 cacheline size is 64 bytes in MI200 GPUs, and 128 bytes in MI300 GPUs

• Use as much as possible of each cacheline read

• Strided accesses may load more data than needed

• Use vector data types such as float4, float2

• Compiler generates fewer, wider load instructions

• Amortize on cost of address/index calculations

• Improve data streaming efficiency

• Use non-temporal loads for data that will not be reused

• Aligned memory accesses avoid excess data from being fetched

Oct 31st, 2024 LUMI Comprehensive Training

9 |

[Public]

Sometimes compiler generates wider loads/stores for free

Oct 31st, 2024 LUMI Comprehensive Training

https://godbolt.org/z/WYzMjxKzr

https://godbolt.org/z/WYzMjxKzr

[Public]

10

Compute Bound

Oct 31st, 2024 LUMI Comprehensive Training

11 |

[Public]

Compute Optimizations

• Compute bound kernels perform O(100) operations per byte loaded

• Large GEMMs are an example of compute bound kernels, but HPC workloads are typically memory bound

• Pre-compute values to look up in kernel

• Use faster math intrinsic functions, e.g., __cosf(x) instead of cosf(x)

• More details: https://rocm.docs.amd.com/projects/HIP/en/latest/reference/math_api.html

• Avoid general math functions where possible

• a * a * a uses two instructions whereas pow(a, 3.0f) uses many

• Godbolt link: https://godbolt.org/z/8hz8P4oc9

• Explore use of packed FP32 operations that process two FP32 values in one instruction

• For example, using float2 instead of float can result in the use of packed instructions

Oct 31st, 2024 LUMI Comprehensive Training

https://rocm.docs.amd.com/projects/HIP/en/latest/reference/math_api.html
https://godbolt.org/z/8hz8P4oc9

12 |

[Public]

Compute Optimizations (contd.)

• Where you stage data for your compute matters

• To make your kernel truly compute-bound, read from registers

• Moving data from shared memory and/or cache takes O(10) cycles

• For specific matrix multiplication like calculations, special hardware units exist (rocWMMA)

• AMD Matrix Cores ROCm Blog: https://rocm.blogs.amd.com/software-tools-optimization/matrix-cores/README.html

Oct 31st, 2024 LUMI Comprehensive Training

https://rocm.blogs.amd.com/software-tools-optimization/matrix-cores/README.html

13 |

[Public]

Unexpected Instructions

Oct 31st, 2024 LUMI Comprehensive Training

__global__ void conversions (float *a) {
 float f1 = a[threadIdx.x] * 0.3;
 float f2 = 2.0 * (f1 * 3.0);
 a[threadIdx.x] = f1 + f2;

}

s_load_dwordx2 s[0:1], s[4:5], 0x0
v_lshlrev_b32_e32 v4, 2, v0
s_mov_b32 s2, 0x33333333
s_mov_b32 s3, 0x3fd33333
s_waitcnt lgkmcnt(0)
global_load_dword v0, v4, s[0:1]
s_waitcnt vmcnt(0)
v_cvt_f64_f32_e32 v[0:1], v0
v_mul_f64 v[0:1], v[0:1], s[2:3]
v_cvt_f32_f64_e32 v5, v[0:1]
s_mov_b32 s2, 0
v_cvt_f64_f32_e32 v[0:1], v5
s_mov_b32 s3, 0x40080000
v_mul_f64 v[2:3], v[0:1], s[2:3]
v_fmac_f64_e32 v[2:3], s[2:3], v[0:1]
v_cvt_f32_f64_e32 v0, v[2:3]
v_add_f32_e32 v0, v5, v0
global_store_dword v4, v0, s[0:1]
s_endpgm

Fewer instructions, FP32 ops

Wait, what?!

