
Files on LUMI: Using Lustre

Emanuele Vitali
LUMI User Support Team (LUST)

CSC

December 2024
Slides updated from previous version,

authored by Kurt Lust (LUST, UAntwerp)

File systems on LUMI

• HPC since the second half of the 1980s has mostly been about trying to build
a fast system from relatively cheap hardware and cleverly written software.
• The Lustre parallel file system fits in that way of thinking:

• Link several regular servers
• with a good network to the compute resources
• to build a single system with a lot of storage capacity and a lot of bandwidth
• (though unfortunately not all IOPS – number of I/O operations – scaled as

nicely).
• And it is the main file system on large HPE Cray systems.

• HPE Cray EX systems go one step further:
• Lustre is the only network file system on the compute nodes.
• as part of the measures taken to minimise OS jitter and reduce node

memory use.

Lustre building blocks
Key element: Separation of data and

metadata

Lustre building blocks

Metadata servers
(MDSes) with one
or more metadata
targets (MDTs) each
store namespace
metadata
(filename, access
permissions, …)
and file layout.

Lustre building blocks

Object storage servers
(OSSes) with one or
more object storage
targets (OSTs) each
store the actual data.

Lustre building blocks

Lustre clients that
access and use the data
and make the whole
Lustre setup look like a
single large file system

Lustre building blocks

High-performance
interconnect between
all pieces of the storage
system

Lustre building blocks (2)

• Lustre separates data and metadata as both are used differently
• Metadata servers (MDSes) with one or more metadata targets

(MDTs) each store namespace metadata (filename, access
permissions, …) and file layout.
• Object storage servers (OSSes) with one or more object storage

targets (OSTs) each store the actual data.
• Capacity of Lustre is the sum of the capacity of the OSTs

• Lustre clients that access and use the data and makes the whole
Lustre setup look like a single large file system
• Transparent in functionality: You can use it as any regular Linux file system
• But not transparent in performance: How you use Lustre can have a huge

impact on performance

• All linked together through the high performance interconnect.

Lustre building blocks (2)

• Lustre separates data and metadata as both are used differently
• Metadata servers (MDSes) with one or more metadata targets

(MDTs) each store namespace metadata (filename, access
permissions, …) and file layout.
• Object storage servers (OSSes) with one or more object storage

targets (OSTs) each store the actual data.
• Capacity of Lustre is the sum of the capacity of the OSTs

• Lustre clients that access and use the data and makes the whole
Lustre setup look like a single large file system
• Transparent in functionality: You can use it as any regular Linux file system
• But not transparent in performance: How you use Lustre can have a huge

impact on performance

• All linked together through the high performance interconnect.

Lustre building blocks (2)

• Lustre separates data and metadata as both are used differently
• Metadata servers (MDSes) with one or more metadata targets

(MDTs) each store namespace metadata (filename, access
permissions, …) and file layout.
• Object storage servers (OSSes) with one or more object storage

targets (OSTs) each store the actual data.
• Capacity of Lustre is the sum of the capacity of the OSTs

• Lustre clients that access and use the data and makes the whole
Lustre setup look like a single large file system
• Transparent in functionality: You can use it as any regular Linux file system
• But not transparent in performance: How you use Lustre can have a huge

impact on performance

• All linked together through the high performance interconnect.

Striping: Large files spread
across OSTs
• Files broken in

chunks/stripes, distributed
cyclically across a number of
chunk files/objects, each on
a separate OST

• Transparent to the user with
respect to correctness

• But large impact on
performance

• 2 parameters:
• Size of the stripes
• Number of OSTs

• Default on LUMI is to use
only one OST

Striping: Large files spread
across OSTs
• Files broken in

chunks/stripes, distributed
cyclically across a number of
chunk files/objects, each on
a separate OST

• Transparent to the user with
respect to correctness

• But large impact on
performance

• 2 parameters:
• Size of the stripes
• Number of OSTs

• Default on LUMI is to use
only one OST

8 chunks or stripes

across 4 objects

Accessing a file
open(unit=12, file=“out.dat”)

Accessing a file

Client queries MDS

open(unit=12, file=“out.dat”)

Accessing a file

MDS returns layout/location

open(unit=12, file=“out.dat”)

Accessing a file write(12,*) data

Subsequent read or write calls
can talk directly to all OSSes
involved

Parallelism is key!

