
Introduction to ROC-Profiler (rocprof)

Gina Sitaraman, Suyash Tandon, Justin Chang, Julio Maia, Noel

Chalmers, Paul T. Bauman, Nicholas Curtis, Nicholas Malaya,

Alessandro Fanfarillo, Jose Noudohouenou, Chip Freitag, Damon

McDougall, Noah Wolfe, Jakub Kurzak, Samuel Antao, George

Markomanolis, Bob Robey, Essam Morsi

Comprehensive General LUMI Course

April 23-26th, 2024

2 |

[Public]

slides on LUMI in /project/project_465001098/Slides/AMD/

hands-on exercises: https://hackmd.io/@gmarkoma/lumi_finland

hands-on source code: /project/project_465001098/Exercises/AMD/HPCTrainingExamples/

https://hackmd.io/@gmarkoma/lumi_finland

3 |

[Public]

What is ROC-Profiler?

• ROC-profiler (also referred to as rocprof) is the command line front-end for AMD's GPU profiling libraries

• Repo: https://github.com/ROCm-Developer-Tools/rocprofiler

• rocprof contains the central components allowing application traces and counter collection

• Under constant development

• Distributed with ROCm

• The output of rocprof can be visualized in the Chrome browser with Perfetto (https://ui.perfetto.dev/)

• There are ROCProfiler V1 and V2 (roctracer and rocprofiler into single library, same API)

• A new rocprofiler-sdk is going to be released soon, the repository is public:

https://github.com/ROCm/rocprofiler-sdk development is still going on, no version is released yet

https://github.com/ROCm-Developer-Tools/rocprofiler
https://ui.perfetto.dev/
https://github.com/ROCm/rocprofiler-sdk

4 |

[Public]

Background – AMD Profilers

A
tt

ai
n

ab
le

 F
LO

P
s/

s

1000

100

Counter collection with
user input files

Raw collection of GPU counters and traces

Counter results printed
to a CSV

CPU copy HIP API HSA API GPU Kernels

Trace collection support for

Traces visualized with Perfetto

Hardware
Counters

Visualisation

Traces and
timelines

ROC-profiler (rocprof)

CPU

Comprehensive trace collection

GPU

CPU copy HIP API HSA API GPU Kernels

Traces visualized with Perfetto

Trace
collection

Visualisation

Supports

Omnitrace

OpenMP® KokkosMPI multi-GPUp-threads

Analysis

Automated collection of hardware counters

Visualization

Speed of
Light

Memory
chart

Rooflines
Kernel

comparison

With Grafana or standalone GUI

Performance
Analysis

Visualisation

Supports

Omniperf

5 |

[Public]

Background – AMD Profilers

Objective Where should I focus my time ? How well am I using the GPU ? Why am I seeing this performance ?

Approach Timelines/Traces/Profiles/Causal-Profiles Roofline Hardware counters

AMD Tools rocprof

6 |

[Public]

Background – AMD Profilers

Objective Where should I focus my time ? How well am I using the GPU ? Why am I seeing this performance ?

Approach Timelines/Traces/Profiles/Causal-Profiles Roofline Hardware counters

AMD Tools Omnitrace Omniperf

7 |

[Public]

rocprof: Getting Started + Useful Flags

• To get help:
${ROCM_PATH}/bin/rocprof -h

• Useful housekeeping flags:
• --timestamp <on|off> - turn on/off gpu kernel timestamps

• --basenames <on|off> - turn on/off truncating gpu kernel names (i.e., removing template parameters and argument types)

• -o <output csv file> - Direct counter information to a particular file name

• -d <data directory> - Send profiling data to a particular directory

• -t <temporary directory> - Change the directory where data files typically created in /tmp are placed. This allows you to
save these temporary files.

• Flags directing rocprofiler activity:
• -i input<.txt|.xml> - specify an input file (note the output files will now be named input.*)

• --hsa-trace - to trace GPU Kernels, host HSA events (more later) and HIP memory copies.

