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Agenda 1. Overview of Kernel Performance Limiters

2. How to optimize memory bound kernels

3. How to optimize compute bound kernels

4. How to optimize latency bound kernels
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GPUs are high throughput devices

• Must expose parallelism to properly utilize them

Oct 31st, 2024 LUMI Comprehensive Training

GPU starvation – under-utilization of resources

Full utilization of resources
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Optimization strategy depends on performance limiters

Memory bound

o Low arithmetic intensity, memory units saturated

Compute bound

o High arithmetic intensity, compute units saturated

Latency bound

o Memory units not saturated and/or compute units not saturated

Focus of this presentation – what to do for these different types of kernels?
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𝐴𝑟𝑖𝑡ℎ𝑚𝑒𝑡𝑖𝑐 𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 =
𝐴𝑟𝑖𝑡ℎ𝑚𝑒𝑡𝑖𝑐 𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠

𝐵𝑦𝑡𝑒𝑠 𝑚𝑜𝑣𝑒𝑑
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Memory Bandwidth Bound
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Data Movement

• Reducing data movement is still very important for GPU performance

• Move data, compute as much as possible with that data

• Reuse data when possible – temporal reuse and spatial reuse

• Stage data in shared memory (LDS) or registers for faster access

• Lower precision data types move fewer bytes, evaluate their use for your algorithm

• Move more data per work-item to improve streaming efficiency

Oct 31st, 2024 LUMI Comprehensive Training
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Data Access Considerations

• Coalesced loads/stores improve achieved bandwidth of transfers

• L1 cacheline size is 64 bytes in MI200 GPUs, and 128 bytes in MI300 GPUs

• Use as much as possible of each cacheline read

• Strided accesses may load more data than needed 

• Use vector data types such as float4, float2

• Compiler generates fewer, wider load instructions

• Amortize on cost of address/index calculations

• Improve data streaming efficiency

• Use non-temporal loads for data that will not be reused

• Aligned memory accesses avoid excess data from being fetched
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Sometimes compiler generates wider loads/stores for free
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https://godbolt.org/z/WYzMjxKzr

https://godbolt.org/z/WYzMjxKzr
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Compute Bound
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Compute Optimizations

• Compute bound kernels perform O(100) operations per byte loaded

• Large GEMMs are an example of compute bound kernels, but HPC workloads are typically memory bound

• Pre-compute values to look up in kernel

• Use faster math intrinsic functions, e.g., __cosf(x) instead of cosf(x)

• More details: https://rocm.docs.amd.com/projects/HIP/en/latest/reference/math_api.html

• Avoid general math functions where possible

• a * a * a uses two instructions whereas pow(a, 3.0f) uses many

• Godbolt link: https://godbolt.org/z/8hz8P4oc9

• Explore use of packed FP32 operations that process two FP32 values in one instruction

• For example, using float2 instead of float can result in the use of packed instructions
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https://rocm.docs.amd.com/projects/HIP/en/latest/reference/math_api.html
https://godbolt.org/z/8hz8P4oc9
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Compute Optimizations (contd.)

• Where you stage data for your compute matters

• To make your kernel truly compute-bound, read from registers

• Moving data from shared memory and/or cache takes O(10) cycles

• For specific matrix multiplication like calculations, special hardware units exist (rocWMMA)

• AMD Matrix Cores ROCm Blog: https://rocm.blogs.amd.com/software-tools-optimization/matrix-cores/README.html
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https://rocm.blogs.amd.com/software-tools-optimization/matrix-cores/README.html
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Unexpected Instructions
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__global__ void conversions (float *a) {
 float f1 = a[threadIdx.x] * 0.3;
 float f2 = 2.0 * (f1 * 3.0);
 a[threadIdx.x] = f1 + f2;