• MDS access can be problematic
• Difficult to spread across multiple MDSes
• Small accesses, so each MDS doesn’t really exploit parallelism in RAID either

• But up to four levels of parallelism in reads and writes
• Engage multiple OSSes
• Which can each engage multiple OSTs
• That typically engage multiple disks in a RAID setup for reliability
• For an SSD file system: Modern SSDs are also highly parallel

• So large I/O operations needed
• Very small I/O operations won’t even benefit from RAID acceleration
• Relatively large stripe size for more efficient I/O at the OST level (especially

for hard drives)
• And even larger I/O operations needed to engage enough OSTs (but that

access can come from multiple nodes in the process)

Parallelism is key! (2)

• 😀 HPC file formats such as HDF5 and netCDF
• When used properly, very good bandwidth possible
• Old codes can be very good. But their authors have known floppy drives…

Parallelism is key! (2)

• 😀 HPC file formats such as HDF5 and netCDF
• When used properly, very good bandwidth possible
• Old codes can be very good. But their authors have known floppy drives…

• 😭 Codes that open one or more files per MPI rank
• Won’t scale to large numbers of ranks
• Disaster for MDS as files will be opened more or less simultaneously
• Potential disaster for ODS also as each ODS will serve many files with

writes or reads coming in simultaneously
• Also in old codes that were never meant to scale to 1000s or cores

Parallelism is key! (2)

• 😀 HPC file formats such as HDF5 and netCDF
• When used properly, very good bandwidth possible
• Old codes can be very good. But their authors have known floppy drives…

• 😭 Codes that open one or more files per MPI rank
• Won’t scale to large numbers of ranks
• Disaster for MDS as files will be opened more or less simultaneously
• Potential disaster for ODS also as each ODS will serve many files with

writes or reads coming in simultaneously
• Also in old codes that were never meant to scale to 1000s or cores

• 😭 😭 Abuse the file system as an unstructured database by dumping
data in thousands or millions of small files with each one data element
• Local SSD not really a solution as you “own” a node only shortly
• A Python or conda software installation by itself is already an example

How to determine the striping
value?
• Small files accessed sequentially: 😭 😭 😭
• Try to use all OSTs without overloading them.
• #files ≥ #OSTs: stripe count 1 is best
• #files = 1: Set the stripe count to #OSTs, or a smaller number if the

performance plateaus (benchmarking needed!). The latter will
happen if not enough Lustre clients are used simultaneously to
access the file.
• #files < #OSTs: Chose such that stripe count * #files = #OSTs.

E.g.: 32 OSTs and 8 files: Use a stripe count of 4.
• Let the system choose the OSTs, don’t try to impose them.
• An ideal stripe size will usually be 1 MB or more.

Maximum value is 4 GB but that is only useful for very large files.

Managing the striping
parameters (1)
• The basic command line tool to manage striping in lustre is the lfs

command.
• Use lfs df -h to get information about the file systems
UUID bytes Used Available Use% Mounted on
lustref1-MDT0000_UUID 11.8T 16.8G 11.6T 1% /pfs/lustref1[MDT:0]
lustref1-MDT0001_UUID 11.8T 4.1G 11.6T 1% /pfs/lustref1[MDT:1]
lustref1-MDT0002_UUID 11.8T 2.8G 11.7T 1% /pfs/lustref1[MDT:2]
lustref1-MDT0003_UUID 11.8T 2.7G 11.7T 1% /pfs/lustref1[MDT:3]
lustref1-OST0000_UUID 121.3T 21.7T 98.3T 19% /pfs/lustref1[OST:0]
lustref1-OST0001_UUID 121.3T 21.8T 98.2T 19% /pfs/lustref1[OST:1]
lustref1-OST0002_UUID 121.3T 21.7T 98.4T 19% /pfs/lustref1[OST:2]
• A way to find the number of OSTs

• Use lfs getstripe to check striping information at the directory or file
level
$ lfs getstripe -d /appl/lumi/SW

Only show directory itself

Managing the striping
parameters (2)

• Use lfs getstripe to check striping information at the directory or file
level
$ lfs getstripe -d /appl/lumi/SW
stripe_count: 1 stripe_size: 1048576 pattern: 0 stripe_offset: -1

Managing the striping
parameters (2)

• Use lfs getstripe to check striping information at the directory or file
level
$ lfs getstripe -d /appl/lumi/SW
stripe_count: 1 stripe_size: 1048576 pattern: 0 stripe_offset: -1

$ lfs getstripe -d --raw /appl/lumi/SW
stripe_count: 0 stripe_size: 0 pattern: 0 stripe_offset: -1

Actually the defaults for the file system

Managing the striping
parameters (2)

Let the MDS chose

• Use lfs getstripe to check striping information at the directory or file
level
$ lfs getstripe -d /appl/lumi/SW
stripe_count: 1 stripe_size: 1048576 pattern: 0 stripe_offset: -1

$ lfs getstripe -d --raw /appl/lumi/SW
stripe_count: 0 stripe_size: 0 pattern: 0 stripe_offset: -1

$ lfs getstripe /appl/lumi/LUMI-SoftwareStack/etc/motd.txt
/appl/lumi/LUMI-SoftwareStack/etc/motd.txt
lmm_stripe_count: 1
lmm_stripe_size: 1048576
lmm_pattern: raid0
lmm_layout_gen: 0
lmm_stripe_offset: 2
 obdid objid objid group
 2 292319061 0x116c6f55 0

Managing the striping
parameters (2)

