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https://www.amd.com/system/files/documents/amd-cdna2-white-paper.pdf
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• Current support for using MFMA instructions:

• AMD libraries: rocBLAS

• Intrinsics

• Inline assembly

• Not currently supported:

• Libraries of device functions, utilizing the matrix 

operations, that can be called from kernels

• Abstraction frameworks (Kokkos, Raja, OCCA)

• These would have to use one of the other 

mechanisms internally
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https://www.amd.com/en/technologies/infinity-hub/mini-hacc
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From AMD MI100 to AMD MI250X

MI100

• One graphic compute die (GCD) 

• 32GB of HBM2 memory 

• 11.5 TFLOPS peak performance per GCD

• 1.2 TB/s peak memory bandwidth per GCD

• 120 CU per GPU

• The interconnection is attached on the CPU

AMD CDNA™ 2 white paper: 

https://www.amd.com/system/files/documents/amd-

cdna2-white-paper.pdf

MI250X

• Two graphic compute dies (GCDs) 

• 64GB of HBM2e memory per GCD (total 

128GB)

• 26.5 TFLOPS peak performance per GCD

• 1.6 TB/s peak memory bandwidth per GCD

• 110 CU per GCD, totally 220 CU per GPU

• The interconnection is attached on the GPU (not 

on the CPU)

• Both GCDs are interconnected with 200 GB/s 

per direction

• 128 single precision FMA operations per cycle

• AMD CDNA 2 Matrix Core supports double-

precision data 

• Memory coherency  
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LUMI – MI250X

Credit: ORNL, https://docs.olcf.ornl.gov/systems/crusher_quick_start_guide.html
64-core AMD “Optimized 3rd Gen EPYC” CPU Core Chiplet Die connected to GCD via Infinity Fabric CPU-GPU 

GCD 5 GCD 4 GCD 2 GCD 3

GCD 7 GCD 6 GCD 0 GCD 1

https://docs.olcf.ornl.gov/systems/crusher_quick_start_guide.html
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AMD GCN GPU Hardware Layout (MI250X one GCD)

Asynchronous Compute Engine (ACE)

Shader Engine (SE0) Shader Engine (SE1)

Shader Engine (SE2) Shader Engine (SE3)

Shader Engine (SE4) Shader Engine (SE5)

Shader Engine (SE6) Shader Engine (SE7)
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AMD GCN GPU Hardware Layout (MI250X one GCD)

Asynchronous Compute Engine (ACE)
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ROCm and HIP
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ROCm - Radeon Open Compute Platform

• Heterogeneous-compute Interface for Portability (HIP) is part 

of a larger software distribution called the Radeon Open 

Compute Platform, or ROCm, Package

• Install instructions and documentation can be found here: 

• https://rocmdocs.amd.com/en/latest/Installation_Guide/Installatio

n-Guide.html

• The ROCm package provides libraries and programming 

tools for developing HPC and ML applications on AMD 

GPUs

• All the ROCm environment and the libraries are provided 

from the supercomputer, usually, there is no need to install 

something yourselves

• Heterogeneous System Architecture (HSA) runtime is an API 

that exposes the necessary interfaces to access and interact 

with the hardware driven by AMDGPU driver

https://rocmdocs.amd.com/en/latest/Installation_Guide/Installation-Guide.html
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What is HIP?

AMD’s Heterogeneous-compute Interface for 

Portability, or HIP, is a C++ runtime API and kernel 

language that allows developers to create portable 

applications that can run on AMD’s accelerators as well 

as CUDA devices

HIP:

• Is open-source

• Provides an API for an application to leverage GPU 

acceleration for both AMD and CUDA devices

• Syntactically similar to CUDA. Most CUDA API calls 

can be converted in place: cuda -> hip

• Supports a strong subset of CUDA runtime 

functionality

Portable HIP C++ (Host & Device Code)

#include “cuda.h”
#include 

“hip_runtime.h”

nvcc hipcc

Nvidia GPU AMD GPU
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A Tale of Host and Device

▪ The Host is the CPU

▪ Host code runs here

▪ Usual C++ syntax and features

▪ Entry point is the ‘main’ function

▪ HIP API can be used to create device buffers, 
move between host and device, and launch 
device code.

