
Introduction to HIP

Programming

Suyash Tandon, Justin Chang, Julio Maia, Noel Chalmers, Paul T.

Bauman, Nicholas Curtis, Nicholas Malaya, Alessandro Fanfarillo,

Jose Noudohouenou, Chip Freitag, Damon McDougall, Noah

Wolfe, Jakub Kurzak, Samuel Antao, George Markomanolis, Bob

Robey, Gina Sitaraman

Developing Applications with the AMD ROCm Ecosystem

2 |

[Public]

Agenda 1. Radeon Open Compute Platform

2. AMD GPU Programming Concepts

3. Kernels, memory, and structure of host code

4. Device management and asynchronous computing

5. Device code, shared memory, and thread synchronization

6. GPU Software, Shared Memory, Atomics

3 |

[Public]

4 |

[Public]

•

•

•

•

•

•

5 |

[Public]

ROCm - Radeon Open Compute Platform

• Heterogeneous-compute Interface for Portability (HIP) is part

of a larger software distribution called the Radeon Open

Compute Platform, or ROCm, Package

• Install instructions and documentation can be found here:

• https://rocmdocs.amd.com/en/latest/Installation_Guide/Installatio

n-Guide.html

• The ROCm package provides libraries and programming

tools for developing HPC and ML applications on AMD

GPUs

• All the ROCm environment and the libraries are provided

from the supercomputer, usually, there is no need to install

something yourselves

• Heterogeneous System Architecture (HSA) runtime is an API

that exposes the necessary interfaces to access and interact

with the hardware driven by AMDGPU driver

https://rocmdocs.amd.com/en/latest/Installation_Guide/Installation-Guide.html
https://rocmdocs.amd.com/en/latest/Installation_Guide/Installation-Guide.html

AMD GPU Programming Concepts

Programming with HIP: Kernels, blocks, threads, and more

7 |

[Public]

What is HIP?

AMD’s Heterogeneous-compute Interface for

Portability, or HIP, is a C++ runtime API and kernel

language that allows developers to create portable

applications that can run on AMD’s accelerators as well

as CUDA devices

HIP:

• Is open-source

• Provides an API for an application to leverage GPU

acceleration for both AMD and CUDA devices

• Syntactically similar to CUDA. Most CUDA API calls

can be converted in place: cuda -> hip

• Supports a strong subset of CUDA runtime

functionality

Portable HIP C++ (Host & Device Code)

#include “cuda.h”
#include

“hip_runtime.h”

nvcc hipcc

Nvidia GPU AMD GPU

8 |

[Public]

A Tale of Host and Device

▪ The Host is the CPU

▪ Host code runs here

▪ Usual C++ syntax and features

▪ Entry point is the ‘main’ function

▪ HIP API can be used to create device buffers,
move between host and device, and launch
device code.

▪ The Device is the GPU

▪ Device code runs here

▪ C-like syntax

▪ Device codes are launched via “kernels”

▪ Instructions from the Host are enqueued into
“streams”

Source code in HIP has two flavors: Host code and Device code

9 |

[Public]

HIP API
• Device Management:

• hipSetDevice(), hipGetDevice(), hipGetDeviceProperties()

• Memory Management

• hipMalloc(), hipMemcpy(), hipMemcpyAsync(), hipFree()

• Streams

• hipStreamCreate(), hipDeviceSynchronize(), hipStreamSynchronize(), hipStreamDestroy()

• Events

• hipEventCreate(), hipEventRecord(), hipStreamWaitEvent(), hipEventElapsedTime()

• Device Kernels

• __global__, __device__, hipLaunchKernelGGL()

• Device code

• threadIdx, blockIdx, blockDim, __shared__

• 200+ math functions covering entire CUDA math library.

• Error handling

• hipGetLastError(), hipGetErrorString()

10 |

[Public]

Kernels, memory, and structure of host code

11 |

[Public]

Device Kernels: The Grid

• In HIP, kernels are executed on a 3D ”grid”

• You might feel comfortable thinking in terms of a mesh of points, but it’s not required

• The “grid” is what you can map your problem to

• It’s not a physical thing, but it can be useful to think that way

• AMD devices (GPUs) support 1D, 2D, and 3D grids, but most work maps well to 1D

• Each dimension of the grid partitioned into equal sized “blocks”

• Each block is made up of multiple “threads”

• The grid and its associated blocks are just organizational constructs

• The threads are the things that do the work

• If you’re familiar with CUDA already, the grid+block structure is very similar in HIP

12 |

[Public]

Device Kernels: The Grid

CUDA HIP OpenCL™

grid grid NDRange

block block work group

thread work item / thread work item

warp wavefront sub-group

Some Terminology:

13 |

[Public]

The Grid: blocks of threads in 1D

 rid of blocks

 lock of threads
Thread

Threads in grid have access to:

• Their respective block: blockIdx.x

• Their respective thread ID in a block: threadIdx.x

• Their block’s dimension: blockDim.x

• The number of blocks in the grid: gridDim.x

14 |

[Public]

The Grid: blocks of threads in 2D

• Each color is a block of threads

• Each small square is a thread

• The concept is the same in 1D and 2D

• In 2D each block and thread now has a two-

dimensional index

Threads in grid have access to:

• Their respective block IDs: blockIdx.x, blockIdx.y

• Their respective thread IDs in a block: threadIdx.x,

threadIdx.y

• Etc.