• --hip-trace - to trace HIP API calls

• --roctx-trace - to trace roctx markers

• --kfd-trace - to trace GPU driver calls

• Advanced usage
• -m <metric file> - Allows the user to define and collect custom metrics. See rocprofiler/test/tool/*.xml on GitHub for

examples.

https://github.com/ROCm-Developer-Tools/rocprofiler/tree/amd-master/test/tool

8 |

[Public]

rocprof: Kernel Information

• rocprof can collect kernel(s) execution stats

$ /opt/rocm/bin/rocprof --stats --basenames on <app with arguments>

• This will output two csv files:

• results.csv: information per each call of the kernel

• results.stats.csv: statistics grouped by each kernel

• Content of results.stats.csv to see the list of GPU kernels with their durations and percentage of total GPU time:

• In a spreadsheet viewer, it is easier to read:

9 |

[Public]

rocprof: Collecting Application Traces

• rocprof can collect a variety of trace event types, and generate timelines in JSON format for use with Perfetto,
currently:

• You can combine modes like --hip-trace --hsa-trace

• If profiling OpenMP® offload code, --hsa-trace is required to show HSA activity

Trace Event rocprof Trace Mode

HIP API call --hip-trace

GPU Kernels --hip-trace

Host <-> Device Memory copies --hip-trace

CPU HSA Calls --hsa-trace

User code markers --roctx-trace

10 |

[Public]

rocprof + Perfetto: Collecting and Visualizing Application Traces
• rocprof can collect traces

$ /opt/rocm/bin/rocprof --hip-trace <app with arguments>

This will output a .json file that can be visualized using the Chrome browser and Perfetto (https://ui.perfetto.dev/)

Copy activity (H2D and D2H)

HIP API Activity

GPU activity

https://ui.perfetto.dev/

11 |

[Public]

Perfetto: Visualizing Application Traces

• Zoom in to see individual events

• Navigate trace using WASD keys

12 |

[Public]

Perfetto: Kernel Information and Flow Events

• Zoom and select a kernel, you can see the link to the HIP call launching the kernel

• Try to open the information for the kernel (button at bottom right)

13 |

[Public]

Perfetto: Kernel Information and Flow Events

Kernel name and args

Stream where kernel

was launched in

Duration

14 |

[Public]

rocprof: Collecting Application Traces with rocTX Markers and Regions

• rocprof can collect user defined regions or markers using rocTX

• Annotate code with roctx regions:
#include <roctx.h>
...

roctxRangePush("reduce_for_c");
reduce_function ();
roctxRangePop();

...

• Annotate code with roctx markers:
...

roctxMark("start of some code");

// some_code

roctxMark("end of some code");

...

• Add roctx and roctracer libraries to link line:
-L${ROCM_PATH}/lib -lroctx64 -lroctracer64

• Profile with --roctx-range option:

$ /opt/rocm/bin/rocprof --hip-trace --roctx-trace <app with arguments>

Roctx Range

Roctx Marker

15 |

[Public]

rocprof: Collecting Hardware Counters

• rocprof can collect a number of hardware counters and derived counters

• $ /opt/rocm/bin/rocprof --list-basic

• $ /opt/rocm/bin/rocprof --list-derived

• Specify counters in a counter file. For example:

• $ /opt/rocm/bin/rocprof -i rocprof_counters.txt <app with args>

• $ cat rocprof_counters.txt

 pmc : Wavefronts VALUInsts VFetchInsts VWriteInsts VALUUtilization VALUBusy WriteSize

 pmc : SALUInsts SFetchInsts LDSInsts FlatLDSInsts GDSInsts SALUBusy FetchSize

 pmc : L2CacheHit MemUnitBusy MemUnitStalled WriteUnitStalled ALUStalledByLDS LDSBankConflict

• A limited number of counters can be collected during a specific pass of code

• Each line in the counter file will be collected in one pass

• You will receive an error suggesting alternative counter ordering if you have too many / conflicting counters on one line

• A csv file will be created containing all the requested counters for each invocation of every kernel

16 |

[Public]

Larger Traces with Perfetto

• There is a memory limit in the Chrome browser. There is a way to read in the trace for the browser before

starting it up.