▪ The Device is the GPU

▪ Device code runs here

▪ C-like syntax

▪ Device codes are launched via “kernels”

▪ Instructions from the Host are enqueued into 
“streams”

Source code in HIP has two flavors: Host code and Device code
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Getting started with HIP

__global__ void add(int n, 

double *x, 
double *y){

int index = blockIdx.x * blockDim.x
+ threadIdx.x;

int stride = blockDim.x * gridDim.x;

for (int i = index; i < n; i += stride){
y[i] = x[i] + y[i];

}
}

__global__ void add(int n, 

double *x, 
double *y){

int index = blockIdx.x * blockDim.x
+ threadIdx.x;

int stride = blockDim.x * gridDim.x;

for (int i = index; i < n; i += stride){
y[i] = x[i] + y[i];

}
}

KERNELS ARE SYNTACTICALLY THE SAME

CUDA VECTOR ADD HIP VECTOR ADD
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CUDA APIs vs HIP API

cudaMalloc(&d_x, N*sizeof(double));

cudaMemcpy(d_x, x, N*sizeof(double),      

cudaMemcpyHostToDevice);

cudaDeviceSynchronize();

hipMalloc(&d_x, N*sizeof(double));

hipMemcpy(d_x, x, N*sizeof(double), 

hipMemcpyHostToDevice);

hipDeviceSynchronize();

CUDA HIP
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Launching a kernel

some_kernel<<<gridsize, blocksize,
shared_mem_size, stream>>>

(arg0, arg1, ...);

hipLaunchKernelGGL(some_kernel,

gridsize, blocksize,
shared_mem_size, stream,

arg0, arg1, ...);

Or

some_kernel<<<gridsize, blocksize,
shared_mem_size, stream>>>

(arg0, arg1, ...);

CUDA KERNEL LAUNCH SYNTAX HIP KERNEL LAUNCH SYNTAX
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Device Kernels: The Grid

• In HIP, kernels are executed on a 3D ”grid”

• You might feel comfortable thinking in terms of a mesh of points, but it’s not required

• The “grid” is what you can map your problem to

• It’s not a physical thing, but it can be useful to think that way

• AMD devices (GPUs) support 1D, 2D, and 3D grids, but most work maps well to 1D

• Each dimension of the grid partitioned into equal sized “blocks”

• Each block is made up of multiple “threads”

• The grid and its associated blocks are just organizational constructs

• The threads are the things that do the work

• If you’re familiar with CUDA already, the grid+block structure is very similar in HIP
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Device Kernels: The Grid

CUDA HIP OpenCL™

grid grid NDRange

block block work group

thread work item / thread work item

warp wavefront sub-group

Some Terminology:
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The Grid: blocks of threads in 1D

Grid of blocks

 lock of threads
Thread

Threads in grid have access to:

• Their respective block: blockIdx.x

• Their respective thread ID in a block: threadIdx.x

• Their block’s dimension: blockDim.x

• The number of blocks in the grid: gridDim.x
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The Grid: blocks of threads in 2D

• Each color is a block of threads

• Each small square is a thread

• The concept is the same in 1D and 2D

• In 2D each block and thread now has a two-

dimensional index

Threads in grid have access to:

• Their respective block IDs: blockIdx.x, blockIdx.y

• Their respective thread IDs in a block: threadIdx.x, 

threadIdx.y

• Etc.
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Kernels

A simple embarrassingly parallel loop

for (int i=0;i<N;i++) {

h_a[i] *= 2.0;

}

Can be translated into a GPU kernel:

__global__ void myKernel(int N, double *d_a) {

int i = threadIdx.x + blockIdx.x*blockDim.x;  

if (i<N) {

d_a[i] *= 2.0;

}

}

▪ A device function that will be launched from the 
host program is called a kernel and is declared 
with the __global__ attribute

▪ Kernels should be declared void

▪ All threads execute the kernel’s body 
“simultaneously”

▪ Each thread uses its unique thread and block IDs 
to compute a global ID

▪ There could be more than N threads in the grid 
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Kernels

Kernels are launched from the host:

dim3 threads(256,1,1);                //3D dimensions of a block of threads   

dim3 blocks((N+256-1)/256,1,1);       //3D dimensions the grid of blocks

hipLaunchKernelGGL(myKernel,          //Kernel name (__global__ void function)

blocks,           //Grid dimensions

threads,          //Block dimensions

0,                //Bytes of dynamic LDS space 

0,                //Stream (0=NULL stream)

N, a);            //Kernel arguments

Also supported similar to CUDA kernel launch syntax:

myKernel<<<blocks, threads, 0, 0>>>(N,a);
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SIMD operations

Why blocks and threads?

