
Containers on LUMI-C and LUMI-G
Kurt Lust

LUMI User Support Team (LUST)
University of Antwerp

October 2025

Containers

This is about containers on LUMI-C and LUMI-G!

• What can they do and what can’t they do?

• Getting containers onto LUMI

• Running containers on LUMI

• Enhancements to the LUMI environment to help you

• Using some of our pre-built AI containers

• But remember: LUMI is an HPC infrastructure, not a container cloud!
• HPC has is own container runtimes specifically for an HPC environment

What do containers not provide?

• Full reproducibility of your science is a myth
• Only reproducibility of the software stack, not of the results

• Performance portability:
• A container built from sources on one CPU will not be optimal for another one.
• Containers built from downloaded binaries may not exploit all architectural

features of the CPU.
• No support for the LUMI interconnect may lead to fall-back to a slower protocol

that works

• Simply portability: Not every container prepared on your Ubuntu or
CentOS cluster or workstation will work on LUMI.
• Containers that rely on certain hardware, drivers/kernel modules and/or kernel

versions may fail.
• Problem cases: High-performance networking (MPI) and GPU (driver version)

But what can they then do on LUMI?

• Containers are a sofware management instrument

• Storage manageability: Lower pressure on the filesystems (for software
frameworks that access hundreds of thousands of small files) for better I/O
performance and management of your disk file quota.
• E.g., conda installations are not appreciated straight on the Lustre file system

• Software installation: Can be a way to install software with an installation
process that is not aware of multi-user HPC systems and is too complicated to
recompile.
• E.g., GUI applications that need a fat library stack
• E.g., experiment with software that needs a newer version of ROCm, though with

limitations

• Isolation: More important for services; often a pain instead
• But still helps avoiding picking up the wrong libraries

• But note: You’re the system administrator of your container, not LUST!

Storage manageability: Python

Managing containers

• Supported runtimes

• Not all container runtimes are a good match with HPC systems

• Docker is NOT directly available in the user environment (and will never be)

• Singularity Community Edition is natively available (as a system command) on the
login and compute nodes

• But you can convert docker containers to singularity: Pulling containers

• DockerHub and other registries (example: Julia container)
singularity pull docker://julia

• Singularity uses a flat (single) sif file for storing the container and the pull command
makes the conversion

• Be carefull: cache in .singularity dir can easily exhaust your storage quota for
larger images

• May want to set SINGULARITY_CACHEDIR to move the cache

singularity pull docker://julia

singularity pull docker://julia

singularity pull docker://julia

Managing containers (2)

• Building containers

• Support for building containers is very limited on LUMI: No elevated privileges but

also no user namespaces and no fakeroot.

We can support proot though.

• One option is to pull or copy containers from outside

• But singularity can build from existing (base) container in some cases (but need to

load a recent systools module for proot)

• Build type called “Unprivileged proot builds” in the Singularity CE manual

• Needs proot from the systools/24.03 module in CrayEnv and LUMI/24.03.

• We provide some base images adapted for LUMI

https://docs.sylabs.io/guides/4.1/user-guide/build_a_container.html#unprivilged-proot-builds

Interacting with containers

• Accessing a container with the shell command

singularity shell container.sif

singularity shell julia_latest.sif

Interacting with containers

• Accessing a container with the shell command

singularity shell container.sif

• Executing a command in the container with exec

singularity exec container.sif uname -a

singularity exec julia_latest.sif uname -a

Interacting with containers

• Accessing a container with the shell command

singularity shell container.sif

• Executing a command in the container with exec

singularity exec container.sif uname -a

• "Running" a container

singularity run container.sif

• Inspecting run definition script

singularity inspect --runscript container.sif

singularity run julia_latest.sif
singularity inspect –runscript julia_latest.sif

Interacting with containers

• Accessing a container with the shell command
singularity shell container.sif

• Executing a command in the container with exec
singularity exec container.sif uname -a