15 |

[Public]

Kernels

A simple embarrassingly parallel loop

for (int i=0;i<N;i++) {

h_a[i] *= 2.0;

}

Can be translated into a GPU kernel:

__global__ void myKernel(int N, double *d_a) {

int i = threadIdx.x + blockIdx.x*blockDim.x;

if (i<N) {

d_a[i] *= 2.0;

}

}

▪ A device function that will be launched from the
host program is called a kernel and is declared
with the __global__ attribute

▪ Kernels should be declared void

▪ All threads execute the kernel’s body
“simultaneously”

▪ Each thread uses its unique thread and block IDs
to compute a global ID

▪ There could be more than N threads in the grid

16 |

[Public]

Kernels

Kernels are launched from the host:

dim3 threads(256,1,1); //3D dimensions of a block of threads

dim3 blocks((N+256-1)/256,1,1); //3D dimensions the grid of blocks

myKernel<<<blocks, threads, 0, 0>>>(N,a);

Older approach:

hipLaunchKernelGGL(myKernel, //Kernel name (__global__ void function)

blocks, //Grid dimensions

threads, //Block dimensions

0, //Bytes of dynamic LDS space

0, //Stream (0=NULL stream)

N, a); //Kernel arguments

17 |

[Public]

SIMD operations

Why blocks and threads?

Natural mapping of kernels to hardware:

• Blocks are dynamically scheduled onto CUs

• All threads in a block execute on the same CU

• Threads in a block share LDS memory and L1 cache

• Threads in a block are executed in 64-wide chunks called “wavefronts”

• Wavefronts execute on SIMD units (Single Instruction Multiple Data)

• If a wavefront stalls (e.g., data dependency) CUs can quickly context switch to another wavefront

A good practice is to make the block size a multiple of 64 and have several wavefronts (e.g., 256 threads)

18 |

[Public]

Device Memory
The host instructs the device to allocate memory in VRAM and records a pointer to device memory:

int main() {

…

int N = 1000;

size_t Nbytes = N*sizeof(double);

double *h_a = (double*) malloc(Nbytes); //Host memory

double *d_a = NULL;

hipMalloc(&d_a, Nbytes); //Allocate Nbytes on device

…

free(h_a); //free host memory

hipFree(d_a); //free device memory

}

19 |

[Public]

Device Memory

The host queues memory transfers:

//copy data from host to device

hipMemcpy(d_a, h_a, Nbytes, hipMemcpyHostToDevice);

//copy data from device to host

hipMemcpy(h_a, d_a, Nbytes, hipMemcpyDeviceToHost);

//copy data from one device buffer to another

hipMemcpy(d_b, d_a, Nbytes, hipMemcpyDeviceToDevice);

20 |

[Public]

Device Memory
Can copy strided sections of arrays:

hipMemcpy2D(d_a, //pointer to destination

DLDAbytes, //pitch of destination array

h_a, //pointer to source

LDAbytes, //pitch of source array

Nbytes, //number of bytes in each row

Nrows, //number of rows to copy

hipMemcpyHostToDevice);

21 |

[Public]

Error Checking
▪ Most HIP API functions return error codes of type hipError_t

hipError_t status1 = hipMalloc(…);

hipError_t status2 = hipMemcpy(…);

▪ If API function was error-free, returns hipSuccess, otherwise returns an error code

▪ Can also peek/get at last error returned with

hipError_t status3 = hipGetLastError();

hipError_t status4 = hipPeekLastError();

▪ Can get a corresponding error string using hipGetErrorString(status). Helpful for debugging, e.g.,

#define HIP_CHECK(command) { \

hipError_t status = command; \

if (status!=hipSuccess) { \

std::cerr << “Error: HIP reports ” << hipGetErrorString(status) << std::endl; \

std::abort(); } }

22 |

[Public]

Putting it all together
#include “hip/hip_runtime.h”

int main() {

int N = 1000;

size_t Nbytes = N*sizeof(double);

double *h_a = (double*) malloc(Nbytes); //host memory

double *d_a = NULL;

HIP_CHECK(hipMalloc(&d_a, Nbytes));

…

HIP_CHECK(hipMemcpy(d_a, h_a, Nbytes, hipMemcpyHostToDevice)); //copy data to device

myKernel<<<dim3((N+256-1)/256,1,1), dim3(256,1,1), 0, 0>>>(N, d_a); //Launch kernel

HIP_CHECK(hipGetLastError());

HIP_CHECK(hipMemcpy(h_a, d_a, Nbytes, hipMemcpyDeviceToHost)); //copy results back to host

…

free(h_a); //free host memory

HIP_CHECK(hipFree(d_a)); //free device memory

}

__global__ void myKernel(int N, double *d_a) {

int i = threadIdx.x + blockIdx.x*blockDim.x;

if (i<N) {

d_a[i] *= 2.0;

}

}

#define HIP_CHECK(command) { \

hipError_t status = command; \

if (status!=hipSuccess) { \

std::cerr << “Error: HIP reports ” \
<< hipGetErrorString(status) \
<< std::endl; \

std::abort(); } }

23 |

[Public]

Vector Addition

+

=

Let’s discuss an example with:

• Dimension of 16384*16384

• 16 blocks for X and Y dimensions and 1 for Z dimension

24 |

[Public]

…

hostA = (float*)malloc(NUM * sizeof(float));

hostB = (float*)malloc(NUM * sizeof(float));

hostC = (float*)malloc(NUM * sizeof(float));

//initialize

…

hipMalloc((void**)&deviceA, NUM * sizeof(float));

hipMalloc((void**)&deviceB, NUM * sizeof(float));

hipMalloc((void**)&deviceC, NUM * sizeof(float));

hipMemcpy(deviceB, hostB, NUM*sizeof(float), hipMemcpyHostToDevice);

hipMemcpy(deviceC, hostC, NUM*sizeof(float), hipMemcpyHostToDevice);

…

Vector Addition (example code)

25 |

[Public]

…

vectoradd_float<<<dim3(WIDTH/THREADS_PER_BLOCK_X, HEIGHT/THREADS_PER_BLOCK_Y),

dim3(THREADS_PER_BLOCK_X, THREADS_PER_BLOCK_Y), 0, 0>>>

(deviceA ,deviceB ,deviceC ,WIDTH ,HEIGHT);

hipMemcpy(hostA, deviceA, NUM*sizeof(float), hipMemcpyDeviceToHost);

// verify the results

…

hipFree(deviceA);

hipFree(deviceB);

hipFree(deviceC);

Vector Addition (example code)

26 |

[Public]

rocprof --stats --hip-trace vectoradd_hip.exe

File: results.hip_stats.csv:

"Name", "Calls", "TotalDurationNs", "AverageNs", "Percentage"

"hipMemcpy", 3, 591195337, 197065112, 99.78088892497593

"hipLaunchKernel", 1, 637889, 637889, 0.10766176164116796

"hipMalloc", 3, 452560, 150853, 0.07638226532880638

"hipFree", 3, 202860, 67620, 0.03423834705807332

"hipGetDeviceProperties", 1, 2600, 2600, 0.0004388233380212493

"__hipPushCallConfiguration", 1, 1860, 1860, 0.0003139274648921245

"__hipPopCallConfiguration", 1, 450, 450, 7.595019311906238e-05

Vector addition - Profiling

27 |

[Public]

Perfetto - visualization

28 |

[Public]

Device management and asynchronous computing

29 |

[Public]

Device Management
Multiple GPUs in system? Multiple host threads/MPI ranks? What device are we running on?