Natural mapping of kernels to hardware:

• Blocks are dynamically scheduled onto CUs

• All threads in a block execute on the same CU

• Threads in a block share LDS memory and L1 cache

• Threads in a block are executed in 64-wide chunks called “wavefronts”

• Wavefronts execute on SIMD units (Single Instruction Multiple Data) 

• If a wavefront stalls (e.g., data dependency) CUs can quickly context switch to another wavefront

A good practice is to make the block size a multiple of 64 and have several wavefronts (e.g., 256 threads)
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Device Memory
The host instructs the device to allocate memory in VRAM and records a pointer to device memory:

int main() {

…

int N = 1000;

size_t Nbytes = N*sizeof(double);

double *h_a = (double*) malloc(Nbytes);             //Host memory

double *d_a = NULL;                         

hipMalloc(&d_a, Nbytes);                            //Allocate Nbytes on device

…

free(h_a);  //free host memory

hipFree(d_a);   //free device memory

}



30 |

[Public]

Device Memory

The host queues memory transfers:

//copy data from host to device

hipMemcpy(d_a, h_a, Nbytes, hipMemcpyHostToDevice); 

//copy data from device to host

hipMemcpy(h_a, d_a, Nbytes, hipMemcpyDeviceToHost); 

//copy data from one device buffer to another

hipMemcpy(d_b, d_a, Nbytes, hipMemcpyDeviceToDevice); 
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Device Memory
Can copy strided sections of arrays:

hipMemcpy2D(d_a,         //pointer to destination

DLDAbytes,   //pitch of destination array

h_a,         //pointer to source

LDAbytes,    //pitch of source array

Nbytes,      //number of bytes in each row

Nrows,       //number of rows to copy

hipMemcpyHostToDevice); 
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Error Checking
▪ Most HIP API functions return error codes of type hipError_t

hipError_t status1 = hipMalloc(…);

hipError_t status2 = hipMemcpy(…);

▪ If API function was error-free, returns hipSuccess, otherwise returns an error code

▪ Can also peek/get at last error returned with 

hipError_t status3 = hipGetLastError();

hipError_t status4 = hipPeekLastError();

▪ Can get a corresponding error string using hipGetErrorString(status). Helpful for debugging, e.g.,

#define HIP_CHECK(command) {     \

hipError_t status = command;   \

if (status!=hipSuccess) {      \

std::cerr << “Error: HIP reports ” << hipGetErrorString(status) << std::endl; \

std::abort(); } }
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Putting it all together
#include “hip/hip_runtime.h”

int main() {

int N = 1000;

size_t Nbytes = N*sizeof(double);

double *h_a = (double*) malloc(Nbytes);  //host memory

double *d_a = NULL;                         

HIP_CHECK(hipMalloc(&d_a, Nbytes));

…

HIP_CHECK(hipMemcpy(d_a, h_a, Nbytes, hipMemcpyHostToDevice));   //copy data to device

hipLaunchKernelGGL(myKernel, dim3((N+256-1)/256,1,1), dim3(256,1,1), 0, 0, N, d_a); //Launch kernel

HIP_CHECK(hipGetLastError());

HIP_CHECK(hipMemcpy(h_a, d_a, Nbytes, hipMemcpyDeviceToHost));   //copy results back to host

…

free(h_a);                 //free host memory

HIP_CHECK(hipFree(d_a));   //free device memory

}

__global__ void myKernel(int N, double *d_a) {

int i = threadIdx.x + blockIdx.x*blockDim.x;  

if (i<N) {

d_a[i] *= 2.0;

}

}

#define HIP_CHECK(command) {               \

hipError_t status = command;             \

if (status!=hipSuccess) {                \

std::cerr << “Error: HIP reports ” \
<< hipGetErrorString(status) \
<< std::endl;                \

std::abort(); } }
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Vector Addition