}

s_load_dwordx2 s[0:1], s[4:5], 0x0
v_lshlrev_b32_e32 v4, 2, v0
s_mov_b32 s2, 0x33333333
s_mov_b32 s3, 0x3fd33333
s_waitcnt lgkmcnt(0)
global_load_dword v0, v4, s[0:1]
s_waitcnt vmcnt(0)
v_cvt_f64_f32_e32 v[0:1], v0
v_mul_f64 v[0:1], v[0:1], s[2:3]
v_cvt_f32_f64_e32 v5, v[0:1]
s_mov_b32 s2, 0
v_cvt_f64_f32_e32 v[0:1], v5
s_mov_b32 s3, 0x40080000
v_mul_f64 v[2:3], v[0:1], s[2:3]
v_fmac_f64_e32 v[2:3], s[2:3], v[0:1]
v_cvt_f32_f64_e32 v0, v[2:3]
v_add_f32_e32 v0, v5, v0
global_store_dword v4, v0, s[0:1]
s_endpgm

Fewer instructions, FP32 ops

Wait, what?!

__global__ void no_conversions (float *a) {
    float f1 = a[threadIdx.x] * 0.3f;
    float f2 = 2.0f * (f1 * 3.0f);
    a[threadIdx.x] = f1 + f2;
}

s_load_dwordx2 s[0:1], s[4:5], 0x0
v_lshlrev_b32_e32 v0, 2, v0
s_waitcnt lgkmcnt(0)
global_load_dword v1, v0, s[0:1]
s_waitcnt vmcnt(0)
v_mul_f32_e32 v1, 0x3e99999a, v1
v_mul_f32_e32 v2, 0x40400000, v1

v_fmac_f32_e32 v1, 2.0, v2
global_store_dword v0, v1, s[0:1]
s_endpgm
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Latency bound
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Main Ideas for Optimizing Latency Bound Kernels

• Increase parallelism to utilize all GPU resources

• Reduce number of synchronization barriers

• Reduce thread divergence

• Avoid register spilling to slower "scratch" memory

Oct 31st, 2024 LUMI Comprehensive Training
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Motivation for Launching Many Wavefronts

• The GPU has a lot of resources

• Wavefronts can stall for various reasons:

• Waiting for data to load

• Waiting at a synchronization barrier

• GPU is good at switching to wavefronts with instructions ready to be executed

➔ Good to launch a lot of wavefronts and hide latencies of stalls

Oct 31st, 2024 LUMI Comprehensive Training
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What is Occupancy?

• # Resident wavefronts / Maximum #wavefronts the GPU can have in-flight

• Hardware Perspective (let’s consider a MI250x GPU):

• There are 110 Compute Units (CU)

• Up to 32 wavefronts can be scheduled to each CU = max 3520 wavefronts

• Developers’ Perspective:

• Am I launching enough units of work to use all CUs?

• Am I launching more wavefronts than the number of CUs to hide latencies?

• Higher occupancy can help improve performance, but not always
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Occupancy by Example (daxpy)

Z = aX + Y where Z, X and Y are 1D arrays of length N = 1,000,000 elements

We know that

• a workgroup can have 64 to 1024 work-items = 1 to 16 wavefronts

• all wavefronts of a workgroup will be scheduled to the same CU

We can launch the daxpy kernel in many ways:

1 workgroup with 64 work-items

Only 1 wave on 1 CU = No latency hiding

1 workgroup with 256 work-items

Only 4 waves on 1 CU = All other CUs idle

N/1024 workgroups, each workgroup has 16 waves

~1000 workgroups = ~16000 waves = good occupancy

But that’s not the whole picture..