• Host can query number of devices visible to system:

int numDevices = 0;

hipGetDeviceCount(&numDevices);

• Host tells the runtime to issue instructions to a particular device:

int deviceID = 0;

hipSetDevice(deviceID);

• Host can query what device is currently selected:

hipGetDevice(&deviceID);

• The host can manage several devices by swapping the currently selected device during runtime.

• Different processes can use different devices or over-subscribe (share) the same device.

30 |

[Public]

Device Properties
The host can also query a device’s properties:

hipDeviceProp_t props;

hipGetDeviceProperties(&props, deviceID);

• hipDeviceProp_t is a struct that contains useful fields like the device’s name, total VRAM, clock speed, and CN
architecture.

• See “hip/hip_runtime_api.h” for full list of fields.

31 |

[Public]

Blocking vs Nonblocking API functions

• Launching a kernel is non-blocking

• After sending instructions/data, the host continues to do more work while the device executes the kernel

• Multiple kernels launched on different streams can run concurrently on the same device

• However, hipMemcpy is blocking

• The data pointed to in the arguments can be accessed/modified after the function returns

• To make asynchronous copies, we need to allocate non-pageable host memory using hipHostMalloc and copy

using hipMemcpyAsync

hipHostMalloc(h_a, Nbytes, hipHostMallocDefault);

hipMemcpyAsync(d_a, h_a, Nbytes, hipMemcpyHostToDevice, stream);

• It is not safe to access/modify the arguments of hipMemcpyAsync without some sort of synchronization.

32 |

[Public]

Putting it all together
#include “hip/hip_runtime.h”

int main() {

int N = 1000;

size_t Nbytes = N*sizeof(double);

double *h_a = (double*) malloc(Nbytes); //host memory

double *d_a = NULL;

HIP_CHECK(hipMalloc(&d_a, Nbytes));

…

HIP_CHECK(hipMemcpy(d_a, h_a, Nbytes, hipMemcpyHostToDevice)); //copy data to device

myKernel<<<dim3((N+256-1)/256,1,1), dim3(256,1,1), 0, 0>>>(N, d_a); //Launch kernel

HIP_CHECK(hipGetLastError());

HIP_CHECK(hipMemcpy(h_a, d_a, Nbytes, hipMemcpyDeviceToHost)); //copy results back to host

…

free(h_a); //free host memory

HIP_CHECK(hipFree(d_a)); //free device memory

}

__global__ void myKernel(int N, double *d_a) {

int i = threadIdx.x + blockIdx.x*blockDim.x;

if (i<N) {

d_a[i] *= 2.0;

}

}

The host waits for the kernel to finish here

33 |

[Public]

Streams

• A stream in HIP is a queue of tasks (e.g. kernels, memcpys, events).

• Tasks enqueued in a stream complete in order on that stream.

• Tasks being executed in different streams are allowed to overlap and share device resources.

• Streams are created via:

hipStream_t stream;

hipStreamCreate(&stream);

• And destroyed via:

hipStreamDestroy(stream);

• Passing 0 or NULL as the hipStream_t argument to a function instructs the function to execute on a stream

called the ‘NULL Stream’:

• No task on the NULL stream will begin until all previously enqueued tasks in all other streams have completed.

• Blocking calls like hipMemcpy run on the NULL stream.

34 |

[Public]

Streams

• Suppose we have 4 small kernels to execute:

myKernel1<<<dim3(1), dim3(256), 0, 0>>>(256, d_a1);

myKernel2<<<dim3(1), dim3(256), 0, 0>>>(256, d_a2);

myKernel3<<<dim3(1), dim3(256), 0, 0>>>(256, d_a3);

myKernel4<<<dim3(1), dim3(256), 0, 0>>>(256, d_a4);

• Even though these kernels use only one block each, they’ll execute in serial on the NULL stream:

NULL

Stream
myKernel1 myKernel2 myKernel3 myKernel4

Time

35 |

[Public]

Streams

• With streams we can effectively share the PU’s compute resources:

myKernel1<<<dim3(1), dim3(256), 0, stream1>>>(256, d_a1);

myKernel2<<<dim3(1), dim3(256), 0, stream2>>>(256, d_a2);

myKernel3<<<dim3(1), dim3(256), 0, stream3>>>(256, d_a3);

myKernel4<<<dim3(1), dim3(256), 0, stream4>>>(256, d_a4);

Note 1: Kernels must modify different parts of memory to avoid data races.

Note 2: With large kernels, overlapping computations may not help performance.

NULL

Stream

Stream1

Stream2

Stream3

Stream4

myKernel1

myKernel2

myKernel3

myKernel4

36 |

[Public]

Streams

• There is another use for streams besides concurrent kernels:

• Overlapping kernels with data movement.

• AMD GPUs have separate engines for:

• Host->Device memcpys

• Device->Host memcpys

• Compute kernels.

• These three different operations can overlap without dividing the PU’s resources.

• The overlapping operations should be in separate, non-NULL, streams.

• The host memory should be pinned.

37 |

[Public]

Pinned Memory

Host data allocations are pageable by default. The GPU can directly access host data if it is pinned instead.

