
LUMI Software Stacks
Kurt Lust

LUMI User Support Team (LUST)
VSC Tier-0 support, University of Antwerp

3 March 2025

Software stack design considerations

• Very leading edge and inhomogeneous machine (new interconnect, new GPU architecture with
a still maturing software ecosystem, NVIDIA GPUs for visualisation, a mix of zen2 and zen3)

• Need to remain agile

• Users that come to LUMI from 12 different channels (not counting subchannels), with different
expectations

• Small central support team considering the expected number of projects and users and the
tasks the support team has

• But contributions from local support teams

• Cray Programming Environment is a key part of our system

• Users really want more and more a customised environment

• Everybody wants a central stack as long as their software is in there but not much more

• Look at the success of conda, Python virtual environments, containers, …

The LUMI solution

• Software organised in extensible software stacks based on a particular release of the PE

• Many base libraries and some packages already pre-installed

• Easy way to install additional packages in project space

• Modules managed by Lmod

• More powerful than the (old) Modules Environment

• Powerful features to search for modules

• EasyBuild is our primary tool for software installations

• But uses HPE Cray specific toolchains

• Offer a library of installation recipes

• User installations integrate seamlessly with the central stack

• We do have a Spack setup but don’t do development in Spack ourselves

Policies

• Bring-your-own-license except for a selection of tools that are useful to a larger

community

• One downside of the distributed user management is that we do not even have the

information needed to determine if a particular userid can use a particular software license

• Even for software on the system, users remain responsible for checking the license!

• LUST tries to help with installations of recent software, but porting or bug fixing is

not our work

• Not all Linux or even supercomputer software will work on LUMI

• We’re too small a team to do all software installations, so don’t count on us to do all the

work

• Conda, (large) Python installations need to go in containers

• Tools: lumi-container-wrapper , cotainr and SingularityCE unprivileged proot build

https://lumi-supercomputer.github.io/LUMI-EasyBuild-docs/l/lumi-container-wrapper/
https://lumi-supercomputer.github.io/LUMI-EasyBuild-docs/c/cotainr/
https://docs.sylabs.io/guides/4.1/user-guide/build_a_container.html

Organisation: Software stacks

• CrayEnv: Cray environment with some additional tools pushed in through EasyBuild

• LUMI stacks, each one corresponding to a particular release of the PE
• Work with the Cray PE modules, but accessed through a replacement for the PrgEnv-*

modules

• Tuned versions for the 3 4 types of hardware: zen2 (login, large memory nodes), zen3
(LUMI-C compute nodes), zen2 + NVIDIA GPU (visualisation partition), zen3 + MI250X
(LUMI-G GPU partition)

• spack: Install software with Spack using compilers from the PE
• Offered as-is for users who know Spack, but we do not do development in Spack

• Some local organisations also provide software pre-installed on LUMI
• Look for Local-* modules

• Far future: Stack based on common EB foss toolchain as-is for LUMI-C
• No plans for EESSI as it is a bad match with LUMI

Accessing the Cray PE on LUMI
3 different ways

• Very bare environment available directly after login

• What you can expect on a typical Cray system

• Few tools as only the base OS image is available

• User fully responsible for managing the target modules

• CrayEnv

• “Enriched” Cray PE environment

• Takes care of managing the target modules: (re)loading CrayEnv will reload an
optimal set for the node you’re on

• Some additional tools, e.g., newer build tools (offered here and not in the bare
environment as we need to avoid conflicts with other software stacks)

• Otherwise used in the way discussed in this course

Accessing the Cray PE on LUMI
3 different ways

• LUMI software stack

• Each stack based on a particular release of the HPE Cray PE

• Other modules are accessible but hidden from the default view

• Better not to use the PrgEnv modules but the EasyBuild LUMI toolchains

• Environment in which we install most software (mostly with EasyBuild)

HPE Cray PE LUMI toolchain

PrgEnv-cray cpeCray Cray Compiling Environment

PrgEnv-gnu cpeGNU GNU C/C++ and Fortran

PrgEnv-aocc cpeAOCC AMD CPU compilers (not on LUMI-G)

PrgEnv-amd cpeAMD AMD ROCm GPU compilers (LUMI-G only)

Accessing the Cray PE on LUMI
The LUMI software stack

• The LUMI software stack uses two levels of modules
• LUMI/24.03, LUMI/23.12, LUMI/23.09, LUMI/23.03, LUMI/22.08: Versions of the

LUMI stack

• partition/L, partition/C, partition/G (and future partition/D): To select software
optimised for the respective LUMI partition

• partition/L is for both the login nodes and the large memory nodes (4TB)

• Hidden partition/common for software that is available everywhere, but be careful
using it for your own installs

• When (re)loaded, the LUMI module will load the best matching partition module.