+

=

Let’s discuss an example with:

• Dimension of 16384*16384

• 16 blocks for X and Y dimensions and 1 for Z dimension
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…

hostA = (float*)malloc(NUM * sizeof(float));

hostB = (float*)malloc(NUM * sizeof(float));

hostC = (float*)malloc(NUM * sizeof(float));

//initialize

…

hipMalloc((void**)&deviceA, NUM * sizeof(float));

hipMalloc((void**)&deviceB, NUM * sizeof(float));

hipMalloc((void**)&deviceC, NUM * sizeof(float));

hipMemcpy(deviceB, hostB, NUM*sizeof(float), hipMemcpyHostToDevice);

hipMemcpy(deviceC, hostC, NUM*sizeof(float), hipMemcpyHostToDevice);

…

Vector Addition (example code)
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…

vectoradd_float<<<dim3(WIDTH/THREADS_PER_BLOCK_X, HEIGHT/THREADS_PER_BLOCK_Y),

dim3(THREADS_PER_BLOCK_X, THREADS_PER_BLOCK_Y), 0, 0>>>

(deviceA ,deviceB ,deviceC ,WIDTH ,HEIGHT);

hipMemcpy(hostA, deviceA, NUM*sizeof(float), hipMemcpyDeviceToHost);

// verify the results

…

hipFree(deviceA);

hipFree(deviceB);

hipFree(deviceC);

Vector Addition (example code)
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rocprof --stats --hip-trace vectoradd_hip.exe

File: results.hip_stats.csv:

"Name", "Calls", "TotalDurationNs", "AverageNs", "Percentage"

"hipMemcpy", 3,     591195337,          197065112,     99.78088892497593

"hipLaunchKernel", 1,          637889,                637889,       0.10766176164116796

"hipMalloc", 3,          452560,                150853,       0.07638226532880638

"hipFree", 3,          202860,                  67620,       0.03423834705807332

"hipGetDeviceProperties",        1,              2600,                    2600,        0.0004388233380212493

"__hipPushCallConfiguration", 1,              1860,                    1860,        0.0003139274648921245

"__hipPopCallConfiguration",   1,                450,                      450,        7.595019311906238e-05

Vector addition - Profiling
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Perfetto - visualization
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Difference between HIP and CUDA

Some things to be aware of writing HIP, or porting from CUDA:

• AMD GCN hardware ‘warp’ size = 64 (warps are referred to as ‘wavefronts’ in AMD documentation)

• Device and host pointers allocated by HIP API use flat addressing

• Unified virtual addressing is available

• Dynamic parallelism not currently supported

• CUDA 9+ thread independent scheduling not supported (e.g., no __syncwarp)

• Some CUDA library functions do not have AMD equivalents

• Shared memory and registers per thread can differ between AMD and Nvidia hardware

• Inline PTX or AMD GCN assembly is not portable

Despite differences, majority of CUDA code in applications can be simply translated.
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Usage of hipcc
Usage is straightforward. Accepts all/any flags that clang accepts, e.g., 

hipcc --offload-arch=gfx90a dotprod.cpp -o dotprod

Set HIPCC_VERBOSE=7 to see a bunch of useful information

• Compile and link lines

• Various paths

$ HIPCC_VERBOSE=7 hipcc --offload-arch=gfx90a dotprod.cpp -o dotprod
HIP_PATH=/opt/rocm-5.2.0
HIP_PLATFORM=amd
HIP_COMPILER=clang
HIP_RUNTIME=rocclr
ROCM_PATH=/opt/rocm-5.2.0
...
hipcc-args: --offload-arch=gfx90a dotprod.cpp -o dotprod
hipcc-cmd: /opt/rocm-5.2.0/llvm/bin/clang++ -stdc=c++11 -hc -D__HIPCC__ -isystem /opt/rocm-
5.2.0/llvm/lib/clang/14.0.0/include
-isystem /opt/rocm-5.2.0/has/include -isystem /opt/rocm-5.2.0/include –offload-arch=gfx90a –O3 ...