• Allocating pinned host memory:

double *h_a = NULL;

hipHostMalloc(&h_a, Nbytes);

• Free pinned host memory:

hipHostFree(h_a);

• Host<->Device effective data transfer rate increases significantly when host memory is pinned.

• It is good practice to allocate host memory that is frequently transferred to/from the device as pinned memory.

38 |

[Public]

Streams
Suppose we have 3 kernels which require moving data to and from the device:

hipMemcpy(d_a1, h_a1, Nbytes, hipMemcpyHostToDevice));

hipMemcpy(d_a2, h_a2, Nbytes, hipMemcpyHostToDevice));

hipMemcpy(d_a3, h_a3, Nbytes, hipMemcpyHostToDevice));

myKernel1<<<blocks, threads, 0, 0>>>(N, d_a1);

myKernel2<<<blocks, threads, 0, 0>>>(N, d_a2);

myKernel3<<<blocks, threads, 0, 0>>>(N, d_a3);

hipMemcpy(h_a1, d_a1, Nbytes, hipMemcpyDeviceToHost);

hipMemcpy(h_a2, d_a2, Nbytes, hipMemcpyDeviceToHost);

hipMemcpy(h_a3, d_a3, Nbytes, hipMemcpyDeviceToHost);

NULL Stream
myKernel

1

myKernel

2

myKernel

3
HToD1 HToD2 HToD3 DToH1 DToH2 DToH3

39 |

[Public]

Streams
Changing to asynchronous memcpys and using streams:

hipMemcpyAsync(d_a1, h_a1, Nbytes, hipMemcpyHostToDevice, stream1);

hipMemcpyAsync(d_a2, h_a2, Nbytes, hipMemcpyHostToDevice, stream2);

hipMemcpyAsync(d_a3, h_a3, Nbytes, hipMemcpyHostToDevice, stream3);

myKernel1<<<blocks, threads, 0, stream1>>>(N, d_a1);

myKernel2<<<blocks, threads, 0, stream2>>>(N, d_a2);

myKernel3<<<blocks, threads, 0, stream3>>>(N, d_a3);

hipMemcpyAsync(h_a1, d_a1, Nbytes, hipMemcpyDeviceToHost, stream1);

hipMemcpyAsync(h_a2, d_a2, Nbytes, hipMemcpyDeviceToHost, stream2);

hipMemcpyAsync(h_a3, d_a3, Nbytes, hipMemcpyDeviceToHost, stream3);

NULL Stream

Stream1

Stream2

Stream3

myKernel

1
myKernel

2
myKernel

3

HToD1

HToD2

HToD3

DToH1

DToH2

DToH3

40 |

[Public]

Synchronization
How do we coordinate execution on device streams with host execution? Need some synchronization points.

• hipDeviceSynchronize();

• Heavy-duty sync point.

• Blocks host until all work in all device streams has reported complete.

• hipStreamSynchronize(stream);

• Blocks host until all work in stream has reported complete.

Can a stream synchronize with another stream? For that we need ‘Events’.

41 |

[Public]

Events
A hipEvent_t object is created on a device via:

hipEvent_t event;

hipEventCreate(&event);

We queue an event into a stream:

hipEventRecord(event, stream);

• The event records what work is currently enqueued in the stream.

• When the stream’s execution reaches the event, the event is considered ‘complete’.

At the end of the application, event objects should be destroyed:

hipEventDestroy(event);

42 |

[Public]

Events
What can we do with queued events?

• hipEventSynchronize(event);

• Block host until event reports complete.

• Only a synchronization point with respect to the stream where event was enqueued.

• hipEventElapsedTime(&time, startEvent, endEvent);

• Returns the time in ms between when two events, startEvent and endEvent, completed

• Can be very useful for timing kernels/memcpys

• hipStreamWaitEvent(stream, event);

• Non-blocking for host.

• Instructs all future work submitted to stream to wait until event reports complete.

• Primary way we enforce an ‘ordering’ between tasks in separate streams.

43 |

[Public]

Streams
A common use-case for streams is MPI traffic:

//Queue local compute kernel

myKernel<<<blocks, threads, 0, computeStream>>>(N, d_a);

//Copy halo data to host

hipMemcpyAsync(h_commBuffer, d_commBuffer, Nbytes, hipMemcpyDeviceToHost, dataStream);

hipStreamSynchronize(dataStream); //Wait for data to arrive

//Exchange data with MPI

MPI_Data_Exchange(h_commBuffer);

//Send new data back to device

hipMemcpyAsync(d_commBuffer, h_commBuffer, Nbytes, hipMemcpyHostToDevice, dataStream);

NULL Stream

computeStream

dataStream

myKernel

HToDDToH

MPI

44 |

[Public]

Streams
With a GPU-aware MPI stack, the Host<->Device traffic can be omitted:

//Some synchronization so that data on GPU and local compute are ready

hipDeviceSynchronize();

//Exchange data with MPI (with device pointer)

MPI_Data_Exchange(d_commBuffer, &request);

//Queue local compute kernel

myKernel<<<blocks, threads, 0, computeStream>>>(N, d_a);

//Wait for MPI request to complete

MPI_Wait(&request, &status);

NULL Stream

computeStream myKernel

MPI

45 |

[Public]

Device code, shared memory, and thread
synchronization

46 |

[Public]

Function Qualifiers

hipcc makes two compilation passes through source code. One to compile host code, and one to compile

device code.

• __global__ functions:

• These are entry points to device code, called from the host

• Code in these regions will execute on SIMD units

• __device__ functions:

• Can be called from __global__ and other __device__ functions.

• Cannot be called from host code.

• Not compiled into host code – essentially ignored during host compilation pass

• __host__ __device__ functions:

• Can be called from __global__, __device__, and host functions.

• Will execute on SIMD units when called from device code!

47 |

[Public]

SIMD Execution
On SIMD units, be aware of divergence.

• Branching logic (if – else) can be costly:

• Wavefront encounters an if statement

• Evaluates conditional

• If true, continues to statement body

• If false, also continues to statement body with all instructions replaced with NoOps.