Linux®

• curl -LO https://get.perfetto.dev/trace_processor

• chmod +x ./trace_processor

• ./trace_processor –httpd <path to trace file>

• Open up Chrome browser and go to https://ui.perfetto.dev

• When prompted, click on "Yes, use loaded trace"

Windows®

• Open up https://get.perfetto.dev/trace_processor in a browser to download the python script

• py trace_processor --httpd <trace file>

• You may need to download and install python on your windows system

• Open up Chrome browser and go to https://ui.perfetto.dev

• When prompted, click on "Yes, use loaded trace"

https://ui.perfetto.dev/
https://get.perfetto.dev/trace_processor
https://ui.perfetto.dev

17 |

[Public]

rocprof: Commonly Used GPU Counters

Full list at: https://github.com/ROCm-Developer-Tools/rocprofiler/blob/amd-master/test/tool/metrics.xml

The percentage of ALUs active in a wave. Low VALUUtilization is
likely due to high divergence or a poorly sized grid

VALUUtilization

The percentage of GPUTime vector ALU instructions are
processed. Can be thought of as something like compute
utilization

VALUBusy

The total kilobytes fetched from global memoryFetchSize

The total kilobytes written to global memoryWriteSize

The percentage of fetch, write, atomic, and other instructions
that hit the data in L2 cache

L2CacheHit

The percentage of GPUTime the memory unit is active. The
result includes the stall time

MemUnitBusy

The percentage of GPUTime the memory unit is stalledMemUnitStalled

The percentage of GPUTime the write unit is stalledWriteUnitStalled

https://github.com/ROCm-Developer-Tools/rocprofiler/blob/amd-master/test/tool/metrics.xml

18 |

[Public]

Performance Counters Tips and Tricks

• GPU Hardware counters are global

• Kernel dispatches are serialized to ensure that only one dispatch is ever in flight

• It is recommended that no other applications are using the GPU when collecting performance counters

• Use --basenames on which will report only kernel names, leaving off kernel arguments

• How do you time a kernel’s duration?

• $ /opt/rocm/bin/rocprof --timestamp on -i rocprof_counters.txt <app with args>

• This produces four times: DispatchNs, BeginNs, EndNs, and CompleteNs

• Closest thing to a kernel duration: EndNs - BeginNs

• If you run with “--stats” the resultant results.stats.csv file will include a kernel duration column

• Note: the duration is aggregated over repeated calls to the same kernel

19 |

[Public]

rocprof: Multiple MPI Ranks

• rocprof can collect counters and traces for multiple MPI ranks

• Say you want to profile an application usually called like this:

mpiexec –np <n> ./Jacobi_hip –g <x> <y>

• Then invoke the profiler by executing:

mpiexec -np <n> rocprof --hip-trace ./Jacobi_hip -g <x> <y>

or

srun –-ntasks=n rocprof --hip-trace ./Jacobi_hip -g <x> <y>

• This will produce a single CSV file per MPI process

• Multi-node profiling currently isn’t supported

20 |

[Public]

Profiling Per MPI Rank: From Another Node(1)

AMD Confidential – Provided under NDA to CINES

• Let’s consider a 3-step run:
• sbatch_profiling.sh with sbatch command line to launch the app
• rocprof_batch.slurm This file contains sbatch parameters and the call to srun command line
• rocprof_wrapper.sh calls rocprof command line with input parameters to run the application to be profiled

• $ cat sbatch_profiling.sh
sbatch -p <partition> -w <node> rocprof_batch.slurm

• $cat rocprof_batch.slurm
#!/bin/bash
#SBATCH --job-name=run
#SBATCH --ntasks=2
#SBATCH --ntasks-per-node=2
#SBATCH --gpus-per-task=1
#SBATCH --cpus-per-task=1
#SBATCH --distribution=block:block
#SBATCH --time=00:20:00
#SBATCH --output=out.txt
#SBATCH --error=err.txt
#SBATCH -A XXXXX
cd ${SLURM_SUBMIT_DIR}

 #load necessary modules
 #export necessary environment variables

make clean all
srun ./rocprof_wrapper.sh ${repository} triad_off_mpi triad_off_mpi

20

21 |

[Public]

Profiling Per MPI Rank: From Another Node(2)