• You can use also hipcc -v … to print some information

• With the command hipconfig you can see many information about environment variables declaration
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HIP API
▪ Device Management:  hipSetDevice(), hipGetDevice(), hipGetDeviceProperties()

▪ Memory Management: hipMalloc(), hipMemcpy(), hipMemcpyAsync(), hipFree(), hipHostMalloc()

▪ Streams: hipStreamCreate(), hipSynchronize(), hipStreamSynchronize(), hipStreamFree()

▪ Events: hipEventCreate(), hipEventRecord(), hipStreamWaitEvent(), hipEventElapsedTime()

▪ Device Kernels: __global__, __device__, hipLaunchKernelGGL()

▪ Device code:

▪ threadIdx, blockIdx, blockDim, __shared__

▪ 200+ math functions covering entire CUDA math library

▪ Error handling: hipGetLastError(), hipGetErrorString()

▪ More information: https://docs.amd.com/bundle/HIP_API_Guide/page/modules.html

https://docs.amd.com/bundle/HIP_API_Guide/page/modules.html
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Streams

• A stream in HIP is a queue of tasks (e.g., kernels, memcpys, events)

• Tasks enqueued in a stream are completed in the order enqueued

• Tasks being executed in different streams are allowed to overlap and share device resources

• Streams are created via:

hipStream_t stream;
hipStreamCreate(&stream);

• And destroyed via:
hipStreamDestroy(stream);

• Passing 0 or NULL as the hipStream_t argument to a function instructs the function to execute on a stream 
called the ‘NULL Stream’:

• No task on the NULL stream will begin until all previously enqueued tasks in all other streams have 
completed

• Blocking calls like hipMemcpy run on the NULL stream
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Streams
• Suppose we have 4 small kernels to execute:

hipLaunchKernelGGL(myKernel1, dim3(1), dim3(256), 0, 0, 256, d_a1); 

hipLaunchKernelGGL(myKernel2, dim3(1), dim3(256), 0, 0, 256, d_a2); 

hipLaunchKernelGGL(myKernel3, dim3(1), dim3(256), 0, 0, 256, d_a3); 

hipLaunchKernelGGL(myKernel4, dim3(1), dim3(256), 0, 0, 256, d_a4); 

• Even though these kernels use only one block each, they’ll execute in serial on the NULL stream:

NULL 

Stream
myKernel1 myKernel2 myKernel3 myKernel4

Time
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Streams
• With streams we can effectively share the GPU’s compute resources:

hipLaunchKernelGGL(myKernel1, dim3(1), dim3(256), 0, stream1, 256, d_a1); 

hipLaunchKernelGGL(myKernel2, dim3(1), dim3(256), 0, stream2, 256, d_a2); 

hipLaunchKernelGGL(myKernel3, dim3(1), dim3(256), 0, stream3, 256, d_a3); 

hipLaunchKernelGGL(myKernel4, dim3(1), dim3(256), 0, stream4, 256, d_a4); 

Note 1: Kernels must modify different parts of memory to avoid data races. 

Note 2: With large kernels, overlapping computations may not help performance.

NULL 

Stream

Stream1

Stream2

Stream3

Stream4

myKernel1

myKernel2

myKernel3

myKernel4
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Streams

• There is another use for streams besides concurrent kernels: 

• Overlapping kernels with data movement.

• AMD GPUs have separate engines for: 

• Host->Device memcpys

• Device->Host memcpys

• Compute kernels. 

• These three different operations can overlap without dividing the GPU’s resources.

• The overlapping operations should be in separate, non-NULL, streams. 

• The host memory should be pinned.
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Pinned Memory

Host data allocations are pageable by default. The GPU can directly access Host data if it is pinned instead.

• Allocating pinned host memory:

double *h_a = NULL;

hipHostMalloc(&h_a, Nbytes);

• Free pinned host memory:

hipHostFree(h_a);

• Host<->Device memcpy bandwidth increases significantly when host memory is pinned. 