• Known as ‘thread divergence’

• Generally, wavefronts diverging from each other is okay.

• Thread divergence within a wavefront can impact performance.

48 |

[Public]

SIMD Execution

if (threadIdx.x % 2) {

a *= 2.0;

} else {

a *= 3.14;

}

//if (threadIdx.x % 2) {

NoOp;

//} else {

a *= 3.14;

//}

//if (threadIdx.x % 2) {

a *= 2.0;

//} else {

NoOp;

//}

49 |

[Public]

Memory declarations in Device Code

• Malloc/free not supported in device code.

• Variables/arrays can be declared on the stack.

• Stack variables declared in device code are allocated in registers and are private to each thread.

• Threads can all access common memory via device pointers, but otherwise do not share memory.

• Important exception: __shared__ memory

• Stack variables declared as __shared__:

• Allocated once per block in LDS memory

• Shared and accessible by all threads in the same block

• Access is faster than device global memory (but slower than register)

• Must have size known at compile time

50 |

[Public]

Shared Memory
__global__ void reverse(double *d_a) {

__shared__ double s_a[256]; //array of doubles, shared in this block

int tid = threadIdx.x;

s_a[tid] = d_a[tid]; //each thread fills one entry

//all wavefronts must reach this point before any wavefront is allowed to continue.

__syncthreads();

d_a[tid] = s_a[255-tid]; //write out array in reverse order

}

int main() {

…

reverse<<<dim3(1), dim3(256), 0, 0>>>(d_a); //Launch kernel

…

}

//something is missing here…

51 |

[Public]

Thread Synchronization

• __syncthreads():
• Blocks a wavefront from continuing execution until all wavefronts have reached __syncthreads()

• Memory transactions made by a thread before __syncthreads() are visible to all other threads in the block after
__syncthreads()

• Can have a noticeable overhead if called repeatedly

• Best practice: Avoid deadlocks by checking that all threads in a block execute the same
__syncthreads() instruction.

• Note 1: So long as at least one thread in the wavefront encounters __syncthreads(), the whole
wavefront is considered to have encountered __syncthreads().

• Note 2: Wavefronts can synchronize at different __syncthreads() instructions, and if a wavefront
exits a kernel completely, other wavefronts waiting at a __syncthreads() may be allowed to
continue.

52 |

[Public]

GPU Software, Shared Memory, Atomics

53 |

[Public]

Usage of hipcc
Usage is straightforward. Accepts all/any flags that clang accepts, e.g.,

hipcc --offload-arch=gfx90a dotprod.cpp -o dotprod

Set HIPCC_VERBOSE=7 to see a bunch of useful information

• Compile and link lines

• Various paths

$ HIPCC_VERBOSE=7 hipcc --offload-arch=gfx90a dotprod.cpp -o dotprod
HIP_PATH=/opt/rocm-5.2.0
HIP_PLATFORM=amd
HIP_COMPILER=clang
HIP_RUNTIME=rocclr
ROCM_PATH=/opt/rocm-5.2.0
...
hipcc-args: --offload-arch=gfx90a dotprod.cpp -o dotprod
hipcc-cmd: /opt/rocm-5.2.0/llvm/bin/clang++ -stdc=c++11 -hc -D__HIPCC__ -isystem /opt/rocm-
5.2.0/llvm/lib/clang/14.0.0/include
-isystem /opt/rocm-5.2.0/has/include -isystem /opt/rocm-5.2.0/include –offload-arch=gfx90a –O3 ...

• You can use also hipcc -v … to print some information

• With the command hipconfig you can see many information about environment variables declaration

54 |

[Public]

Inspecting the AMD GCN ISA
• You can inspect the AMD CDNA assembly that was emitted by the compiler by using compiler options "-g –ggdb --

save-temps"

• This outputs files into the current directory and the assembly can be found in:
• vectoradd_hip-hip-amdgcn-amd-amdhsa-gfx90a.s

• Also found are the compile-time estimates of #SGPRs, #VGPRs, ScratchSize (Spills), Occupancy

• If kernel is templated, then assembly is generated for the various instantiations of the kernel

• -g –ggdb flags help annotate assembly with source code line numbers

• The CDNA and CDNA2 ISA guides are publicly available:
• https://developer.amd.com/wp-content/resources/CDNA1_Shader_ISA_14December2020.pdf
• https://developer.amd.com/wp-content/resources/CDNA2_Shader_ISA_18November2021.pdf

$ hipcc -O3 -g –ggdb --save-temps vectoradd_hip.cpp

$ grep v_add vectoradd_hip-hip-amdgcn-amd-amdhsa-gfx908.s

v_add_u32_e32 v1, s9, v1

v_add3_u32 v0, s8, v0, v1

v_add_co_u32_e32 v2, vcc, s0, v0

v_addc_co_u32_e32 v3, vcc, v3, v1, vcc

v_add_co_u32_e32 v4, vcc, s4, v0

v_addc_co_u32_e32 v5, vcc, v5, v1, vcc

v_add_co_u32_e32 v0, vcc, s2, v0

v_addc_co_u32_e32 v1, vcc, v6, v1, vcc

v_add_f32_e32 v0, v6, v7 // 0000000011CC: 02040702

https://developer.amd.com/wp-content/resources/CDNA1_Shader_ISA_14December2020.pdf
https://developer.amd.com/wp-content/resources/CDNA2_Shader_ISA_18November2021.pdf

55 |

[Public]

Querying System
• rocminfo: Queries and displays information on the system’s hardware

• More info at: https://github.com/RadeonOpenCompute/rocminfo

• Querying ROCm version:

• If you install ROCm in the standard location (/opt/rocm) version info is at: /opt/rocm/.info/version-dev

• Can also run the command ‘dkms status’ and the ROCm version will be displayed

• rocm-smi: Queries and sets AMD GPU frequencies, power usage, and fan speeds

• sudo privileges are needed to set frequencies and power limits

• sudo privileges are not needed to query information

• et more info by running ‘rocm-smi -h’ or looking at: https://github.com/RadeonOpenCompute/ROC-smi