OSTs for the file

Managing the striping
parameters (3)
• Use lfs setstripe to set the striping information
$ module use /appl/local/training/modules/2day-20240502
$ module load lumi-training-tools
$ mkdir testdir
$ lfs setstripe -S 2m -c 4 testdir
$ cd testdir
$ mkfile 2g testfile1
$ lfs getstripe testfile1
testfile1
lmm_stripe_count: 4
lmm_stripe_size: 2097152
lmm_pattern: raid0
lmm_layout_gen: 0
lmm_stripe_offset: 28
 obdidx objid objid group
 28 66250987 0x3f2e8eb 0
 30 66282908 0x3f3659c 0
 1 71789920 0x4476d60 0
 5 71781120 0x4474b00 0

Default striping for this directory

Managing the striping
parameters (3)
• Use lfs setstripe to set the striping information
$ module use /appl/local/training/modules/2day-20240502
$ module load lumi-training-tools
$ mkdir testdir
$ lfs setstripe -S 2m -c 4 testdir
$ cd testdir
$ mkfile 2g testfile1
$ lfs getstripe testfile1
testfile1
lmm_stripe_count: 4
lmm_stripe_size: 2097152
lmm_pattern: raid0
lmm_layout_gen: 0
lmm_stripe_offset: 28
 obdidx objid objid group
 28 66250987 0x3f2e8eb 0
 30 66282908 0x3f3659c 0
 1 71789920 0x4476d60 0
 5 71781120 0x4474b00 0

Default striping for this directory

Tool to create a new file of given size (2G here)

Managing the striping
parameters (3)
• Use lfs setstripe to set the striping information
$ module use /appl/local/training/modules/2day-20240502
$ module load lumi-training-tools
$ mkdir testdir
$ lfs setstripe -S 2m -c 4 testdir
$ cd testdir
$ mkfile 2g testfile1
$ lfs getstripe testfile1
testfile1
lmm_stripe_count: 4
lmm_stripe_size: 2097152
lmm_pattern: raid0
lmm_layout_gen: 0
lmm_stripe_offset: 28
 obdidx objid objid group
 28 66250987 0x3f2e8eb 0
 30 66282908 0x3f3659c 0
 1 71789920 0x4476d60 0
 5 71781120 0x4474b00 0

Default striping for this directory

Tool to create a new file of given size (2G here)

And we get the values that we set for the directory

The 4 OSTs

Managing the striping
parameters (4)
• Use lfs setstripe to set the striping information
$ lfs setstripe -S 16m -c 2 testfile2
$ ls –lh
total 0
-rw-rw---- 1 XXXXXXXX project_462000000 2.0G Jan 15 16:17 testfile1
-rw-rw---- 1 XXXXXXXX project_462000000 0 Jan 15 16:23 testfile2
$ lfs getstripe testfile2
testfile2
lmm_stripe_count: 2
lmm_stripe_size: 16777216
lmm_pattern: raid0
lmm_layout_gen: 0
lmm_stripe_offset: 10
 obdidx objid objid group
 10 71752411 0x446dadb 0
 14 71812909 0x447c72d 0

Create an empty file with given striping

And we get the values that we set for the file

The 2 OSTs

The metadata servers (1)

• Finite and shared resource
• Involved in many file system operations:

• Create/open/close
• Get attributes
• Managing file locking

• Slow or variable filesystem performance when overstressed
• Less than 200k operations per second, depending on operation type also!

The metadata servers (2)

• Important to be careful with what you do
• E.g., ls -l is rather costly on Lustre
• Access to many small files from many processes is not a good idea (think

Python): Run from a container or move to /tmp (which will eat from your
RAM). Use file formats as HDF5, ADIOS, …

• The filesystem is not a communication device for shuffling data between
nodes

• Avoid very large directories
• Use lfs find instead of find
• And many more tips for programmers…

Lustre on LUMI

• LUMI-P:
• 4 disk based storage systems
• 18 PB capacity each
• 240 GB/s aggregated bandwidth each
• 2 MDTs (1 per MDS), 32 OSTs (2 per OSS)
• Serves /users, /project and /scratch

• LUMI-F
• Solid State Drive based storage system
• 8.5 PB capacity
• >2 TB/s aggregated bandwidth
• 4 MDTs (1 per MDS) and 72 OSTs (1 per OSS)
• Serves /flash

Questions?

	Files on LUMI: Using Lustre
	File systems on LUMI
	Lustre building blocks
	Lustre building blocks
	Lustre building blocks
	Lustre building blocks
	Lustre building blocks
	Lustre building blocks (2)
	Lustre building blocks (2)
	Lustre building blocks (2)
	Striping: Large files spread across OSTs
	Slide 13
	Accessing a file
	Accessing a file_clipboard0
	Accessing a file
	Accessing a file
	Parallelism is key!
	Slide 20
	Parallelism is key! (2)
	Slide 22
	How to determine the striping value?
	Managing the striping parameters (1)
	Managing the striping parameters (2)
	Managing the striping parameters (2)
	Managing the striping parameters (2)
	Managing the striping parameters (2)
	Managing the striping parameters (3)
	Managing the striping parameters (3)
	Managing the striping parameters (3)
	Managing the striping parameters (4)
	The metadata servers (1)
	The metadata servers (2)
	Lustre on LUMI
	Questions?