• So be careful in job scripts: When your job starts, the environment will be that of
the login nodes, but if you reload the LUMI module it will be that of the compute
node!

Installing software on HPC systems

• Software on an HPC system is rarely installed from RPM

• Generic RPMs often not optimised for the specific CPU

• Generic RPMs may not work with the specific LUMI environment (Slingshot
interconnect, kernel modules, resource manager)

• Multi-user system so usually no “one version fits all”

• Need a small system image as nodes are diskless

• Spack and EasyBuild are the two most popular HPC-specific software build
and installation frameworks

• Usually install from sources to adapt the software to the underlying hardware and OS

• Installation instructions in a way that can be communicated and executed easily

• Make software available via modules

• Dependency handling compatible with modules

Extending the LUMI stack with EasyBuild

• Fully integrated in the LUMI software stack

• Load the LUMI module and modules should appear in your module view

• EasyBuild-user module to install packages in your user space

• Will use existing modules for dependencies if those are already on the system or

in your personal/project stack

• EasyBuild built-in easyconfigs do not work well on LUMI, not even on LUMI-C

• GNU-based toolchains: Would give problems with MPI (Open MPI)

• Intel-based toolchains: Intel tools and AMD CPUs are a problematic cocktail

• Library of recipes that we made in the LUMI-EasyBuild-contrib GitHub repository

• EasyBuild-user will find a copy on the system or in your installation

• List of recipes in the LUMI Software Library

https://github.com/Lumi-supercomputer/LUMI-EasyBuild-contrib/tree/main/easybuild/easyconfigs
https://lumi-supercomputer.github.io/LUMI-EasyBuild-docs/

EasyBuild recipes - easyconfigs

• Build recipe for an individual package = module
• Relies on either a generic or a specific installation process provided by an

easyblock

• Steps
• Downloading and unpacking sources and applying patches

• Typical configure – build – (test) – install process

• Extensions mechanism for perl/python/R packages

• Some simple checks

• Creation of the module

• All have several parameters in the easyconfig file

The toolchain concept

• A set of compiler, MPI implementation and basic math libraries
• Simplified concept on LUMI as there is no hierarchy as on some other

EasyBuild systems

• These are the cpeCray, cpeGNU, cpeAOCC and cpeAMD modules
mentioned before!

HPE Cray PE LUMI toolchain

PrgEnv-cray cpeCray Cray Compiling Environment

PrgEnv-gnu cpeGNU GNU C/C++ and Fortran

PrgEnv-aocc cpeAOCC AMD CPU compilers (not on LUMI-G)

PrgEnv-amd cpeAMD AMD ROCm GPU compilers (LUMI-G only)

The toolchain concept (2)

• Special toolchain: SYSTEM to use the system compiler
• Does not fully function in the same way as the other toolchains when it

comes to dependency handling

• Used on LUMI for CrayEnv and some packages with few dependencies

• It is not possible to load packages from different cpe toolchains at the
same time
• EasyBuild restriction, because mixing libraries compiled with different

compilers does not always work

• Packages compiled with one cpe toolchain can be loaded together with
packages compiled with the SYSTEM toolchain
• But we do avoid mixing them when linking

easyconfig names and module names

GROMACS-2024.3-cpeGNU-24.03-PLUMED-2.9.3-noPython-CPU.eb

Name of the package

Version of the package

Toolchain name and version (missing for SYSTEM)

Additional information

Module: GROMACS/2024.3-cpeGNU-24.03-PLUMED-2.9.3-noPython-CPU

Installing
Step 1: Where to install

• Default location is $HOME/EasyBuild

• But better is to install in your project directory for the whole project

• export EBU_USER_PREFIX=/project/project_465000000/EasyBuild

• Set this before loading the LUMI module

• All users of the software tree have to set this environment variable to use the

software tree

Installing
Step 2: Configure the environment

• Load the modules for the LUMI software stack and partition that you

want to use. E.g.,

module load LUMI/24.03 partition/C

• Load the EasyBuild-user module to make EasyBuild available and to

configure it for installing software in the chosen stack and partition:

module load EasyBuild-user

• In many cases, cross-compilation is possible by loading a different

partition module than the one auto-loaded by LUMI

• Though cross-compilation is sometimes problematic for GPU code

module load LUMI/24.03 partition/C
module load EasyBuild-user

Installing
Step 3: Install the software

• Let’s, e.g., install GROMACS

• Search if GROMACS build recipes are available:

• Search the LUMI Software Library that lists all available software through EasyBuild.

• Or on the command line:

eb --search GROMACS

eb –S GROMACS

https://lumi-supercomputer.github.io/LUMI-EasyBuild-docs/

LUMI Software Library

eb --search GROMACS | less

eb -S GROMACS | less

Installing
Step 3: Install the software

• Let’s, e.g., install GROMACS

• Search if GROMACS build recipes are available:

• Search the LUMI Software Library that lists all available software through EasyBuild.