$ /opt/rocm/bin/rocm-smi

========================ROCm System Management Interface========================

==

GPU Temp AvgPwr SCLK MCLK Fan Perf PwrCap VRAM% GPU%

1 38.0c 18.0W 1440Mhz 945Mhz 0.0% manual 220.0W 0% 0%

==

==============================End of ROCm SMI Log ==============================

https://github.com/RadeonOpenCompute/rocminfo
https://github.com/RadeonOpenCompute/ROC-smi

56 |

[Public]

ROCm GPU Libraries

ROCm provides several GPU math libraries

• Typically, two versions:

• roc* -> AMD GPU library, usually written in HIP

• hip* -> Thin interface between roc* and Nvidia cu* library

When developing an application meant to target both CUDA

and AMD devices, use the hip* libraries (portability)

When developing an application meant to target only AMD

devices, may prefer the roc* library API (performance).

• Some roc* libraries perform better by using addition APIs not

available in the cu* equivalents

hipBLAS

rocBLAS cuBLAS

57 |

[Public]

AMD Math Library Equivalents: “Decoder Ring”

Basic Linear Algebra

Subroutines
CUBLAS ROCBLAS

Fast Fourier TransformsCUFFT ROCFFT

C++ Parallel AlgorithmsTHRUST ROCTHRUST

Optimized Parallel

Primitives
CUB ROCPRIM

CURAND ROCRAND
Random Number

Generation

58 |

[Public]

AMD Math Library Equivalents: “Decoder Ring”

Sparse BLAS, SpMV, etc. CUSPARSE ROCSPARSE

Linear SolversCUSOLVER ROCSOLVER

AMGX ROCALUTION

GITHUB.COM/ROCM-DEVELOPER-TOOLS/HIP → HIP_PORTING_GUIDE.MD FOR A COMPLETE LIST

Solvers and preconditioners

for sparse linear systems

59 |

[Public]

AMD GPU Libraries: BLAS
• rocBLAS – `sudo apt install rocblas`

• Source code: https://github.com/ROCmSoftwarePlatform/rocBLAS

• Documentation: https://rocblas.readthedocs.io/en/latest/

• Basic linear algebra functionality

• axpy, gemv, trsm, etc

• Use hipBLAS if you need portability between AMD and NVIDIA devices

• hipBLAS - `sudo apt install hipblas`

• Documentation: https://github.com/ROCmSoftwarePlatform/hipBLAS/wiki/Exported-functions

• Use this if you need portability between AMD and NVIDIA

• It is just a thin wrapper:

• It can dispatch calls to rocBLAS for AMD devices

• It can dispatch calls to cuBLAS for NVIDIA devices

hipBLAS

rocBLAS cuBLAS

https://github.com/ROCmSoftwarePlatform/rocBLAS
https://rocblas.readthedocs.io/en/latest/
https://github.com/ROCmSoftwarePlatform/hipBLAS/wiki/Exported-functions

60 |

[Public]

AMD GPU Libraries: rocBLAS example

• rocBLAS

• Documentation:

https://rocblas.readthedocs.io/en/latest/

• Level 1, 2, and 3 functionality

• axpy, gemv, trsm, etc

• Note: rocBLAS syntax matches BLAS closer than

hipBLAS or cuBLAS

• Use hipBLAS only if you need portability between AMD

and NVIDIA devices

• Link with: -lrocblas

#include <rocblas.h>

int main(int argc, char ** argv) {
rocblas_int N = 500000;

// Allocate device memory
double * dx, * dy;
hipMalloc(&dx, sizeof(double) * N);
hipMalloc(&dy, sizeof(double) * N);

// Allocate host memory (and fill up the arrays) here
std::vector<double> hx(N), hy(N);

// Copy host arrays to device
hipMemcpy(dx, hx.data(), sizeof(double) * N, hipMemcpyHostToDevice);
hipMemcpy(dy, hy.data(), sizeof(double) * N, hipMemcpyHostToDevice);

const double alpha = 1.0;
rocblas_handle handle;
rocblas_create_handle(&handle);
rocblas_status status;
status = rocblas_daxpy(handle, N, &alpha, dx, 1, dy, 1);
rocblas_destroy_handle(handle);

// Copy result back to host
hipMemcpy(hy.data(), dy, sizeof(double) * N, hipMemcpyDeviceToHost);
hipFree(dx);
hipFree(dy);
return 0;

}

https://rocblas.readthedocs.io/en/latest/

61 |

[Public]

Some Links to Key Libraries
• BLAS

• rocBLAS (https://github.com/ROCmSoftwarePlatform/rocBLAS)

• hipBLAS (https://github.com/ROCmSoftwarePlatform/hipBLAS)

• FFTs

• rocFFT (https://github.com/ROCmSoftwarePlatform/rocFFT)

• hipFFT (https://github.com/ROCmSoftwarePlatform/hipFFT)

• Random number generation

• rocRAND (https://github.com/ROCmSoftwarePlatform/rocRAND)

• Sparse linear algebra

• rocSPARSE (https://github.com/ROCmSoftwarePlatform/rocSPARSE)

• hipSPARSE (https://github.com/ROCmSoftwarePlatform/hipSPARSE)

• Iterative solvers

• rocALUTION (https://github.com/ROCmSoftwarePlatform/rocALUTION)

• Parallel primitives

• rocPRIM (https://github.com/ROCmSoftwarePlatform/rocPRIM)

• hipCUB (https://github.com/ROCmSoftwarePlatform/hipCUB)

https://github.com/ROCmSoftwarePlatform/rocBLAS
https://github.com/ROCmSoftwarePlatform/hipBLAS
https://github.com/ROCmSoftwarePlatform/rocFFT
https://github.com/ROCmSoftwarePlatform/hipFFT
https://github.com/ROCmSoftwarePlatform/rocRAND
https://github.com/ROCmSoftwarePlatform/rocSPARSE
https://github.com/ROCmSoftwarePlatform/hipSPARSE
https://github.com/ROCmSoftwarePlatform/rocALUTION
https://github.com/ROCmSoftwarePlatform/rocPRIM
https://github.com/ROCmSoftwarePlatform/hipCUB