__global__ void no_conversions (float *a) {
 float f1 = a[threadIdx.x] * 0.3f;
 float f2 = 2.0f * (f1 * 3.0f);
 a[threadIdx.x] = f1 + f2;
}

s_load_dwordx2 s[0:1], s[4:5], 0x0
v_lshlrev_b32_e32 v0, 2, v0
s_waitcnt lgkmcnt(0)
global_load_dword v1, v0, s[0:1]
s_waitcnt vmcnt(0)
v_mul_f32_e32 v1, 0x3e99999a, v1
v_mul_f32_e32 v2, 0x40400000, v1

v_fmac_f32_e32 v1, 2.0, v2
global_store_dword v0, v1, s[0:1]
s_endpgm

[Public]

14

Latency bound

Oct 31st, 2024 LUMI Comprehensive Training

15 |

[Public]

Main Ideas for Optimizing Latency Bound Kernels

• Increase parallelism to utilize all GPU resources

• Reduce number of synchronization barriers

• Reduce thread divergence

• Avoid register spilling to slower "scratch" memory

Oct 31st, 2024 LUMI Comprehensive Training

16 |

[Public]

Motivation for Launching Many Wavefronts

• The GPU has a lot of resources

• Wavefronts can stall for various reasons:

• Waiting for data to load

• Waiting at a synchronization barrier

• GPU is good at switching to wavefronts with instructions ready to be executed

➔ Good to launch a lot of wavefronts and hide latencies of stalls

Oct 31st, 2024 LUMI Comprehensive Training

17 |

[Public]

What is Occupancy?

• # Resident wavefronts / Maximum #wavefronts the GPU can have in-flight

• Hardware Perspective (let’s consider a MI250x GPU):

• There are 110 Compute Units (CU)

• Up to 32 wavefronts can be scheduled to each CU = max 3520 wavefronts

• Developers’ Perspective:

• Am I launching enough units of work to use all CUs?

• Am I launching more wavefronts than the number of CUs to hide latencies?

• Higher occupancy can help improve performance, but not always

Oct 31st, 2024 LUMI Comprehensive Training

18 |

[Public]

Occupancy by Example (daxpy)

Z = aX + Y where Z, X and Y are 1D arrays of length N = 1,000,000 elements

We know that

• a workgroup can have 64 to 1024 work-items = 1 to 16 wavefronts

• all wavefronts of a workgroup will be scheduled to the same CU

We can launch the daxpy kernel in many ways:

1 workgroup with 64 work-items

Only 1 wave on 1 CU = No latency hiding

1 workgroup with 256 work-items

Only 4 waves on 1 CU = All other CUs idle

N/1024 workgroups, each workgroup has 16 waves

~1000 workgroups = ~16000 waves = good occupancy

But that’s not the whole picture..

Oct 31st, 2024 LUMI Comprehensive Training

GPUCU

GPUCU

GPUCU CU CU CU CU

19 |

[Public]

Memory Resources that affect Occupancy

Compute Units have finite resources that are shared between work items

• Local Data Share (LDS)

• Vector General Purpose Registers (VGPRs)

• Scalar General Purpose Registers (SGPRs)

Oct 31st, 2024 LUMI Comprehensive Training

The GPU can only schedule more work if there are enough resources available

20 |

[Public]

How LDS affects Occupancy

• Fast, on-CU, software managed memory to efficiently share data between work-items of a workgroup

• Each CU in a MI200 GPU has 64 KiB of LDS available

• Shared by workgroups on CU

Oct 31st, 2024 LUMI Comprehensive Training

No LDS used, LDS

does not limit

occupancy

8 KiB of LDS per WG,

8 WGs can fit in CU

48 KiB of LDS per WG,

only 1 WG can fit in CU

21 |

[Public]

How Vector Registers affect Occupancy

• In VGPRs, each thread in the wavefront can save its own value

• Each MI200 CU has a limited size vector register file (max 512 VGPRs of size 4 bytes)

Oct 31st, 2024 LUMI Comprehensive Training

Num VGPRs Occupancy per SIMD Occupancy per CU

<= 64 8 waves 32 waves

<= 72 7 waves 28 waves

<= 80 6 waves 24 waves

<= 96 5 waves 20 waves

<= 128 4 waves 16 waves

<= 168 3 waves 12 waves

<= 256 2 waves 8 waves

> 256 1 waves 4 waves

This is the column that corresponds to the compiler and profiler report.