AMD Confidential – Provided under NDA to CINES

$cat rocprof_wrapper.sh

#!/bin/bash
set -euo pipefail
depends on ROCM_PATH being set outside; input arguments are the output directory & the name
outdir="$1"
name="$2"
if [[-n ${OMPI_COMM_WORLD_RANK+z}]]; then

 # mpich
 export MPI_RANK=${OMPI_COMM_WORLD_RANK}

elif [[-n ${MV2_COMM_WORLD_RANK+z}]]; then
 # ompi
 export MPI_RANK=${MV2_COMM_WORLD_RANK}

elif [[-n ${SLURM_PROCID+z}]]; then
 export MPI_RANK=${SLURM_PROCID}

else
 echo "Unknown MPI layer detected! Must use OpenMPI, MVAPICH, or SLURM"
 exit 1

fi
rocprof="${ROCM_PATH}/bin/rocprof"

pid="$$"
outdir="${outdir}/rank_${pid}_${MPI_RANK}"
outfile="${name}_${pid}_${MPI_RANK}.csv"
${rocprof} -d ${outdir} --hsa-trace -o ${outdir}/${outfile} "${@:3}"

Output directory per rank

Filenames annotated with rank as well

Application and its arguments

21

22 |

[Public]

rocprof: Multiple MPI Ranks

• rocprof can collect counters and traces for multiple MPI ranks

• Say you want to profile an application usually called like this:

mpiexec –np <n> ./Jacobi_hip –g <x> <y>

• Invoke the profiler by executing:

mpiexec -np <n> rocprof <rocprof_options> ./Jacobi_hip -g <x> <y>

or

srun –-ntasks=n rocprof <rocprof_options> ./Jacobi_hip -g <x> <y>

• By directing output files from each rank to different directories, we can collect traces for each rank

separately

• Use a helper script for this, and run your program as shown below:

mpiexec -np <n> helper_rocprof.sh ./Jacobi_hip -g <x> <y>

• Multi-node profiling currently isn’t supported

23 |

[Public]

Profiling Multiple MPI Ranks

AMD Confidential – Provided under NDA to CINES

$cat rocprof_wrapper.sh

#!/bin/bash
set -euo pipefail
depends on ROCM_PATH being set outside; input arguments are the output directory & the name
outdir="$1"
name="$2"
if [[-n ${OMPI_COMM_WORLD_RANK+z}]]; then

 # mpich
 export MPI_RANK=${OMPI_COMM_WORLD_RANK}

elif [[-n ${MV2_COMM_WORLD_RANK+z}]]; then
 # ompi
 export MPI_RANK=${MV2_COMM_WORLD_RANK}

elif [[-n ${SLURM_PROCID+z}]]; then
 export MPI_RANK=${SLURM_PROCID}

else
 echo "Unknown MPI layer detected! Must use OpenMPI, MVAPICH, or SLURM"
 exit 1

fi
rocprof="${ROCM_PATH}/bin/rocprof"

pid="$$"
outdir="${outdir}/rank_${pid}_${MPI_RANK}"
outfile="${name}_${pid}_${MPI_RANK}.csv"
${rocprof} -d ${outdir} --hsa-trace -o ${outdir}/${outfile} "${@:3}"

Filenames annotated with rank as well

Application and its arguments

Output directory per rank

23

24 |

[Public]

rocprof: Profiling Overhead

• As with every profiling tool, there is an overhead

• The percentage of the overhead depends on the profiling options used

• For example, tracing is faster than hardware counter collection

• When collecting many counters, the collection may require multiple passes

• With rocTX markers/regions, tracing can take longer and the output may be large

• Sometimes too large to visualize

• The more data collected, the more the overhead of profiling

• Depends on the application and options used

25 |

[Public]

Summary

• rocprof is the open source, command line AMD GPU profiling tool distributed with ROCm

• Many other tools are built over rocprof

• rocprof provides tracing of GPU kernels, HIP API, HSA API and Copy activity

• rocprof can be used to collect GPU hardware counters with additional overhead

• JSON Traces can be viewed in Perfetto UI

• Other output files are in text/CSV format

• A new improved version is coming

26 |

[Public]

Disclaimer
The information presented in this document is for informational purposes only and may contain technical inaccuracies, omissions, and typographical errors. The

information contained herein is subject to change and may be rendered inaccurate for many reasons, including but not limited to product and roadmap changes,

component and motherboard version changes, new model and/or product releases, product differences between differing manufacturers, software changes,

BIOS flashes, firmware upgrades, or the like. Any computer system has risks of security vulnerabilities that cannot be completely prevented or mitigated. AMD

assumes no obligation to update or otherwise correct or revise this information. However, AMD reserves the right to revise this information and to make changes

from time to time to the content hereof without obligation of AMD to notify any person of such revisions or changes.