62 |

[Public]

AMD Machine Learning Library Support

Machine Learning Frameworks:
• Tensorflow: https://github.com/ROCmSoftwarePlatform/tensorflow-upstream
• Pytorch: https://github.com/ROCmSoftwarePlatform/pytorch
• Caffe: https://github.com/ROCmSoftwarePlatform/hipCaffe

Machine Learning Libraries:
• MIOpen (similar to cuDNN): https://github.com/ROCmSoftwarePlatform/MIOpen
• Tensile (GEMM Autotuner): https://github.com/ROCmSoftwarePlatform/Tensile
• RCCL (ROCm analogue of NCCL):

https://github.com/ROCmSoftwarePlatform/rccl
• Horovod (Distributed ML): https://github.com/ROCmSoftwarePlatform/horovod

Benchmarks:
• DeepBench: https://github.com/ROCmSoftwarePlatform/DeepBench
• MLPerf: https://mlperf.org

https://github.com/ROCmSoftwarePlatform/tensorflow-upstream
https://github.com/ROCmSoftwarePlatform/pytorch
https://github.com/ROCmSoftwarePlatform/hipCaffe
https://github.com/ROCmSoftwarePlatform/MIOpen
https://github.com/ROCmSoftwarePlatform/Tensile
https://github.com/ROCmSoftwarePlatform/rccl
https://github.com/ROCmSoftwarePlatform/horovod
https://github.com/ROCmSoftwarePlatform/DeepBench
https://mlperf.org/

63 |

[Public]

Dynamic Shared Memory
• Can actually use __shared__ arrays when sizes aren’t known at compile time

• Called dynamic shared memory

• Declare one array using HIP_DYNAMIC_SHARED macro, use for all dynamic LDS space

• Use during the kernel call, we haven’t discussed yet

64 |

[Public]

Dynamic Shared Memory
__global__ void reverse(double *d_a, int N) {

HIP_DYNAMIC_SHARED(double, s_a); //dynamic array of doubles, shared in this block

int tid = threadIdx.x;

s_a[tid] = d_a[tid]; //each thread fills one entry

//all wavefronts should reach this point before any wavefront is allowed to continue.

__syncthreads();

d_a[tid] = s_a[N-1-tid]; //write out array in reverse order

}

int main() {

…

size_t NsharedBytes = N*sizeof(double);

reverse<<<dim3(1), dim3(N), NsharedBytes, 0>>>(d_a, N); //Launch kernel

…

}

65 |

[Public]

Atomic Operations
Atomic functions:

• Perform a read+write of a single 32 or 64-bit word in device global or LDS memory

• Can be called by multiple threads in device code

• Performed in a conflict-free manner

• AMD GPUs support atomic operations on 32-bit integers in hardware

• Float /double atomics implemented as atomicCAS (Compare And Swap) loops, may have poor performance

• Can check at compile time if 32 or 64-bit atomic instructions are supported on target device

• #ifdef __HIP_ARCH_HAS_GLOBAL_INT32_ATOMICS__

• #ifdef __HIP_ARCH_HAS_GLOBAL_INT64_ATOMICS__

66 |

[Public]

Atomic Operations

Operation Type, T Notes

T atomicAdd(T* address, T val) int, long long int, float, double Adds val to *address

T atomicExch(T* address, T val) int, long long int, float Replace *address with val and

return old value

T atomicMin(T* address, T val) int, long long int Replaces *address if val is smaller

T atomicMax(T* address, T val) int, long long int Replaces *address if val is larger

T atomicAnd(T* address, T val) int, long long int Bitwise AND between *address and

val

T atomicOr(T* address, T val) int, long long int Bitwise OR between *address and

val

T atomicXor(T* address, T val) int, long long int Bitwise XOR between *address and

val

Supported atomic operations in HIP:

67 |

[Public]

AMD GPU programming resources

• ROCm platform: https://github.com/RadeonOpenCompute/ROCm/

• With instructions for installing from Debian/CentOS/RHEL binary repositories

• Has links to source repositories for all components, including HIP

• HIP porting guide: https://github.com/ROCm-Developer-

Tools/HIP/blob/master/docs/markdown/hip_porting_guide.md

• ROCm/HIP libraries: https://github.com/ROCmSoftwarePlatform

• ROC-profiler: https://github.com/ROCm-Developer-Tools/rocprofiler

• Collects application traces and performance counters

• Trace timeline can be visualized with https://ui.perfetto.dev/

• AMD GPU ISA docs and more: https://developer.amd.com/resources/developer-guides-manuals/

https://github.com/RadeonOpenCompute/ROCm/
https://github.com/ROCm-Developer-Tools/HIP/blob/master/docs/markdown/hip_porting_guide.md
https://github.com/ROCm-Developer-Tools/HIP/blob/master/docs/markdown/hip_porting_guide.md
https://github.com/ROCmSoftwarePlatform
https://github.com/ROCm-Developer-Tools/rocprofiler
https://ui.perfetto.dev/
https://developer.amd.com/resources/developer-guides-manuals/

68 |

[Public]

CUDA features not supported by HIP
• CUDA 5.0 :

• Dynamic Parallelism (not supported)

• cuIpc functions (under development).