Oct 31st, 2024 LUMI Comprehensive Training
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GPUCU

GPUCU CU CU CU CU
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Memory Resources that affect Occupancy

Compute Units have finite resources that are shared between work items

• Local Data Share (LDS)

• Vector General Purpose Registers (VGPRs)

• Scalar General Purpose Registers (SGPRs)
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The GPU can only schedule more work if there are enough resources available
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How LDS affects Occupancy

• Fast, on-CU, software managed memory to efficiently share data between work-items of a workgroup

• Each CU in a MI200 GPU has 64 KiB of LDS available

• Shared by workgroups on CU
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No LDS used, LDS 

does not limit 

occupancy

8 KiB of LDS per WG, 

8 WGs can fit in CU

48 KiB of LDS per WG, 

only 1 WG can fit in CU
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How Vector Registers affect Occupancy

• In VGPRs, each thread in the wavefront can save its own value

• Each MI200 CU has a limited size vector register file (max 512 VGPRs of size 4 bytes)

Oct 31st, 2024 LUMI Comprehensive Training

Num VGPRs Occupancy per SIMD Occupancy per CU

<= 64 8 waves 32 waves

<= 72 7 waves 28 waves

<= 80 6 waves 24 waves

<= 96 5 waves 20 waves

<= 128 4 waves 16 waves

<= 168 3 waves 12 waves

<= 256 2 waves 8 waves

> 256 1 waves 4 waves

This is the column that corresponds to the compiler and profiler report.
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How Scalar Registers (SGPRs) affect Occupancy

• In SGPRs, one value is shared across all work-items of the wavefront

• Each MI200 CU has a limited size scalar register file (max 102 SGPRs of size 4 bytes per wavefront)

Oct 31st, 2024 LUMI Comprehensive Training
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A Note about Register Spilling

• Register allocation is done by the compiler at compilation time

• When the required number of VGPRs is too much (i.e., > 256), the compiler may “spill” registers to slower 

“scratch” memory

• Better to avoid spilling in most cases

• By default, the compiler assumes workgroups are going to have 1024 work-items

• Use __launch_bounds__ on smaller workgroups to allow the compiler to use more registers

• The compiler may spill SGPRs to VGPRs, this seldom limits scheduling

• Don’t take this as a challenge
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ROCm blog about Register Pressure:
https://rocm.blogs.amd.com/software-tools-optimization/register-pressure/README.html

https://rocm.blogs.amd.com/software-tools-optimization/register-pressure/README.html
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Launching kernels has a cost

• “Cold” Launch Latency

• If device is idle when kernel is launched, it takes a while for waves to be scheduled

• Once waves start being scheduled, it can still take some time for the device to fill

• “Hot”  Launch Latency

• Launching kernel when device is busy can hide much of the startup cost

• However, kernels in the same HIP stream are ordered. Therefore, all waves in a kernel in a HIP stream must 

complete before any wave from the next kernel in the stream can be scheduled.

• Some cycles are spent at kernel boundaries for flushing writes from kernel

• Kernels that are too short ( << 1ms ) suffer from kernel launch overhead

Oct 31st, 2024 LUMI Comprehensive Training
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Fuse kernels to reduce launch latencies

• Also reduce data movement as shown here:
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__global__ void kernel1 (float *a, float *b, float  *c) {
 int32_t tid = blockIdx.x * blockDim.x + threadIdx.x;
 c[tid] = a[tid] + 2 * b[tid];

}
__global__ void kernel2 (float *a, float *b, float  *c) {
 int32_t tid = blockIdx.x * blockDim.x + threadIdx.x
 c[tid] = c[tid] - a[tid] * b[tid];

}

__global__ void kernel_fused (float *a, float *b, float  *c) {
 int32_t tid = blockIdx.x * blockDim.x + threadIdx.x;
 float a = a[tid];
 float b = b[tid];
 c[tid] = a + 2 * b – a * b;

}

One read of “a” and “b” and one write of “c”

2 reads of “a” and “b”, “c” written out and read back before being written out again!
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Reduce or Avoid Synchronization

• Thread block synchronization

• Synchronizes wavefronts in a thread block

• Expensive in large work groups, don’t over use it

• Host-side synchronization

• Memory operations (hipMalloc, hipFree, etc.) implicitly synchronize activity on the device => unexpected low perf

• Move memory allocations out of inner loops. This may cause a rethinking of the current algorithm