22 |

[Public]

How Scalar Registers (SGPRs) affect Occupancy

• In SGPRs, one value is shared across all work-items of the wavefront

• Each MI200 CU has a limited size scalar register file (max 102 SGPRs of size 4 bytes per wavefront)

Oct 31st, 2024 LUMI Comprehensive Training

23 |

[Public]

A Note about Register Spilling

• Register allocation is done by the compiler at compilation time

• When the required number of VGPRs is too much (i.e., > 256), the compiler may “spill” registers to slower

“scratch” memory

• Better to avoid spilling in most cases

• By default, the compiler assumes workgroups are going to have 1024 work-items

• Use __launch_bounds__ on smaller workgroups to allow the compiler to use more registers

• The compiler may spill SGPRs to VGPRs, this seldom limits scheduling

• Don’t take this as a challenge

Oct 31st, 2024 LUMI Comprehensive Training

ROCm blog about Register Pressure:
https://rocm.blogs.amd.com/software-tools-optimization/register-pressure/README.html

https://rocm.blogs.amd.com/software-tools-optimization/register-pressure/README.html

24 |

[Public]

Launching kernels has a cost

• “Cold” Launch Latency

• If device is idle when kernel is launched, it takes a while for waves to be scheduled

• Once waves start being scheduled, it can still take some time for the device to fill

• “Hot” Launch Latency

• Launching kernel when device is busy can hide much of the startup cost

• However, kernels in the same HIP stream are ordered. Therefore, all waves in a kernel in a HIP stream must

complete before any wave from the next kernel in the stream can be scheduled.

• Some cycles are spent at kernel boundaries for flushing writes from kernel

• Kernels that are too short (<< 1ms) suffer from kernel launch overhead

Oct 31st, 2024 LUMI Comprehensive Training

25 |

[Public]

Fuse kernels to reduce launch latencies

• Also reduce data movement as shown here:

Oct 31st, 2024 LUMI Comprehensive Training

__global__ void kernel1 (float *a, float *b, float *c) {
 int32_t tid = blockIdx.x * blockDim.x + threadIdx.x;
 c[tid] = a[tid] + 2 * b[tid];

}
__global__ void kernel2 (float *a, float *b, float *c) {
 int32_t tid = blockIdx.x * blockDim.x + threadIdx.x
 c[tid] = c[tid] - a[tid] * b[tid];

}

__global__ void kernel_fused (float *a, float *b, float *c) {
 int32_t tid = blockIdx.x * blockDim.x + threadIdx.x;
 float a = a[tid];
 float b = b[tid];
 c[tid] = a + 2 * b – a * b;

}

One read of “a” and “b” and one write of “c”

2 reads of “a” and “b”, “c” written out and read back before being written out again!

26 |

[Public]

Reduce or Avoid Synchronization

• Thread block synchronization

• Synchronizes wavefronts in a thread block

• Expensive in large work groups, don’t over use it

• Host-side synchronization

• Memory operations (hipMalloc, hipFree, etc.) implicitly synchronize activity on the device => unexpected low perf

• Move memory allocations out of inner loops. This may cause a rethinking of the current algorithm

• Use asynchronous memory copies (H<->D) with pinned host buffers

• avoid host-side synchronization

• overlap copies with compute

Oct 31st, 2024 LUMI Comprehensive Training

27 |

[Public]

A Note about Atomics

• If using atomic operations on MI200, compile with -munsafe-fp-atomics to use hardware atomics on FP

data in GPU memory

• Not needed on MI300

• Reducing contention in atomic operations can improve performance

• On MI300 GPUs, atomics are performed in the AMD Infinity Cache instead of the L2 cache

• Infinity Cache is a Memory Adjacent Last Level (MALL) cache

• L2 is distributed and local to Accelerator Compute Dies (XCDs)

Oct 31st, 2024 LUMI Comprehensive Training

28 |

[Public]

Minimize Thread Divergence

• Instructions in divergent paths are executed multiple times, some threads masked off each time

• Try minimizing divergent sections even if it means values computed by some threads will be discarded

eventually

Oct 31st, 2024 LUMI Comprehensive Training

size_t idx = threadIdx.x + blockDim.x * blockIdx.x;
if (threadIdx.x % 2 == 0) {

 out[2 * idx] = 1.0;
} else {

 out[2 * idx + 1] = 0.0;
}

size_t idx = threadIdx.x + blockIdx.x * blockDim.x;
double2 *ptr = (double2 *)(out + idx);
ptr[0] = {1.0, 0.0};