• CUDA 5.5 :

• CUPTI (not directly supported, AMD GPUPerfAPI an alternative in some cases)

• CUDA 6.0

• Managed memory (under development)

•

CUDA 8.0

• Page Migration including cudaMemAdvise, cudaMemPrefetch, other cudaMem* APIs (not supported)

• https://github.com/ROCm-Developer-Tools/HIP/blob/develop/docs/markdown/hip_faq.md#what-specific-

version-of-cuda-does-hip-support

https://github.com/ROCm-Developer-Tools/HIP/blob/develop/docs/markdown/hip_faq.md#what-specific-version-of-cuda-does-hip-support
https://github.com/ROCm-Developer-Tools/HIP/blob/develop/docs/markdown/hip_faq.md#what-specific-version-of-cuda-does-hip-support

69 |

[Public]

• HIP is an extensive API that covers a lot of GPU programming requirements

• It is under continuous development, and it is open-source

• It can be executed on AMD and NVIDIA GPUs

• We have profiling tools that we can identify bottlenecks

• It is quite easy to use especially with previous GPU programming knowledge

Summary

70 |

[Public]

Disclaimer

The information presented in this document is for informational purposes only and may contain technical inaccuracies, omissions,

and typographical errors. The information contained herein is subject to change and may be rendered inaccurate for many reasons, including

but not limited to product and roadmap changes, component and motherboard version changes, new model and/or product releases,

product differences between differing manufacturers, software changes, BIOS flashes, firmware upgrades, or the like. Any computer system has

risks of security vulnerabilities that cannot be completely prevented or mitigated. AMD assumes no obligation to update or otherwise correct

or revise this information. However, AMD reserves the right to revise this information and to make changes from time to time to the content hereof

without obligation of AMD to notify any person of such revisions or changes.

THIS INFORMATION IS PROVIDED ‘AS IS.” AMD MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE CONTENTS

HEREOF AND ASSUMES NO RESPONSIBILITY FOR ANY INACCURACIES, ERRORS, OR OMISSIONS THAT MAY APPEAR IN THIS

INFORMATION. AMD SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS

FOR ANY PARTICULAR PURPOSE. IN NO EVENT WILL AMD BE LIABLE TO ANY PERSON FOR ANY RELIANCE, DIRECT, INDIRECT,

SPECIAL, OR OTHER CONSEQUENTIAL DAMAGES ARISING FROM THE USE OF ANY INFORMATION CONTAINED HEREIN, EVEN IF AMD

IS EXPRESSLY ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Third-party content is licensed to you directly by the third party that owns the content and is not licensed to you by AMD. ALL LINKED THIRD-

PARTY CONTENT IS PROVIDED “AS IS” WITHOUT A WARRANTY OF ANY KIND. USE OF SUCH THIRD-PARTY CONTENT IS DONE AT

YOUR SOLE DISCRETION AND UNDER NO CIRCUMSTANCES WILL AMD BE LIABLE TO YOU FOR ANY THIRD-PARTY CONTENT. YOU

ASSUME ALL RISK AND ARE SOLELY RESPONSIBLE FOR ANY DAMAGES THAT MAY ARISE FROM YOUR USE OF THIRD-PARTY

CONTENT.

© 2022 Advanced Micro Devices, Inc. All rights reserved. AMD, the AMD Arrow logo, ROCm, Radeon, Radeon Instinct and combinations thereof

are trademarks of Advanced Micro Devices, Inc. in the United States and/or other jurisdictions. Other names are for informational purposes only

and may be trademarks of their respective owners.

71 |

[Public]

Questions?

	Default Section
	Slide 1: Introduction to HIP Programming
	Slide 2: Agenda

	Programming Concepts: Intro
	Slide 3
	Slide 4
	Slide 5: ROCm - Radeon Open Compute Platform
	Slide 6: AMD GPU Programming Concepts
	Slide 7: What is HIP?
	Slide 8: A Tale of Host and Device
	Slide 9: HIP API
	Slide 10: Kernels, memory, and structure of host code

	Programming Concepts: Kernels
	Slide 11: Device Kernels: The Grid
	Slide 12: Device Kernels: The Grid
	Slide 13: The Grid: blocks of threads in 1D
	Slide 14: The Grid: blocks of threads in 2D
	Slide 15: Kernels
	Slide 16: Kernels
	Slide 17: SIMD operations

	Programming Concepts: Memory
	Slide 18: Device Memory
	Slide 19: Device Memory
	Slide 20: Device Memory
	Slide 21: Error Checking
	Slide 22: Putting it all together
	Slide 23: Vector Addition
	Slide 24: Vector Addition (example code)
	Slide 25: Vector Addition (example code)
	Slide 26: Vector addition - Profiling
	Slide 27: Perfetto - visualization
	Slide 28: Device management and asynchronous computing
	Slide 29: Device Management
	Slide 30: Device Properties

	Programming Concepts: Asynchronous Execution
	Slide 31: Blocking vs Nonblocking API functions
	Slide 32: Putting it all together
	Slide 33: Streams
	Slide 34: Streams
	Slide 35: Streams
	Slide 36: Streams
	Slide 37: Pinned Memory
	Slide 38: Streams
	Slide 39: Streams
	Slide 40: Synchronization
	Slide 41: Events
	Slide 42: Events
	Slide 43: Streams
	Slide 44: Streams
	Slide 45: Device code, shared memory, and thread synchronization
	Slide 46: Function Qualifiers
	Slide 47: SIMD Execution
	Slide 48: SIMD Execution
	Slide 49: Memory declarations in Device Code
	Slide 50: Shared Memory
	Slide 51: Thread Synchronization

	GPU Software
	Slide 52: GPU Software, Shared Memory, Atomics
	Slide 53: Usage of hipcc
	Slide 54: Inspecting the AMD GCN ISA
	Slide 55: Querying System
	Slide 56: ROCm GPU Libraries
	Slide 57: AMD Math Library Equivalents: “Decoder Ring”
	Slide 58: AMD Math Library Equivalents: “Decoder Ring”
	Slide 59: AMD GPU Libraries: BLAS
	Slide 60: AMD GPU Libraries: rocBLAS example
	Slide 61: Some Links to Key Libraries
	Slide 62: AMD Machine Learning Library Support

	Epilogue
	Slide 63: Dynamic Shared Memory
	Slide 64: Dynamic Shared Memory
	Slide 65: Atomic Operations
	Slide 66: Atomic Operations
	Slide 67: AMD GPU programming resources
	Slide 68: CUDA features not supported by HIP
	Slide 69: Summary
	Slide 70: Disclaimer
	Slide 71: Questions?
	Slide 72

