
LUMI Software Stacks
Kurt Lust

LUMI User Support Team (LUST)

University of Antwerp

What this talk is about…

• Software stacks on LUMI

• Some remarks about Lmod

• Creating your customised environment with EasyBuild

• Containers

Design considerations

• Very leading edge and inhomogeneous machine (new interconnect, new GPU architecture
with an immature software ecosystem, some NVIDIA GPUs for visualisation, a mix of zen2
and zen3)

• Need to remain agile

• Users that come to LUMI from 11 different channels (not counting subchannels), with
different expectations

• Small central support team considering the expected number of projects and users and the
tasks the support team has

• But contributions from local support teams

• Cray Programming Environment is a key part of our system

• Need for customised setups

• Everybody wants a central stack as long as their software is in there but not much more

• Look at the success of conda, Python virtual environments, containers, …

The LUMI solution

• Software organised in extensible software stacks based on a particular release of
the PE

• Many base libraries and some packages already pre-installed

• Easy way to install additional packages in project space

• Modules managed by Lmod

• More powerful than the (old) Modules Environment which is also supported by HPE Cray

• Powerful features to search for modules

• EasyBuild is our primary tool for software installations

• But uses HPE Cray specific toolchains

• Offer a library of installation recipes

• User installations integrate seamlessly with the central stack

• We do have a Spack setup but don’t do development in Spack ourselves

Policies

• Bring-your-own-license except for a selection of tools that are useful to a larger

community

• One downside of the distributed user management is that we do not even have the

information needed to determine if a particular userid can use a particular software license

• Even for software on the system, users remain responsible for checking the license!

• LUST tries to help with installations of recent software, but porting or bug fixing is

not our work

• Not all Linux or even supercomputer software will work on LUMI

• We’re too small a team to do all software installations, so don’t count on us to do all the

work

• Conda, (large) Python installations need to go in containers

• We offer a container-based wrapper (lumi-container-wrapper) to do that

https://docs.lumi-supercomputer.eu/software/installing/container_wrapper/

Organisation: Software stacks

• CrayEnv: Cray environment with some additional tools pushed in through
EasyBuild

• LUMI stacks, each one corresponding to a particular release of the PE

• Work with the Cray PE modules, but accessed through a replacement for the
PrgEnv-* modules

• Tuned versions for the 3 4 types of hardware: zen2 (login, large memory nodes),
zen3 (LUMI-C compute nodes), zen2 + NVIDIA GPU (visualisation partition), zen3 +
MI250X (LUMI-G GPU partition)

• spack: Install software with Spack using compilers from the PE

• Offered as-is for users who know Spack, but we do not do development in Spack

• Far future: Stack based on common EB toolchains as-is for LUMI-C

Accessing the Cray PE on LUMI
3 different ways

• Very bare environment available directly after login

• What you can expect on a typical Cray system

• Few tools as only the base OS image is available

• User fully responsible for managing the target modules

• CrayEnv

• “Enriched” Cray PE environment

• Takes care of managing the target modules: (re)loading CrayEnv will reload an
optimal set for the node you’re on

• Some additional tools, e.g., newer build tools (offered here and not in the bare
environment as we need to avoid conflicts with other software stacks)

• Otherwise used in the way discussed in this course

Accessing the Cray PE on LUMI
3 different ways

• LUMI software stack

• Each stack based on a particular release of the HPE Cray PE

• Other modules are accessible but hidden from the default view

• Better not to use the PrgEnv modules but the EasyBuild LUMI toolchains

• Environment in which we install most software (mostly with EasyBuild)

HPE Cray PE LUMI toolchain

PrgEnv-cray cpeCray Cray Compiling Environment

PrgEnv-gnu cpeGNU GNU C/C++ and Fortran

PrgEnv-aocc cpeAOCC AMD CPU compilers

PrgEnv-amd cpeAMD AMD ROCm GPU compilers (LUMI-G only)

Accessing the Cray PE on LUMI
The LUMI software stack

• The LUMI software stack uses two levels of modules

• LUMI/22.08, LUMI/22.12, LUMI/23.03: Versions of the LUMI stack

• partition/L, partition/C, partition/G (and future partition/D): To select software
optimised for the respective LUMI partition

• partition/L is for both the login nodes and the large memory nodes (4TB)

• Hidden partition/common for software that is available everywhere, but be careful
using it for your own installs

• When (re)loaded, the LUMI module will load the best matching partition module.