• "Running" a container
singularity run container.sif

• Inspecting run definition script
singularity inspect --runscript container.sif

• Accessing host filesystem with bind mounts
• Singularity will mount $HOME, /tmp, /proc, /sys, /dev into container by default

• Use --bind src1:dest1,src2:dest2 or the SINGULARITY_BIND(PATH)
environment variable to mount other host directories (like /project or /appl).
On LUMI you need --bind /pfs,/scratch,/projappl,/project,/flash

Running containers on LUMI

• Use SLURM to run containers on compute nodes

• Use srun to execute MPI containers
srun singularity exec --bind ${BIND_ARGS} \
${CONTAINER_PATH} my_mpi_binary ${APP_PARAMS}

• Be aware your container must be compatible with Cray MPI (MPICH
ABI compatible) for good performance

• Configure suggestion: see next slide

• Open MPI based containers need workarounds and are not well
supported on LUMI at the moment (and even more problematic for the
GPU)

Environment enhancements (1)

• LUMI specific tools for container interaction provided as modules

• singularity-bindings/system (available via easyconfig)

• Sets the environment to use Cray MPICH provided outside the container

• Requires a LUMI software stack

• Use EasyBuild-user module and eb --search singularity-bindings to find the
easyconfig or copy from our LUMI Software Library web site

• Provides basic bind mounts for using the host MPI in the container setting
SINGULARITY_BIND and SINGULARITY_LD_LIBRARY_PATH

• singularity-AI-bindings (easyconfig or /appl/local/containers/ai-modules)

• Bindings for some of the AI containers that LUST provides

• But not a generic binding that will work for all containers!

https://lumi-supercomputer.github.io/LUMI-EasyBuild-docs/s/singularity-bindings/

Environment enhancements (2)
Containerising tools

• cotainr (LUMI and CrayEnv software stacks)

• A tool to pack conda installations in a singularity container

• Use the singularity commands as shown on earlier slides to run

• lumi-container-wrapper (LUMI and CrayEnv software stacks)

• Supports conda and pip environments

• With pip: Python provided by the cray-python module (so there is an optimised
NumPy etc.)

• Software installation in two parts: a base container and a SquashFS file which is
mounted in that container with the conda/pip environment

• Provides wrappers to encapsulate your custom environment in a container (so
you don’t use singularity commands directly)
• Can even create wrappers for commands in an existing container

• Still helps with quota on the number of files in your project and I/O performance

lumi-container-wrapper (1)

lumi-container-wrapper (2)

lumi-container-wrapper (3)

lumi-container-wrapper (4)

lumi-container-wrapper (5)

lumi-container-wrapper (6)

Environment enhancements (3):
Non-AI containers

• lumi-vnc (LUMI and CrayEnv software stacks)

• Provides basic VNC virtual desktop for interacting with graphical interfaces via a
web browser or VNC client

• Open OnDemand a better alternative for many

• ccpe: Containerised Cray Programming Environment
• For advanced users only

• User-installable as often customisations are needed

• Experiment with newer versions of the Cray PE

• Functionality may be limited due to ROCm driver compatibility

Environment enhancements (3):
Prebuilt containers for AI (and some others)

• Currently available
• PyTorch: Best tested

• JAX

• TensorFlow

• AlphaFold

• ROCm and mpi4py

• Where to find?
• /appl/local/containers/sif-images: Links to the latest version of each container

• /appl/local/containers/easybuild-sif-images: Images for EasyBuild

• Recommended for inexperienced users, but work-in-progress

• /appl/local/containers/tested-containers: Images linked to and docker tarballs

• Recommend to keep your own copy of the image you depend upon!