• It is good practice to allocate host memory that is frequently transferred to/from the device as pinned memory. 
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Streams
Suppose we have 3 kernels which require moving data to and from the device:

hipMemcpy(d_a1, h_a1, Nbytes, hipMemcpyHostToDevice));

hipMemcpy(d_a2, h_a2, Nbytes, hipMemcpyHostToDevice));

hipMemcpy(d_a3, h_a3, Nbytes, hipMemcpyHostToDevice));

hipLaunchKernelGGL(myKernel1, blocks, threads, 0, 0, N, d_a1); 

hipLaunchKernelGGL(myKernel2, blocks, threads, 0, 0, N, d_a2); 

hipLaunchKernelGGL(myKernel3, blocks, threads, 0, 0, N, d_a3); 

hipMemcpy(h_a1, d_a1, Nbytes, hipMemcpyDeviceToHost);

hipMemcpy(h_a2, d_a2, Nbytes, hipMemcpyDeviceToHost);

hipMemcpy(h_a3, d_a3, Nbytes, hipMemcpyDeviceToHost);

NULL Stream
myKernel

1

myKernel

2

myKernel

3
HToD1 HToD2 HToD3 DToH1 DToH2 DToH3
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Streams
Changing to asynchronous memcpys and using streams:

hipMemcpyAsync(d_a1, h_a1, Nbytes, hipMemcpyHostToDevice, stream1);

hipMemcpyAsync(d_a2, h_a2, Nbytes, hipMemcpyHostToDevice, stream2);

hipMemcpyAsync(d_a3, h_a3, Nbytes, hipMemcpyHostToDevice, stream3);

hipLaunchKernelGGL(myKernel1, blocks, threads, 0, stream1, N, d_a1); 

hipLaunchKernelGGL(myKernel2, blocks, threads, 0, stream2, N, d_a2); 

hipLaunchKernelGGL(myKernel3, blocks, threads, 0, stream3, N, d_a3); 

hipMemcpyAsync(h_a1, d_a1, Nbytes, hipMemcpyDeviceToHost, stream1);

hipMemcpyAsync(h_a2, d_a2, Nbytes, hipMemcpyDeviceToHost, stream2);

hipMemcpyAsync(h_a3, d_a3, Nbytes, hipMemcpyDeviceToHost, stream3);

NULL Stream

Stream1

Stream2

Stream3

myKernel

1
myKernel

2
myKernel

3

HToD1

HToD2

HToD3

DToH1

DToH2

DToH3



Porting Applications to HIP
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HIPification Tools for faster code porting

• ROCm provides ‘HIPification’ tools to do the heavy-lifting on porting CUDA codes to ROCm

• Hipify-perl

• Hipify-clang

• Good resource to help with porting: https://github.com/ROCm-Developer-

Tools/HIPIFY/blob/master/README.md

• In practice, large portions of many HPC codes have been automatically Hipified:

• ~90% of CUDA code in CORAL-2 HACC

• ~80% of CUDA code in CORAL-2 PENNANT

• ~80% of CUDA code in CORAL-2 QMCPack

• ~95% of CUDA code in CORAL-2 Laghos

The remaining code requires programmer intervention

https://github.com/ROCm-Developer-Tools/HIPIFY/blob/master/README.md
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Hipify tools

• Hipify-perl:

• Easy to use –point at a directory and it will attempt to hipify CUDA code

• Very simple string replacement technique: may make incorrect translations

• sed -e ‘s/cuda/hip/g’, (e.g., cudaMemcpy becomes hipMemcpy)

• Recommended for quick scans of projects

• It will not translate if it does not recognize a CUDA call and it will report it

• Hipify-clang:

• Requires clang compiler

• More robust translation of the code. Uses clang to parse files and perform semantic translation

• Can generate warnings and assistance for code for additional user analysis

• High quality translation, particularly for cases where the user is familiar with the make system
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Hipify-perl

• It is located in $HIP/bin/ (export PATH=$PATH:[MYHIP]/bin)

• Command line tool: hipify-perl foo.cu > new_foo.cpp

• Compile: hipcc new_foo.cpp

• How does this this work in practice? 