• Or on the command line:

eb --search GROMACS

eb –S GROMACS

• Let’s take GROMACS-2024.3-cpeGNU-24.03-PLUMED-2.9.3-noPython-CPU.eb:

eb GROMACS-2024.3-cpeGNU-24.03-PLUMED-2.9.3-noPython-CPU.eb -D

https://lumi-supercomputer.github.io/LUMI-EasyBuild-docs/

eb GROMACS-2024.3-cpeGNU-24.03-PLUMED-2.9.3-noPython-CPU.eb -D

eb GROMACS-2024.3-cpeGNU-24.03-PLUMED-2.9.3-noPython-CPU.eb -D (2)

Installing
Step 3: Install the software

• Let’s, e.g., install GROMACS

• Search if GROMACS build recipes are available:

• Search the LUMI Software Library that lists all available software through EasyBuild.

• Or on the command line:

eb --search GROMACS

eb –S GROMACS

• Let’s take GROMACS-2024.3-cpeGNU-24.03-PLUMED-2.9.3-noPython-CPU.eb:

eb GROMACS-2024.3-cpeGNU-24.03-PLUMED-2.9.3-noPython-CPU.eb -D

eb GROMACS-2024.3-cpeGNU-24.03-PLUMED-2.9.3-noPython-CPU.eb -r

https://lumi-supercomputer.github.io/LUMI-EasyBuild-docs/

eb GROMACS-2024.3-cpeGNU-24.03-PLUMED-2.9.3-noPython-CPU.eb -r

First a dependency

eb GROMACS-2024.3-cpeGNU-24.03-PLUMED-2.9.3-noPython-CPU.eb -r (2)

Now GROMACS

Multiple configurations

eb GROMACS-2024.3-cpeGNU-24.03-PLUMED-2.9.3-noPython-CPU.eb -r(3)

Second configuration

eb GROMACS-2024.3-cpeGNU-24.03-PLUMED-2.9.3-noPython-CPU.eb –r (4)

Third configuration

Fourth configuration

eb GROMACS-2024.3-cpeGNU-24.03-PLUMED-2.9.3-noPython-CPU.eb -r (5)

eb GROMACS-2024.3-cpeGNU-24.03-PLUMED-2.9.3-noPython-CPU.eb -r (6)

Installing
Step 3: Install the software

• Let’s, e.g., install GROMACS

• Search if GROMACS build recipes are available:

• Search the LUMI Software Library that lists all available software through EasyBuild.

• Or on the command line:

eb --search GROMACS

eb –S GROMACS

• Let’s take GROMACS-2024.3-cpeGNU-24.03-PLUMED-2.9.3-noPython-CPU.eb:

eb GROMACS-2024.3-cpeGNU-24.03-PLUMED-2.9.3-noPython-CPU.eb -D

eb GROMACS-2024.3-cpeGNU-24.03-PLUMED-2.9.3-noPython-CPU.eb -r

• Now the module should be available

module avail GROMACS

https://lumi-supercomputer.github.io/LUMI-EasyBuild-docs/

Installing
Step 3: Install the software - Note

• Installing this way is 99% equivalent to an installation in the central software

tree. The application is compiled in exactly the same way as we would do and is

served from Lustre in both cases.

• But you are in control of updates.

• Note: EasyBuild clears the Lmod user cache so in principle newly installed

modules should show up without problems after installation.

• We’ve seen rare cases where internal Lmod data structures were corrupt and

logging out and in again was needed.

• To manually remove the cache: Remove $HOME/.cache/lmod

rm -rf $HOME/.cache/lmod

More advanced work

• You can also install some EasyBuild recipes that you got from support
and are in the current directory (preferably one without subdirectories):
eb my_recipe.eb -r .

• Note the dot after the –r to tell EasyBuild to also look for dependencies in
the current directory (and its subdirectories)

• In some cases you will have to download the sources by hand, e.g., for
VASP, which is then at the same time a way for us to ensure that you
have a license for VASP. E.g.,

• eb --search VASP

• Then from the directory with the VASP sources:
eb VASP-6.5.0-cpeGNU-24.03-build02.eb -r .

More advanced work (2):
Repositories

• It is possible to have your own clone of the LUMI-EasyBuild-contrib repo in your
$EBU_USER_PREFIX subdirectory if you want the latest and greatest before it is
in the centrally maintained repository
• cd $EBU_USER_PREFIX
git clone https://github.com/Lumi-supercomputer/LUMI-EasyBuild-
contrib.git

• It is also possible to maintain your own repo

• The directory should be $EBU_USER_PREFIX/UserRepo (but of course on
GitHub the repository can have a different name)

• Structure should be compatible with EasyBuild: easyconfig files go in
$EBU_USER_PREFIX/UserRepo/easybuild/easyconfigs

More advanced work (3): Reproducibility

• EasyBuild will keep a copy of the sources in $EBU_USER_PREFIX/sources

• EasyBuild also keeps copies of all installed easyconfig files in two locations:

• In $EBU_USER_PREFIX/ebfiles_repo

• And note that EasyBuild will use this version if you try to reinstall and did

not delete this version first!