THIS INFORMATION IS PROVIDED ‘AS IS.” AMD MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE CONTENTS HEREOF

AND ASSUMES NO RESPONSIBILITY FOR ANY INACCURACIES, ERRORS, OR OMISSIONS THAT MAY APPEAR IN THIS INFORMATION. AMD

SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR ANY PARTICULAR

PURPOSE. IN NO EVENT WILL AMD BE LIABLE TO ANY PERSON FOR ANY RELIANCE, DIRECT, INDIRECT, SPECIAL, OR OTHER CONSEQUENTIAL

DAMAGES ARISING FROM THE USE OF ANY INFORMATION CONTAINED HEREIN, EVEN IF AMD IS EXPRESSLY ADVISED OF THE POSSIBILITY OF

SUCH DAMAGES.

Third-party content is licensed to you directly by the third party that owns the content and is not licensed to you by AMD. ALL LINKED THIRD-PARTY

CONTENT IS PROVIDED “AS IS” WITHOUT A WARRANTY OF ANY KIND. USE OF SUCH THIRD-PARTY CONTENT IS DONE AT YOUR

SOLE DISCRETION AND UNDER NO CIRCUMSTANCES WILL AMD BE LIABLE TO YOU FOR ANY THIRD-PARTY CONTENT. YOU ASSUME ALL RISK

AND ARE SOLELY RESPONSIBLE FOR ANY DAMAGES THAT MAY ARISE FROM YOUR USE OF THIRD-PARTY CONTENT.

© 2023 Advanced Micro Devices, Inc. All rights reserved. AMD, the AMD Arrow logo, ROCm, and combinations thereof are trademarks of Advanced Micro

Devices, Inc. in the United States and/or other jurisdictions. Other names are for informational purposes only and may be trademarks of their respective owners.

Linux is the registered trademark of Linus Torvalds in the U.S. and other countries.

The OpenMP name and the OpenMP logo are registered trademarks of the OpenMP Architecture Review Board

Python

Windows is a registered trademark of Microsoft Corporation in the US and/or other countries.

26

	Slide 1: Introduction to ROC-Profiler (rocprof)
	Slide 2
	Slide 3: What is ROC-Profiler?
	Slide 4: Background – AMD Profilers
	Slide 5: Background – AMD Profilers
	Slide 6: Background – AMD Profilers
	Slide 7: rocprof: Getting Started + Useful Flags
	Slide 8: rocprof: Kernel Information
	Slide 9: rocprof: Collecting Application Traces
	Slide 10: rocprof + Perfetto: Collecting and Visualizing Application Traces
	Slide 11: Perfetto: Visualizing Application Traces
	Slide 12: Perfetto: Kernel Information and Flow Events
	Slide 13: Perfetto: Kernel Information and Flow Events
	Slide 14: rocprof: Collecting Application Traces with rocTX Markers and Regions
	Slide 15: rocprof: Collecting Hardware Counters
	Slide 16: Larger Traces with Perfetto
	Slide 17: rocprof: Commonly Used GPU Counters
	Slide 18: Performance Counters Tips and Tricks
	Slide 19: rocprof: Multiple MPI Ranks
	Slide 20: Profiling Per MPI Rank: From Another Node(1)
	Slide 21: Profiling Per MPI Rank: From Another Node(2)
	Slide 22: rocprof: Multiple MPI Ranks
	Slide 23: Profiling Multiple MPI Ranks
	Slide 24: rocprof: Profiling Overhead
	Slide 25: Summary
	Slide 26: Disclaimer
	Slide 27