• So be careful in job scripts: When your job starts, the environment will be that of
the login nodes, but if you trigger a reload of the LUMI module it will be that of the
compute node!

Exploring modules with Lmod

• Contrary to some other module systems, not all modules are immediately available

for loading

• Installed modules: All modules on the system that can be loaded one way or another

• Available modules: Can be loaded without first loading another module

• Examples in the HPE Cray PE:

• cray-mpich requires a compiler module and network target module first

• Many of the performance monitoring tools require perftools-base first

• cray-fftw only becomes available when a processor target module is loaded

• Tools

• module avail searches in the available modules

• module spider and module keyword search in the installed modules

module spider

• module spider : Long list of all installed software with short description

• Will also look into modules for “extensions” and show those also, marked with an “E”

• module spider gnuplot : Shows all versions of gnuplot on the system
module spider CMake

• module spider gnuplot/5.4.6-cpeGNU-22.12 : Shows help
information for the specific module, including what should be done to
make the module available

• But this does not completely work with the Cray PE modules

• module spider CMake/3.25.2 : Will tell you which module contains
CMake and how to load it

module spider (command) (1)

module spider (command) (2)

module spider (command) (3)

module spider gnuplot

module spider gnuplot (2)

module spider CMake

module spider gnuplot/5.4.6-cpeGNU-22.12

module spider gnuplot/5.4.6-cpeGNU-22.12 (2)

module spider CMake/3.25.2

module spider CMake/3.25.2

module keyword

• Currently not yet very useful due to a bug in Cray Lmod

• It searches in the module short description and help for the keyword.

• E.g., try
module keyword https

• We do try to put enough information in the modules to make this a
suitable additional way to discover software that is already installed on
the system

module keyword https

module keyword https (2)

module keyword https (3)

module keyword https (4)

module keyword https (5)

Sticky modules and module purge

• On some systems, you will be taught to avoid module purge (which

unloads all modules)

• Sticky modules are modules that are not unloaded by module purge, but

reloaded.

• They can be force-unloaded with module --force purge and module --

force unload

• Used on LUMI for the software stacks and modules that set the display style

of the modules

• But keep in mind that the modules are reloaded, so the target modules and

partition module will be switched (back) to those for the current node.

module av

module av (2)

module av (3)

module av (4)

module av (5)

module av (6)

Changing how the module list is displayed

• You may have noticed that you don’t see directories in the module view but
descriptive texts

• This can be changed by loading a module

• ModuleLabel/label : The default view

• ModuleLabel/PEhierarchy : Descriptive texts and unfolded PE hierarchy

• ModuleLabel/system : Module directories

• Turn colour on or off using ModuleColour/on or ModuleColour/off

• Show some hidden modules with ModulePowerUser/LUMI

• This will also show undocumented/unsupported modules!

• More customisation possible via LMOD environment variables

Installing software on HPC systems

• Software on an HPC system is rarely installed from RPM

• Generic RPMs not optimised for the specific CPU

• Generic RPMs may not work with the specific LUMI environment (SlingShot
interconnect, kernel modules, resource manager)

• Multi-user system so usually no “one version fits all”

• Need a small system image as nodes are diskless

• Spack and EasyBuild are the two most popular HPC-specific software build
and installation frameworks

• Usually install from sources to adapt the software to the underlying hardware and OS

• Installation instructions in a way that can be communicated and executed easily

• Make software available via modules

• Dependency handling compatible with modules

Extending the LUMI stack with EasyBuild

• Fully integrated in the LUMI software stack

• Load the LUMI module and modules should appear in your module view

• EasyBuild-user module to install packages in your user space

• Will use existing modules for dependencies if those are already on the system or

in your personal/project stack

• EasyBuild built-in easyconfigs do not work on LUMI, not even on LUMI-C

• GNU-based toolchains: Would give problems with MPI

• Intel-based toolchains: Intel compilers and AMD CPUs are a problematic cocktail

• Library of recipes that we made in the LUMI-EasyBuild-contrib GitHub repository

• EasyBuild-user will find a copy on the system or in your install

• List of recipes in lumi-supercomputer.github.io/LUMI-EasyBuild-docs

https://github.com/Lumi-supercomputer/LUMI-EasyBuild-contrib/tree/main/easybuild/easyconfigs
https://lumi-supercomputer.github.io/LUMI-EasyBuild-docs/