Running the AI containers
(Complicated way)

• The containers have everything they need to use RCCL and/or MPI on LUMI

• Need to take care of bindings:
• Need
-B /var/spool/slurmd,/opt/cray, and older ones /usr/lib64/libcxi.so.1 at the minimum
(and this list may change after a system update or changes in the container builds)

• And add access to your space in /project, /scratch and/or /flash (default is only the home
directory):
-B /pfs,/scratch,/projappl,/project,/flash

• Components that need further initialisation:
• MIOpen (the AMD cuDNN equivalent)
• RCCL needs to be told the right network interfaces to use if you run across nodes
• GPU-aware MPI may need to be set up (see earlier in the course)
• Your AI package may need some too (e.g., MASTER_ADDR and MASTER_PORT for distributed

learning with PyTorch)

• Containers with Python packages are built using Conda
• Need to initialise the Conda environment via $WITH_CONDA in older versions of the container

Running the AI containers
EasyBuild (1)

• We provide EasyBuild recipes to “install” some of the containers and provide a module.
• For those packages for which we know generic usage patterns, we provide some scripts that

do most settings, and new PyTorch containers have scripts equivalent to the CSC ones

• Define a number of environment variables to make life easier, e.g., popular bindings and a
variable referring to the container

• All but the very oldest versions come with a Python virtual environment pre-initialised to add
your own packages

• No more $WITH_CONDA needed as the module takes care of injecting environment
variables in the container that have the same effect as the Conda and Python virtual
environment activate scripts

• Management of the Python virtual environment: Create a SquashFS file from the
installation

• Someone with some EasyBuild experience may further extend the recipe to, e.g.,
already install extra packages

Running the AI containers
EasyBuild (2)

• Install:
• Set up your user environment for EasyBuild (EBU_USER_PREFIX)

• Run
module load LUMI partition/container EasyBuild-user
eb PyTorch-2.6.0-rocm-6.2.4-python-3.12-singularity-20250404.eb

• After that the container module is available in all LUMI stacks and in CrayEnv

• Best to clean up afterwards before running (or take a new shell)

• Will copy the .sif-file to the software installation directory.
• To delete:
module load PyTorch/2.6.0-rocm-6.2.4-python-3.12-singularity-20250404
rm –f $SIF
module load PyTorch/2.6.0-rocm-6.2.4-python-3.12-singularity-20250404

• At your own risk as we may remove the image in /appl/local/containers without notice

Running: Example: Distributed learning
Without EasyBuild (1)

• Create file get-master.py:

import argparse
def get_parser():

parser = argparse.ArgumentParser(description="Extract master node name from Slurm node list",
formatter_class=argparse.ArgumentDefaultsHelpFormatter)

parser.add_argument("nodelist", help="Slurm nodelist")
return parser

if __name__ == '__main__’:
parser = get_parser()
args = parser.parse_args()

first_nodelist = args.nodelist.split(',')[0]

if '[' in first_nodelist:
a = first_nodelist.split('[‘)
first_node = a[0] + a[1].split('-')[0]

else:
first_node = first_nodelist

print(first_node)

Running: Example: Distributed learning
Without EasyBuild (2)

• Create file run-pytorch.sh:
#!/bin/bash –e

Make sure GPUs are up
if [$SLURM_LOCALID -eq 0] ; then

rocm-smi
fi
sleep 2

$WITH_CONDA

Set MIOpen cache to a temporary folder.
export MIOPEN_USER_DB_PATH="/tmp/$(whoami)-miopen-cache-$SLURM_NODEID”
export MIOPEN_CUSTOM_CACHE_DIR=$MIOPEN_USER_DB_PATH

if [$SLURM_LOCALID -eq 0] ; then
rm -rf $MIOPEN_USER_DB_PATH
mkdir -p $MIOPEN_USER_DB_PATH

fi
sleep 2

Set ROCR_VISIBLE_DEVICES so that each task uses the proper GPU
export ROCR_VISIBLE_DEVICES=$SLURM_LOCALID

Report affinity
echo "Rank $SLURM_PROCID --> $(taskset -p $$)”

Set interfaces to be used by RCCL.
export NCCL_SOCKET_IFNAME=hsn0,hsn1,hsn2,hsn3
export NCCL_NET_GDR_LEVEL=3

Set environment for the app
export MASTER_ADDR=$(python get-master.py "$SLURM_NODELIST")
export MASTER_PORT=29500
export WORLD_SIZE=$SLURM_NPROCS
export RANK=$SLURM_PROCID

Run app
python -u mnist_DDP.py --gpu --modelpath model

MIOpen configuration

RCCL configuration

Who’s the master?