• Hipify source code

• Check it in to your favorite version control

• Try to build

• Manually work on the rest



53 |

[Public]

Hipify-clang

• Build from source 

• hipify-clang has unit tests using LLVM lit/FileCheck (44 tests)

• Hipification requires same headers that would be needed to compile it with clang:

• ./hipify-clang foo.cu -I /usr/local/cuda-8.0/samples/common/inc

• https://github.com/ROCm-Developer-Tools/HIP/tree/master/hipify-clang

https://github.com/ROCm-Developer-Tools/HIP/tree/master/hipify-clang
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Gotchas

• Hipify tools are not running your application, or checking correctness

• Code relying on specific Nvidia hardware aspects (e.g., warp size == 32) may need attention after 

conversion

• Certain functions may not have a correspondent hip version (e.g., __shfl_down_sync)

• Hipifying can’t handle inline PTX assembly

• Can either use inline GCN ISA, or convert it to HIP

• Hipify-perl and hipify-clang can both convert library calls

• None of the tools convert your build system script such as CMAKE or whatever else you use. The user is 

responsible to find the appropriate flags and paths to build the new converted HIP code.
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What to look for when porting:

• Inline PTX assembly

• CUDA Intrinsics

• Hardcoded dependencies on warp size, or shared memory size

• Grep for "32" just in case

• Do not hardcode the warpsize! Rely on warpSize device definition, #define WARPSIZE size, or props.warpSize from 

host

• Code geared toward limiting size of register file on NVIDIA hardware

• Unsupported functions
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Fortran

• First Scenario: Fortran + CUDA C/C++

oAssuming there is no CUDA code in the Fortran files.

oHipify CUDA

oCompile and link with hipcc

• Second Scenario: CUDA Fortran

oThere is no hipify equivalent but there is another approach…

oHIP functions are callable from C, using `extern C`

oSee hipfort
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CUDA Fortran -> Fortran + HIP C/C++ 

• There is no HIP equivalent to CUDA Fortran

• But HIP functions are callable from C, using `extern C`, so they can be called directly from Fortran

• The strategy here is:

• Manually port CUDA Fortran code to HIP kernels in C-like syntax

• Wrap the kernel launch in a C function

• Call the C function from Fortran through Fortran’s  ISO_C_binding. It requires Fortran 2008 because of 

the pointers utilization.

• This strategy should be usable by Fortran users since it is standard conforming Fortran

• ROCm has an interface layer, hipFort, which provides the wrapped bindings for use in Fortran

• https://github.com/ROCmSoftwarePlatform/hipfort

https://github.com/ROCmSoftwarePlatform/hipfort
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Alternatives to HIP

• Can also target AMD GPUs through OpenMP 5.0 target offload

• ROCm provides OpenMP support

• AMD OpenMP compiler (AOMP) could integrate updated improvements regarding OpenMP offloading performance, 

sometimes experimental stuff to validate before ROCm integration ( https://github.com/ROCm-Developer-Tools/aomp

) 

• GCC provides OpenMP offload support.

• GCC will provide OpenACC

• Clacc from ORNL: https://github.com/llvm-doe-org/llvm-project/tree/clacc/main OpenACC from LLVM only 

for C (Fortran and C++ in the future)

• Translate OpenACC to OpenMP Offloading

https://github.com/ROCm-Developer-Tools/aomp
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OpenMP Offload GPU Support

• ROCm and AOMP
• ROCm supports both HIP and OpenMP

• AOMP: the AMD OpenMP research compiler, it is used to prototype the new OpenMP features for ROCm

• HPE Compilers
• Provides offloading support to AMD GPUs, through OpenMP, HIP, and OpenACC (only for Fortran)

• GNU compilers:
• Provide OpenMP and OpenACC offloading support for AMD GPUs

• GCC 11: Supports AMD GCN gfx908

• GCC 13: Supports AMD GCN gfx90a 
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Understanding the hardware options

• rocminfo

• 110 CUs

• Wavefront of size 64

• 4 SIMDs per CU 

#pragma omp target teams distribute parallel for simd
Options for pragma omp teams target:

• num_teams(220): Multiple number of workgroups with regards the 

compute units

• thread_limit(256): Threads per workgroup

• Thread limit is multiple of 64 

• Teams*thread_limit should be multiple or a divisor of the trip count of a 

loop
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USE

ROCm Libraries
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ROCm GPU Libraries

ROCm provides several GPU math libraries

• Typically, two versions:

• roc* -> AMD GPU library, usually written in HIP

• hip* -> Thin interface between roc* and Nvidia cu* library

When developing an application meant to target both CUDA 

and AMD devices, use the hip* libraries (portability)

When developing an application meant to target only AMD 

devices, may prefer the roc* library API (performance). 