EasyBuild recipes - easyconfigs

• Build recipe for an individual package = module
• Relies on either a generic or a specific installation process provided by an

easyblock

• Steps
• Downloading sources and patches

• Typical configure – build – (test) – install process

• Extensions mechanism for perl/python/R packages

• Some simple checks

• Creation of the module

• All have several parameters in the easyconfig file

The toolchain concept

• A set of compiler, MPI implementation and basic math libraries
• Simplified concept on LUMI as there is no hierarchy as on some other

EasyBuild systems

• These are the cpeCray, cpeGNU, cpeAOCC and cpeAMD modules
mentioned before!

HPE Cray PE LUMI toolchain

PrgEnv-cray cpeCray Cray Compiling Environment

PrgEnv-gnu cpeGNU GNU C/C++ and Fortran

PrgEnv-aocc cpeAOCC AMD CPU compilers

PrgEnv-amd cpeAMD AMD ROCm GPU compilers (LUMI-G only)

The toolchain concept (2)

• Special toolchain: SYSTEM to use the system compiler
• Does not fully function in the same way as the other toolchains when it

comes to dependency handling

• Used on LUMI for CrayEnv and some packages with few dependencies

• It is not possible to load packages from different cpe toolchains at the
same time
• EasyBuild restriction, because mixing libraries compiled with different

compilers does not always work

• Packages compiled with one cpe toolchain can be loaded together with
packages compiled with the SYSTEM toolchain
• But we do avoid mixing them when linking

easyconfig names and module names

GROMACS-2021.4-cpeCray-22.08-PLUMED-2.8.0-CPU.eb

Name of the package

Version of the package

Toolchain name and version (missing for SYSTEM)

Additional information

Module: GROMACS/2021.4-cpeCray-22.08-PLUMED-2.8.0-CPU

Installing
Step 1: Where to install

• Default location is $HOME/EasyBuild

• But better is to install in your project directory for the whole project

• export EBU_USER_PREFIX=/project/project_465000000/EasyBuild

• Set this before loading the LUMI module

• All users of the software tree have to set this environment variable to use the

software tree

Installing
Step 2: Configure the environment

• Load the modules for the LUMI software stack and partition that you

want to use. E.g.,

module load LUMI/22.08 partition/C

• Load the EasyBuild-user module to make EasyBuild available and to

configure it for installing software in the chosen stack and partition:

module load EasyBuild-user

• In many cases, cross-compilation is possible by loading a different

partition module than the one auto-loaded by LUMI

• Though cross-compilation is currently problematic for GPU code

module load LUMI/22.08 partition/C
module load EasyBuild-user

Installing
Step 3: Install the software

• Let’s, e.g., install GROMACS

• Search if GROMACS build recipes are available

eb --search GROMACS

eb –S GROMACS

But we now also have the LUMI Software Library that lists all available software

through EasyBuild.

• Let’s take GROMACS-2021.4-cpeCray-22.08-PLUMED-2.8.0-CPU.eb:

eb GROMACS-2021.4-cpeCray-22.08-PLUMED-2.8.0-CPU.eb -D

eb GROMACS-2021.4-cpeCray-22.08-PLUMED-2.8.0-CPU.eb -r

• Now the module should be available

module avail GROMACS

https://lumi-supercomputer.github.io/LUMI-EasyBuild-docs/

eb --search GROMACS | less

eb -S GROMACS | less

eb GROMACS-2021.4-cpeCray-22.08-PLUMED-2.8.0-CPU.eb –D

eb GROMACS-2021.4-cpeCray-22.08-PLUMED-2.8.0-CPU.eb –D (2)

eb GROMACS-2021.4-cpeCray-22.08-PLUMED-2.8.0-CPU.eb –r

eb GROMACS-2021.4-cpeCray-22.08-PLUMED-2.8.0-CPU.eb –r (2)

eb GROMACS-2021.4-cpeCray-22.08-PLUMED-2.8.0-CPU.eb –r (3)

eb GROMACS-2021.4-cpeCray-22.08-PLUMED-2.8.0-CPU.eb –r (4)

eb GROMACS-2021.4-cpeCray-22.08-PLUMED-2.8.0-CPU.eb –r (5)

eb GROMACS-2021.4-cpeCray-22.08-PLUMED-2.8.0-CPU.eb –r (6)

Installing
Step 3: Install the software - Note

• Note: Sometimes the module does not show up immediately. This is

because Lmod keeps a cache and fails to detect that the cache is

outdated.