Check for the GPUs

Initialise Conda

GPU binding

Ready to run…

Running: Example: Distributed learning
Without EasyBuild (3)

• Create job script my-job.sh:

#!/bin/bash –e
#SBATCH --nodes=4
#SBATCH --gpus-per-node=8
#SBATCH --tasks-per-node=8
#SBATCH --output="output_%x_%j.txt”
#SBATCH --partition=standard-g
#SBATCH --mem=480G
#SBATCH --time=00:10:00
#SBATCH --account=project_<your_project_id>

PROJECT_DIR=/project/your_project/your_directory
SIF=/appl/local/containers/easybuild-sif-images/lumi-pytorch-rocm-6.2.4-python-3.12-pytorch-v2.6.0-
dockerhash-36e16fb5b67b.sif

c=fe
MYMASKS="0x${c}000000000000,0x${c}00000000000000,0x${c}0000,0x${c}000000,0x${c},0x${c}00,0x${c}0000
0000,0x${c}0000000000”

srun --cpu-bind=mask_cpu:$MYMASKS \
singularity exec \

-B /var/spool/slurmd \
-B /opt/cray \
-B /usr/lib64/libcxi.so.1 \
-B $PROJECT_DIR:/workdir \
$SIF /workdir/run-pytorch.sh

Reorder CPU slots for easy GPU binding

Run the script from the previous slide

Running: Example: Distributed learning
With EasyBuild-installed module

• Create job script my-job.sh:

#!/bin/bash –e
#SBATCH --nodes=4
#SBATCH --gpus-per-node=8
#SBATCH --tasks-per-node=8
#SBATCH --output="output_%x_%j.txt”
#SBATCH --partition=standard-g
#SBATCH --mem=480G
#SBATCH --time=00:10:00
#SBATCH --account=project_<your_project_id>

module load CrayEnv PyTorch/2.6.0-rocm-6.2.4-python-3.12-singularity-20250404

c=fe
MYMASKS="0x${c}000000000000,0x${c}00000000000000,0x${c}0000,0x${c}000000,0x${c},
0x${c}00,0x${c}00000000,0x${c}0000000000”

srun --cpu-bind=mask_cpu:$MYMASKS \
singularity exec $SIF \
conda-python-distributed -u mnist_DDP.py --gpu --modelpath model

Extending container 1:
cotainr

• It is possible to use the ROCm containers in /appl/local/containers/sif-images
as a base image for cotainr and build your own AI container
• Be careful which version of the AI software you use as wheels are likely for a specific ROCm

version (and you don’t want to pick up wheels for NVIDIA)
• MPI may be a problem as mpi4py has to come from Conda

• Process:
• Create a yaml file with the setup for Conda (see notes)
• Run cotainr:
module load LUMI/24.03 cotainr
cotainr build my-new-image.sif \

--base-image=/appl/local/containers/sif-images/lumi-rocm-rocm-6.0.3.sif \
--conda-env=py312_rocm603_pytorch.yml

• Run as a regular container
• Or find someone who want to make an EasyConfig to create a module and point EasyBuild to

the container .sif file with --sourcepath

Extending container 2:
singularity build

• Build a singularity-compatible container definition file, e.g.,

• And run:
module load LUMI/24.03 systools
singularity build my-new-container.sif my-container-definition.def

• Good way to add SUSE packages that may be needed to install extra software

• Tip: Start from a container with an EasyBuild module and the module might still work…

Bootstrap: localimage

From: /appl/local/containers/easybuild-sif-images/lumi-pytorch-
rocm-6.0.3-python-3.12-pytorch-v2.3.1-dockerhash-2c1c14cafd28.sif

%post

zypper -n install -y Mesa libglvnd libgthread-2_0-0 hostname

Extending container 3:
Python virtual environment (1)

• All but the oldest containers installed with EasyBuild have a pre-initialised
virtual environment
• In the container available as /user-software/venv/<MyVEnv>

• Outside the container: $CONTAINERROOT/user-software/venv/<MyVEnv>

• And /user-software can also be used to install other software if needed…

• How?
$> module load LUMI
$> module load PyTorch/2.6.0-rocm-6.2.4-python-3.12-singularity-20250404
$> singularity shell $SIF
Singularity> pip install pytorch-lightning

Extending container 3:
Python virtual environment (2)

• But what about the many small files?