• Use asynchronous memory copies (H<->D) with pinned host buffers 

• avoid host-side synchronization

• overlap copies with compute

Oct 31st, 2024 LUMI Comprehensive Training
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A Note about Atomics

• If using atomic operations on MI200, compile with -munsafe-fp-atomics to use hardware atomics on FP 

data in GPU memory

• Not needed on MI300

• Reducing contention in atomic operations can improve performance

• On MI300 GPUs, atomics are performed in the AMD Infinity Cache  instead of the L2 cache

• Infinity Cache is a Memory Adjacent Last Level (MALL) cache

• L2 is distributed and local to Accelerator Compute Dies (XCDs)

Oct 31st, 2024 LUMI Comprehensive Training
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Minimize Thread Divergence

• Instructions in divergent paths are executed multiple times, some threads masked off each time

• Try minimizing divergent sections even if it means values computed by some threads will be discarded 

eventually
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size_t idx = threadIdx.x + blockDim.x * blockIdx.x;
if (threadIdx.x % 2 == 0) {

 out[2 * idx] = 1.0;
} else {

 out[2 * idx + 1] = 0.0;
}

size_t idx = threadIdx.x + blockIdx.x * blockDim.x;
double2 *ptr = (double2 *)(out + idx);
ptr[0] = {1.0, 0.0};

To compare assembly for both cases: https://godbolt.org/z/4fEqvE8zP

https://godbolt.org/z/4fEqvE8zP
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Warp shuffle/cross-lane functions

• Exchange data in registers between threads in wavefront

• Uses the same hardware fabric as LDS, but no storage in LDS

• Works on a common “width” where every thread is using the same width up to the wavefront size of 64

Oct 31st, 2024 LUMI Comprehensive Training
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Summary

• Kernel performance may be limited by

• memory bandwidth

• lack of compute resources

• latencies

• Performance optimization involves balancing many constraints

• Reduce data movement and access data in a coalesced manner

• Avoid unnecessary compute and excessive synchronization

• Adjust occupancy while considering resource requirements

• Most importantly, have fun optimizing your kernels!

Oct 31st, 2024 LUMI Comprehensive Training
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Disclaimer
The information presented in this document is for informational purposes only and may contain technical inaccuracies, omissions, 

and typographical errors. The information contained herein is subject to change and may be rendered inaccurate for many 

reasons, including but not limited to product and roadmap changes, component and motherboard version changes, new model 

and/or product releases, product differences between differing manufacturers, software changes, BIOS flashes, firmware 

upgrades, or the like. Any computer system has risks of security vulnerabilities that cannot be completely prevented or 

mitigated.  AMD assumes no obligation to update or otherwise correct or revise this information. However, AMD reserves the right 

to revise this information and to make changes from time to time to the content hereof without obligation of AMD to notify any 

person of such revisions or changes.

THIS INFORMATION IS PROVIDED ‘AS IS.” AMD MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO 

THE CONTENTS HEREOF AND ASSUMES NO RESPONSIBILITY FOR ANY INACCURACIES, ERRORS, OR OMISSIONS 

THAT MAY APPEAR IN THIS INFORMATION. AMD SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTIES OF NON-

INFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR ANY PARTICULAR PURPOSE. IN NO EVENT WILL AMD BE LIABLE 

TO ANY PERSON FOR ANY RELIANCE, DIRECT, INDIRECT, SPECIAL, OR OTHER CONSEQUENTIAL DAMAGES ARISING 

FROM THE USE OF ANY INFORMATION CONTAINED HEREIN, EVEN IF AMD IS EXPRESSLY ADVISED OF THE 

POSSIBILITY OF SUCH DAMAGES.

© 2024 Advanced Micro Devices, Inc. All rights reserved. AMD, the AMD Arrow logo, ROCm, Radeon, CDNA, Instinct, and 

combinations thereof are trademarks of Advanced Micro Devices, Inc. Other product names used in this publication are for 

identification purposes only and may be trademarks of their respective companies.
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