• Remove $HOME/.lmod.d/.cache

rm -rf $HOME/.lmod.d/.cache

• We’ve seen rare cases where internal Lmod data structures where corrupt

and logging out and in again was needed

• Installing this way is 100% equivalent to an installation in the central

software tree. The application is compiled in exactly the same way as we

would do and served from the same file systems.

More advanced work

• You can also install some EasyBuild recipes that you got from support
and are in the current directory (preferably one without subdirectories):
eb my_recipe.eb -r .

• Note the dot after the –r to tell EasyBuild to also look for dependencies in
the current directory (and its subdirectories)

• In some cases you will have to download the sources by hand, e.g., for
VASP, which is then at the same time a way for us to ensure that you
have a license for VASP. E.g.,

• eb --search VASP

• Then from the directory with the VASP sources:
eb VASP-6.3.2-cpeGNU-22.08.eb -r .

More advanced work (2):
Repositories

• It is possible to have your own clone of the LUMI-EasyBuild-contrib repo in your

$EBU_USER_PREFIX subdirectory if you want the latest and greatest before it is

in the centrally maintained repository

• cd $EBU_USER_PREFIX

git clone https://github.com/Lumi-supercomputer/LUMI-EasyBuild-

contrib.git

• It is also possible to maintain your own repo

• The directory should be $EBU_USER_PREFIX/UserRepo (but of course on GitHub the

repository can have a different name)

• Structure should be compatible with EasyBuild: easyconfig files go in

$EBU_USER_PREFIX/easybuild/easyconfigs

More advanced work (3): Reproducibility

• EasyBuild will keep a copy of the sources in $EBU_USER_PREFIX/sources

• EasyBuild also keeps copies of all installed easyconfig files in two locations:

• In $EBU_USER_PREFIX/ebrepo_files

• And note that EasyBuild will use this version if you try to reinstall and did

not delete this version first!

• This ensures that the information that EasyBuild has about the installed

application is compatible with what’s in the module files

• With the installed software (in $EBU_USER_PREFIX/SW) in a subdirectory

called easybuild

This is meant to have all information about how EasyBuild installed the

application and to help in reproducing

EasyBuild tips&tricks

• Updating version: Often some trivial changes in the EasyConfig (.eb) file
• Checksums may be annoying: Use --ignore-checksums with the eb

command

• Updating to a new toolchain:
• Be careful, it is more than changing one number

• Versions of preinstalled dependencies should be changed and EasyConfig files of
other dependencies also checked

• LUMI Software Library at lumi-supercomputer.github.io/LUMI-EasyBuild-
docs
• For most packages, pointers to the license

• User documentation gives info about the use of the package, or restrictions

• Technical documentation aimed at users who want more information about how
we build the package

https://lumi-supercomputer.github.io/LUMI-EasyBuild-docs/
https://lumi-supercomputer.github.io/LUMI-EasyBuild-docs/

EasyBuild training for advanced users and
developers

• EasyBuild web site: easybuild.io

• Generic EasyBuild training materials on easybuilders.github.io/easybuild-
tutorial.

• Training for CSC and local support organisations: Most up-to-date
version of the training materials on
lumi-supercomputer.github.io/easybuild-tutorial.

https://easybuild.io/
https://easybuilders.github.io/easybuild-tutorial/
https://lumi-supercomputer.github.io/easybuild-tutorial/

Containers

This is about containers on LUMI-C and LUMI-G!

• What can they do and what can’t they do?

• Getting containers onto LUMI

• Running containers on LUMI

• Enhancements to the LUMI environment to help you

• But remember: LUMI is an HPC infrastructure, not a container cloud!

What do containers not provide?

• Full reproducibility is a myth

• Full portability: Not every container prepared on your Ubuntu or CentOS
cluster or workstation will work on LUMI.
• Containers that rely on certain hardware, kernel modules and/or kernel versions

may fail.

• Problem cases: High-performance networking (MPI) and GPU (driver version)

• Performance portability:
• A container built from sources on one CPU will not be optimal for another one.