To compare assembly for both cases: https://godbolt.org/z/4fEqvE8zP

https://godbolt.org/z/4fEqvE8zP

29 |

[Public]

Warp shuffle/cross-lane functions

• Exchange data in registers between threads in wavefront

• Uses the same hardware fabric as LDS, but no storage in LDS

• Works on a common “width” where every thread is using the same width up to the wavefront size of 64

Oct 31st, 2024 LUMI Comprehensive Training

30 |

[Public]

Summary

• Kernel performance may be limited by

• memory bandwidth

• lack of compute resources

• latencies

• Performance optimization involves balancing many constraints

• Reduce data movement and access data in a coalesced manner

• Avoid unnecessary compute and excessive synchronization

• Adjust occupancy while considering resource requirements

• Most importantly, have fun optimizing your kernels!

Oct 31st, 2024 LUMI Comprehensive Training

32 |

[Public]

Disclaimer
The information presented in this document is for informational purposes only and may contain technical inaccuracies, omissions,

and typographical errors. The information contained herein is subject to change and may be rendered inaccurate for many

reasons, including but not limited to product and roadmap changes, component and motherboard version changes, new model

and/or product releases, product differences between differing manufacturers, software changes, BIOS flashes, firmware

upgrades, or the like. Any computer system has risks of security vulnerabilities that cannot be completely prevented or

mitigated. AMD assumes no obligation to update or otherwise correct or revise this information. However, AMD reserves the right

to revise this information and to make changes from time to time to the content hereof without obligation of AMD to notify any

person of such revisions or changes.

THIS INFORMATION IS PROVIDED ‘AS IS.” AMD MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO

THE CONTENTS HEREOF AND ASSUMES NO RESPONSIBILITY FOR ANY INACCURACIES, ERRORS, OR OMISSIONS

THAT MAY APPEAR IN THIS INFORMATION. AMD SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTIES OF NON-

INFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR ANY PARTICULAR PURPOSE. IN NO EVENT WILL AMD BE LIABLE

TO ANY PERSON FOR ANY RELIANCE, DIRECT, INDIRECT, SPECIAL, OR OTHER CONSEQUENTIAL DAMAGES ARISING

FROM THE USE OF ANY INFORMATION CONTAINED HEREIN, EVEN IF AMD IS EXPRESSLY ADVISED OF THE

POSSIBILITY OF SUCH DAMAGES.

© 2024 Advanced Micro Devices, Inc. All rights reserved. AMD, the AMD Arrow logo, ROCm, Radeon, CDNA, Instinct, and

combinations thereof are trademarks of Advanced Micro Devices, Inc. Other product names used in this publication are for

identification purposes only and may be trademarks of their respective companies.

Oct 31st, 2024 LUMI Comprehensive Training

	Default Section
	Slide 1: Optimizing HIP Applications
	Slide 2: Authors and contributors
	Slide 3: Agenda
	Slide 4: GPUs are high throughput devices
	Slide 5: Optimization strategy depends on performance limiters
	Slide 6: Memory Bandwidth Bound
	Slide 7: Data Movement
	Slide 8: Data Access Considerations
	Slide 9: Sometimes compiler generates wider loads/stores for free
	Slide 10: Compute Bound
	Slide 11: Compute Optimizations
	Slide 12: Compute Optimizations (contd.)
	Slide 13: Unexpected Instructions
	Slide 14: Latency bound
	Slide 15: Main Ideas for Optimizing Latency Bound Kernels
	Slide 16: Motivation for Launching Many Wavefronts
	Slide 17: What is Occupancy?
	Slide 18: Occupancy by Example (daxpy)
	Slide 19: Memory Resources that affect Occupancy
	Slide 20: How LDS affects Occupancy
	Slide 21: How Vector Registers affect Occupancy
	Slide 22: How Scalar Registers (SGPRs) affect Occupancy
	Slide 23: A Note about Register Spilling
	Slide 24: Launching kernels has a cost
	Slide 25: Fuse kernels to reduce launch latencies
	Slide 26: Reduce or Avoid Synchronization
	Slide 27: A Note about Atomics
	Slide 28: Minimize Thread Divergence
	Slide 29: Warp shuffle/cross-lane functions
	Slide 30: Summary
	Slide 32: Disclaimer
	Slide 33