• Some roc* libraries perform better by using addition APIs not 

available in the cu* equivalents

hipBLAS

rocBLAS cuBLAS
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AMD Math Library Equivalents: “Decoder Ring”

Basic Linear Algebra 

Subroutines
CUBLAS ROCBLAS

Fast Fourier TransformsCUFFT ROCFFT

C++ Parallel AlgorithmsTHRUST ROCTHRUST

Optimized Parallel 

Primitives
CUB ROCPRIM

CURAND ROCRAND
Random Number 

Generation
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AMD Math Library Equivalents: “Decoder Ring”

Sparse BLAS, SpMV, etc. CUSPARSE ROCSPARSE

Linear SolversCUSOLVER ROCSOLVER

AMGX ROCALUTION

GITHUB.COM/ROCM-DEVELOPER-TOOLS/HIP  → HIP_PORTING_GUIDE.MD FOR A COMPLETE LIST

Solvers and preconditioners 

for sparse linear systems
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Some Links to Key Libraries
• BLAS 

• rocBLAS (https://github.com/ROCmSoftwarePlatform/rocBLAS)

• hipBLAS (https://github.com/ROCmSoftwarePlatform/hipBLAS)

• FFTs 

• rocFFT (https://github.com/ROCmSoftwarePlatform/rocFFT)

• hipFFT (https://github.com/ROCmSoftwarePlatform/hipFFT)

• Random number generation

• rocRAND (https://github.com/ROCmSoftwarePlatform/rocRAND)

• Sparse linear algebra

• rocSPARSE (https://github.com/ROCmSoftwarePlatform/rocSPARSE)

• hipSPARSE (https://github.com/ROCmSoftwarePlatform/hipSPARSE)

• Iterative solvers

• rocALUTION (https://github.com/ROCmSoftwarePlatform/rocALUTION)

• Parallel primitives

• rocPRIM (https://github.com/ROCmSoftwarePlatform/rocPRIM)

• hipCUB (https://github.com/ROCmSoftwarePlatform/hipCUB)

https://github.com/ROCmSoftwarePlatform/rocBLAS
https://github.com/ROCmSoftwarePlatform/hipBLAS
https://github.com/ROCmSoftwarePlatform/rocFFT
https://github.com/ROCmSoftwarePlatform/hipFFT
https://github.com/ROCmSoftwarePlatform/rocRAND
https://github.com/ROCmSoftwarePlatform/rocSPARSE
https://github.com/ROCmSoftwarePlatform/hipSPARSE
https://github.com/ROCmSoftwarePlatform/rocALUTION
https://github.com/ROCmSoftwarePlatform/rocPRIM
https://github.com/ROCmSoftwarePlatform/hipCUB
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AMD Machine Learning Library Support

Machine Learning Frameworks:
• Tensorflow: https://github.com/ROCmSoftwarePlatform/tensorflow-upstream
• Pytorch: https://github.com/ROCmSoftwarePlatform/pytorch
• Caffe: https://github.com/ROCmSoftwarePlatform/hipCaffe

Machine Learning Libraries:
• MIOpen (similar to cuDNN): https://github.com/ROCmSoftwarePlatform/MIOpen
• Tensile (GEMM Autotuner): https://github.com/ROCmSoftwarePlatform/Tensile
• RCCL (ROCm analogue of NCCL): https://github.com/ROCmSoftwarePlatform/rccl
• Horovod (Distributed ML):  https://github.com/ROCmSoftwarePlatform/horovod

Benchmarks:
• DeepBench:  https://github.com/ROCmSoftwarePlatform/DeepBench
• MLPerf: https://mlperf.org

https://github.com/ROCmSoftwarePlatform/tensorflow-upstream
https://github.com/ROCmSoftwarePlatform/pytorch
https://github.com/ROCmSoftwarePlatform/hipCaffe
https://github.com/ROCmSoftwarePlatform/MIOpen
https://github.com/ROCmSoftwarePlatform/Tensile
https://github.com/ROCmSoftwarePlatform/rccl
https://github.com/ROCmSoftwarePlatform/horovod
https://github.com/ROCmSoftwarePlatform/DeepBench
https://mlperf.org/
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