• Containers built from downloaded binaries may not exploit all architectural
features of the CPU.

• No support for the LUMI interconnect may lead to fall-down to slower protocol
that works

But what can they then do on LUMI?

• Storage manageability: Lower pressure on the filesystems (for software
frameworks that access hundreds of thousands of small files) for better
I/O performance and management of your disk file quota.

• Productivity: When not hit by the portability constraints, still useful to
reproduce sophisticated user environments, e.g., Python.

• Software installation: Can be a way to install software with an
installation process that is not aware of multi-user HPC systems and is
too complicated to recompile.

• You’re the system administrator of your container, not LUST!

Managing containers

• Supported runtimes

• Docker is NOT directly available from user environment

• Singularity is natively available (as a system command) on the login and
compute nodes

• Pulling containers

• DockerHub and other registries (example: Julia container)
singularity pull docker://julia

• Singularity uses flat (single) sif file for storing container and pull command
makes the conversion

• Be carefull: cache in .singularity dir or $XDG_RUNTIME_DIR can easily
exhaust your storage quota for larger images

singularity pull docker://julia

singularity pull docker://julia

singularity pull docker://julia

Managing containers (2)

• Building containers

• Support for building containers is very limited on LUMI: no elevated privileges but

also no fakeroot.

• You should either pull or copy containers from outside

• Singularity can build from existing (base) container

• We plan to provide a set of base LUMI images

Interacting with containers

• Accessing a container with the shell command
singularity shell container.sif

• Executing a command in the container with exec
singularity exec container.sif uname -a

• "Running" a container
singularity run container.sif

• Inspecting run definition script
singularity inspect --runscript container.sif

• Accessing host filesystem with bind mounts
• Singularity will mount $HOME, /tmp, /proc, /sys, /dev into container by default

• Use --bind src1:dest1,src2:dest2or the SINGULARITY_BINDPATH
environment variable to mount other host directories (like /project or /appl)

singularity shell julia_latest.sif

singularity exec julia_latest.sif uname -a

singularity run julia_latest.sif
singularity inspect –runscript julia_latest.sif

Running containers on LUMI

• Use SLURM to run containers on compute nodes

• Use srun to execute MPI containers
srun singularity exec --bind ${BIND_ARGS} \
${CONTAINER_PATH} my_mpi_binary ${APP_PARAMS}

• Be aware your container must be compatible with Cray MPI (MPICH
ABI compatible)

• Configure suggestion: see next slide

• Open MPI based containers need workarounds and are not well
supported on LUMI at the moment (and even more problematic for the
GPU)

Environment enhancements

• LUMI specific tools for container interaction provided as modules

• singularity-bindings/system (available via easyconfig)

• Sets the environment to use Cray MPICH provided outside the container

• Requires a LUMI software stack

• Use EasyBuild-user module and eb --search singularity-bindings to find the
easyconfig or copy from our LUMI Software Library web site

• Provides basic mount points for using host MPI in the container setting
SINGULARITY_BIND and SINGULARITY_LD_LIBRARY_PATH

https://lumi-supercomputer.github.io/LUMI-EasyBuild-docs/s/singularity-bindings/

Environment enhancements (2)

• lumi-vnc (LUMI and CrayEnv software stacks)
• Provides basic VNC virtual desktop for interacting with graphical interfaces

via a web browser or VNC client

• lumi-container-wrapper (LUMI and CrayEnv software stacks)
• Provides wrappers to encapsulate your custom environment in the container

• Supports conda and pip environments

• Helps with quota on the number of files in your project and I/O performance

• Python provided by the cray-python module (so there is an optimised
NumPy etc.)

lumi-container-wrapper (1)

lumi-container-wrapper (2)

lumi-container-wrapper (3)

lumi-container-wrapper (4)

lumi-container-wrapper (5)

lumi-container-wrapper (6)

Container limitations on LUMI

• Containers use the host’s operating system kernel which may be
different from your system.

• A generic container may not offer sufficiently good support for the
SlingShot 11 interconnect on LUMI and fall back to TCP sockets resulting
in poor performance, or not work at all.
• Solution by injecting Cray MPICH, but only for containers with ABI

compatibility with MPICH.

• Only very limited support to build containers on LUMI due to security
concerns.