• This ensures that the information that EasyBuild has about the installed

application is compatible with what’s in the module files

• With the installed software (in $EBU_USER_PREFIX/SW) in a subdirectory

called easybuild

This is meant to have all information about how EasyBuild installed the

application and to help in reproducing

EasyBuild tips&tricks

• Updating version: Often some trivial changes in the EasyConfig (.eb) file
• Checksums may be annoying: Use --ignore-checksums with the eb

command

• Updating to a new toolchain:
• Be careful, it is more than changing one number

• Versions of preinstalled dependencies should be changed and EasyConfig files of
other dependencies also checked

• LUMI Software Library at lumi-supercomputer.github.io/LUMI-EasyBuild-
docs
• For most packages, pointers to the license

• User documentation gives info about the use of the package, or restrictions

• Technical documentation aimed at users who want more information about how
we build the package

https://lumi-supercomputer.github.io/LUMI-EasyBuild-docs/
https://lumi-supercomputer.github.io/LUMI-EasyBuild-docs/
https://lumi-supercomputer.github.io/LUMI-EasyBuild-docs/

EasyBuild training for advanced users and
developers

• EasyBuild web site: easybuild.io

• Generic EasyBuild training materials on tutorial.easybuild.io.

• Training for CSC and local support organisations: Most up-to-date
version of the training materials on
lumi-supercomputer.github.io/easybuild-tutorial.

https://easybuild.io/
https://tutorial.easybuild.io/
https://lumi-supercomputer.github.io/easybuild-tutorial/

Questions?

	Slide 1: LUMI Software Stacks
	Slide 2: Software stack design considerations
	Slide 3: The LUMI solution
	Slide 4: Policies
	Slide 5: Organisation: Software stacks
	Slide 6: Accessing the Cray PE on LUMI 3 different ways
	Slide 7: Accessing the Cray PE on LUMI 3 different ways
	Slide 8: Accessing the Cray PE on LUMI The LUMI software stack
	Slide 9: Installing software on HPC systems
	Slide 10: Extending the LUMI stack with EasyBuild
	Slide 11: EasyBuild recipes - easyconfigs
	Slide 12: The toolchain concept
	Slide 13: The toolchain concept (2)
	Slide 14: easyconfig names and module names
	Slide 15: Installing Step 1: Where to install
	Slide 16: Installing Step 2: Configure the environment
	Slide 17: module load LUMI/24.03 partition/C module load EasyBuild-user
	Slide 18: Installing Step 3: Install the software
	Slide 19: LUMI Software Library
	Slide 20: eb --search GROMACS | less
	Slide 21: eb -S GROMACS | less
	Slide 22: Installing Step 3: Install the software
	Slide 23: eb GROMACS-2024.3-cpeGNU-24.03-PLUMED-2.9.3-noPython-CPU.eb -D
	Slide 24: eb GROMACS-2024.3-cpeGNU-24.03-PLUMED-2.9.3-noPython-CPU.eb -D (2)
	Slide 25: Installing Step 3: Install the software
	Slide 26: eb GROMACS-2024.3-cpeGNU-24.03-PLUMED-2.9.3-noPython-CPU.eb -r
	Slide 27: eb GROMACS-2024.3-cpeGNU-24.03-PLUMED-2.9.3-noPython-CPU.eb -r (2)
	Slide 28: eb GROMACS-2024.3-cpeGNU-24.03-PLUMED-2.9.3-noPython-CPU.eb -r(3)
	Slide 29: eb GROMACS-2024.3-cpeGNU-24.03-PLUMED-2.9.3-noPython-CPU.eb –r (4)
	Slide 30: eb GROMACS-2024.3-cpeGNU-24.03-PLUMED-2.9.3-noPython-CPU.eb -r (5)
	Slide 31: eb GROMACS-2024.3-cpeGNU-24.03-PLUMED-2.9.3-noPython-CPU.eb -r (6)
	Slide 32: Installing Step 3: Install the software
	Slide 33: Installing Step 3: Install the software - Note
	Slide 34: More advanced work
	Slide 35: More advanced work (2): Repositories
	Slide 36: More advanced work (3): Reproducibility
	Slide 37: EasyBuild tips&tricks
	Slide 38: EasyBuild training for advanced users and developers
	Slide 39: Questions?