• Convert $CONTAINERROOT/user-software to a SquashFS file
make-squashfs
And reload the module…

• You can then delete the $CONTAINERROOT/user-software subdirectory if you need
the space (or file quota) and reconstruct it if needed with unmake-squashfs

• To add additional packages afterwards:

• Make sure the $CONTAINERROOT/user-software exists (outside the container)

• Delete $CONTAINERROOT/user-software.squashfs

• Reload the module

• And start a shell in the container…

• You can of course do this with any container with Python, also when not using
EasyBuild-built modules but the manual procedure takes a few more steps.

Container limitations on LUMI

• “Bring your own userland and run on a system-optimised kernel” and you’ll be fine is a
myth

• Containers use the host’s operating system kernel which may be different from what the
container expects. Containers also do not abstract hardware.
• This is particularly true for ROCm as each version works only with certain driver versions

• Much of system-specific optimisation is done in userland:
• Optimisations for a specific CPU and GPU instruction set

• A generic container may not offer sufficiently good support for the Slingshot 11 interconnect on
LUMI and fall back to TCP sockets resulting in poor performance, or not work at all.

• Solution: inject Cray MPICH, but only for containers with ABI compatibility with MPICH.

• Distributed AI: Need to inject the proper RCCL plugin.

• Only limited support for building containers on LUMI due to security concerns.

Questions?

	Slide 1: Containers on LUMI-C and LUMI-G
	Slide 2: Containers
	Slide 3: What do containers not provide?
	Slide 4: But what can they then do on LUMI?
	Slide 5: Storage manageability: Python
	Slide 6: Managing containers
	Slide 7: singularity pull docker://julia
	Slide 8: singularity pull docker://julia
	Slide 9: singularity pull docker://julia
	Slide 10: Managing containers (2)
	Slide 11: Interacting with containers
	Slide 12: singularity shell julia_latest.sif
	Slide 13: Interacting with containers
	Slide 14: singularity exec julia_latest.sif uname -a
	Slide 15: Interacting with containers
	Slide 16: singularity run julia_latest.sif singularity inspect –runscript julia_latest.sif
	Slide 17: Interacting with containers
	Slide 18: Running containers on LUMI
	Slide 19: Environment enhancements (1)
	Slide 20: Environment enhancements (2) Containerising tools
	Slide 21: lumi-container-wrapper (1)
	Slide 22: lumi-container-wrapper (2)
	Slide 23: lumi-container-wrapper (3)
	Slide 24: lumi-container-wrapper (4)
	Slide 25: lumi-container-wrapper (5)
	Slide 26: lumi-container-wrapper (6)
	Slide 27: Environment enhancements (3): Non-AI containers
	Slide 28: Environment enhancements (3): Prebuilt containers for AI (and some others)
	Slide 29: Running the AI containers (Complicated way)
	Slide 30: Running the AI containers EasyBuild (1)
	Slide 31: Running the AI containers EasyBuild (2)
	Slide 32: Running: Example: Distributed learning Without EasyBuild (1)
	Slide 33: Running: Example: Distributed learning Without EasyBuild (2)
	Slide 34: Running: Example: Distributed learning Without EasyBuild (3)
	Slide 35: Running: Example: Distributed learning With EasyBuild-installed module
	Slide 36: Extending container 1: cotainr
	Slide 37: Extending container 2: singularity build
	Slide 38: Extending container 3: Python virtual environment (1)
	Slide 39: Extending container 3: Python virtual environment (2)
	Slide 40: Container limitations on LUMI
	Slide 41: Questions?

